Skip to main content

The Constitutive Activity of 5-HT2C Receptors as an Additional Modality of Interaction of the Serotonergic System

  • Chapter
  • First Online:
5-HT2C Receptors in the Pathophysiology of CNS Disease

Part of the book series: The Receptors ((REC,volume 22))

Abstract

Neurotransmitters usually interact with their receptors in a phasic and/or tonic manner. Additionally, numerous G-protein-coupled receptors display a constitutive activity that spontaneously activates intracellular pathways independently from the presence of the endogenous neurotransmitter. Although such multiple modalities of action have been clearly described in vitro, the transposition of the concept of constitutive activity to the living animals remains controversial. The constitutive activity would be a physiological property of 5-HT2C receptors in basal ganglia, a group of subcortical brain regions involved in motor control. This activity has been deeply investigated in the control of in vivo dopamine release and occurs concomitantly to the phasic and tonic inhibitory controls exerted by 5-HT2C receptors. Nevertheless, the regional distribution of each of these controls may be different in basal ganglia. A constitutive activity of 5-HT2C receptors may participate in fine in numerous brain functions concomitantly to phasic and tonic influences, if a full pharmacological characterization is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi YU, Satomoto M, Higuchi H, et al (2005) Halothane enhances dopamine metabolism at presynaptic sites in a calcium-independent manner in rat striatum. Br J Anaesth 95:485–494.

    PubMed  CAS  Google Scholar 

  • Adachi YU, Aramaki Y, Satomoto M, et al (2008) Halothane attenuated haloperidol and enhanced clozapine-induced dopamine release in the rat striatum. Neurochem Int 43:113–119.

    Google Scholar 

  • Alex KD, Yavanian GJ, McFarlane HG, et al (2005) Modulation of dopamine release by striatal 5-HT2C receptors. Synapse 55:242–251.

    PubMed  CAS  Google Scholar 

  • Andersson JJ, Nomikos GG, Marcus M, et al (1995) Ritanserin potentiates the stimulatory effects of raclopride on neuronal activity and dopamine release selectively in the mesolimbic dopaminergic system. Naunyn Schmiedeberg’s Arch Pharmacol 352:374–385.

    CAS  Google Scholar 

  • Arrang JM, Morisset S, Gbahou F (2008) Constitutive activity of the histamine H3 receptor. Trends Pharmacol Sci 28:350–357.

    Google Scholar 

  • Barker EL, Westphal RS, Schimdt D, et al (1994) Constitutively active 5-hydroxytryptamine2C receptors reveal novel inverse agonist activity of receptor ligands. J Biol Chem 269:11687–11690.

    PubMed  CAS  Google Scholar 

  • Benloucif S, Keegan MJ, Galloway MP (1993) Serotonin-facilitated dopamine release in vivo: pharmacological characterization. J Pharmacol Exp Ther 265:373–377.

    PubMed  CAS  Google Scholar 

  • Berg KA, Maayani S, Goldfarb J, et al (1998) Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 54:94–104.

    PubMed  CAS  Google Scholar 

  • Berg KA, Stout BD, Cropper JD, et al (1999) Novel actions of inverse agonists on 5-HT2C receptor systems. Mol Pharmacol 55:863–872.

    PubMed  CAS  Google Scholar 

  • Berg KA, Cropper JD, Niswender CM, et al (2001) RNA-editing of the 5-HT2C receptor alters agonist-receptor-effector coupling specificity. Br J Pharmacol 134:386–392.

    PubMed  CAS  Google Scholar 

  • Berg KA, Harvey JA, Spampinato U, et al (2005) Physiological relevance of constitutive activity of 5-HT2A and 5-HT2C receptors. Trends Pharmacol Sci 26:625–630.

    PubMed  CAS  Google Scholar 

  • Berg KA, Navailles S, Sanchez TA, et al (2006) Differential effects of 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) on 5-hydroxytryptamine(2C) receptor-mediated responses. J Pharmacol Exp Ther 319:260–268.

    PubMed  CAS  Google Scholar 

  • Berg KA, Clarke WP, Cunningham KA, et al (2008) Fine-tuning serotonin2C receptor function in the brain: Molecular and functional implications. Neuropharmacology 55:969–976.

    PubMed  CAS  Google Scholar 

  • Bonhaus DW, Weinhardt KK, Taylor M, et al (1997) RS 02221: a novel high affinity and selective, 5-HT2C receptor antagonist. Neuropharmacology 36:621–629.

    PubMed  CAS  Google Scholar 

  • Bunney BS, Walters JR, Roth RH, et al (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185:560–571.

    PubMed  CAS  Google Scholar 

  • Burns CM, Chu H, Rueter SM, et al (1997) Regulation of serotonin2C receptor G-protein coupling by RNA editing. Nature 387:303–307.

    PubMed  CAS  Google Scholar 

  • Burstein ES, Spalding TA, Brauner-Osborne H, et al (1995) Constitutive activation of muscarinic receptors by the G-protein Gq. FEBS Lett 363:261–3.

    PubMed  CAS  Google Scholar 

  • Cook DF, Whirtshafter D (1995) Serotonin agonist-induced c-fos expression in the rat striatum. Soc Neurosci Abstr 21:1424.

    Google Scholar 

  • Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opiod receptors coupled to GTP-binding proteins. Proc Natl Acad Sci U S A 86:7321–7325.

    PubMed  CAS  Google Scholar 

  • Curzon G, Gibson EL, Oluyomi AO (1997) Appetite suppression by commonly used drugs depends on 5-HT receptors but not on 5-HT availability. Trends Pharmacol Sci 18:21–25.

    PubMed  CAS  Google Scholar 

  • De Deurwaerdère P, Chesselet MF (2000) Nigrostriatal lesions alter oral dyskinesia and c-fos expression induced by the serotonin agonist 1-(m-chlorophenyl)piperazine in adult rats. J Neurosci 20:5170–5178.

    PubMed  Google Scholar 

  • De Deurwaerdère P, Spampinato U (1999) Role of serotonin2A and serotonin2B/2C receptor subtypes in the control of accumbal and striatal dopamine release elicited in vivo by dorsal raphe nucleus electrical stimulation. J Neurochem 73:1033–1042.

    PubMed  Google Scholar 

  • De Deurwaerdère P, Spampinato U (2001) The nigrostriatal dopamine system: a neglected target for 5-HT2C receptors. Trends Pharmacol Sci 22:502–503.

    PubMed  Google Scholar 

  • De Deurwaerdère P, Stinus L, Spampinato U (1998) Opposite change of in vivo dopamine release in the rat nucleus accumbens and striatum that follows electrical stimulation of dorsal raphe nucleus: role of 5-HT3 receptors. J Neurosci 18:6528–6538.

    PubMed  Google Scholar 

  • De Deurwaerdère P, Navailles S, Berg KA, et al (2004) Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci 24:3235–3241.

    PubMed  Google Scholar 

  • De Deurwaerdère P, Kadiri N, Trannois A, et al (2008) Continuous controls exerted by Serotonin2C receptor in rat basal ganglia involve both serotonergic tone and its constitutive activity: regional distribution on c-Fos expression and behavioral aspects. EPHAR, Serotonin Club Meeting, Oxford, UK. July 16-19. In Fundamental and Clinical Pharmacology, 22 (suppl 2):SCP036.

    Google Scholar 

  • De Deurwaerdère P, Le Moine C and Chesselet M-F (2010) Selective blockade of Serotonin2C receptor enhances Fos expression specifically in the striatum and the subthalamic nucleus within the basal ganglia. Neurosci Lett 469:251–255.

    PubMed  Google Scholar 

  • Dekeyne A, Mannoury la Cour C, Gobert A, et al (2008) S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models Psychopharmacology (Berl) 199:549–568.

    CAS  Google Scholar 

  • Devaud LL, Hollingsworth EB, Cooper BR (1992) Alterations in extracellular and tissue levels of biogenic amines in rat brain induced by the serotonin2 receptor antagonist, ritanserin. J Neurochem 59:1459–1466.

    PubMed  CAS  Google Scholar 

  • Devoto P, Flore G, Pira L, et al (2004) Mirtazapine-induced corelease of dopamine and noradrenaline from noradrenergic neurons in the medial prefrontal and occipital cortex. Eur J Pharmacol 487:105–111.

    PubMed  CAS  Google Scholar 

  • Di Giovanni G, De Deurwaerdère P, Di Mascio M, et al (1999) Selective blockade of serotonin2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91:587–597.

    PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, Di Mascio M, et al (2000) Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin(2C/2B) receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 35:53–61.

    PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Di Mascio M, et al (1998) Selective blockade of serotonin2C/2B receptors enhances dopamine release in the rat nucleus accumbens. Neuropharmacology 37:265–272.

    PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Di Mascio M, et al (1999) SB 242084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology 38:1195–1205.

    PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Di Mascio M, et al (2000a) Biochemical and electrophysiological evidence that RO 60-0175 inhibits mesolimbic dopaminergic function through serotonin2C receptors. Brain Res 865:85–90.

    PubMed  Google Scholar 

  • Di Matteo V, Di Mascio M, Di Giovanni G, et al (2000b) Acute administration of amitriptyline and mianserin increases dopamine release in the rat nucleus accumbens: possible involvement of serotonin2C receptors. Psychopharmacology 150:45–51.

    PubMed  Google Scholar 

  • Di Matteo V, De Blasi A, Di Giulio C, et al (2001) Role of 5-HT2C receptors in the control of central dopamine function. Trends Pharmacol Sci 22:229–232.

    PubMed  Google Scholar 

  • Di Matteo V, Cacchio M, Di Giulio C, et al (2002) Biochemical evidence that the atypical antipsychotic drugs clozapine and risperidone block 5-HT2C receptors in vivo. Pharmacol Biochem Behav 71:607–613.

    PubMed  Google Scholar 

  • Di Matteo V, Pierucci M, Esposito E (2004) Selective stimulation of serotonin2c receptors blocks the enhancement of striatal and accumbal dopamine release induced by nicotine administration. J Neurochem 89:418–429.

    PubMed  Google Scholar 

  • Eberle-Wang K, Lucki I, Chesselet MF (1996) A role for the subthalamic nucleus in 5-HT2C-induced oral dyskinesia. Neuroscience 72:117–28.

    PubMed  CAS  Google Scholar 

  • Eriksson E, Engberg G, Bing O, et al (1999) Effects of mCPP on the extracellular concentrations of serotonin and dopamine in rat brain Neuropsychopharmacology 20:287–296.

    PubMed  CAS  Google Scholar 

  • Ferré S, Artigas F (1995). Clozapine decreases serotonin extracellular levels in the nucleus accumbens by a dopamine receptor-independent mechanism. Neurosci Lett 187:61–64.

    PubMed  Google Scholar 

  • Filip M, Cunningham KA (2002) Serotonin 5-HT(2C) receptors in the nucleus accumbens regulate expression of the hyperlocomotive and discriminative stimulus effects of cocaine. Pharmacol Biochem Behav 71:745–56.

    PubMed  CAS  Google Scholar 

  • Filip M, Cunningham KA (2003) Hyperlocomotive and discriminative stimulus effects of cocaine are under the control of serotonin(2C) (5-HT(2C)) receptors in rat prefrontal cortex. J Pharmacol Exp Ther 306:734–743.

    PubMed  CAS  Google Scholar 

  • Fitzgerald LW, Iyer G, Conklin DS, et al (1999) Messenger RNA editing of the human serotonin 5-HT2C receptor. Neuropsychopharmacology 21:82S–90S.

    PubMed  CAS  Google Scholar 

  • Fletcher PJ, Chintoh AF, Sinyard J, et al (2004) Injection of the 5-HT2C receptor agonist Ro60-0175 into the ventral tegmental area reduces cocaine-induced locomotor activity and cocaine self-administration. Neuropsychopharmacology 29:308–318.

    PubMed  CAS  Google Scholar 

  • Fletcher PJ, Tampakeras M, Sinyard J, et al (2007) Opposing effects of 5-HT2A and 5-HT2C receptor antagonists in the rat and mouse on premature responding in the five-choice serial reaction time test. Psychopharmacology (Berl) 195:223–234.

    CAS  Google Scholar 

  • Fox SH, Moser B, Brotchie JM (1998) Behavioral effects of 5-HT2C receptor antagonism in the substantia nigra zona reticulata of the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Exp Neurol 151:35–49.

    PubMed  CAS  Google Scholar 

  • Gardier AM, Moratalla R, Cuéllar B, et al (2000) Interaction between the serotoninergic and dopaminergic systems in d-fenfluramine-induced activation of c-fos and jun B genes in rat striatal neurons. J Neurochem 74:1363–1373.

    PubMed  CAS  Google Scholar 

  • Giorgetti M, Tecott LH (2004) Contributions of 5-HT2C receptors to multiple actions of central serotonin systems. Eur J Pharmacol 488:1–9.

    PubMed  CAS  Google Scholar 

  • Gobert A, Millan MJ (1999) Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 38:315–317.

    PubMed  CAS  Google Scholar 

  • Gobert A, Rivet JM, Lejeune F, et al (2000) Serotonin2C receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: A combined dialysis and electrophysiological analysis in the rat. Synapse 36:205–221.

    PubMed  CAS  Google Scholar 

  • Gong L, Kostrzewa RM, Fuller RW, et al (1992) Supersensitization of the oral response to SKF 38393 in neonatal 6-OHDA-lesioned rats is mediated through a serotonin system. J Pharmacol Exp Ther 261:1000–1007.

    PubMed  CAS  Google Scholar 

  • Grotewiel MS, Sanders-Bush E (1999) Differences in agonist-independent activity of 5-HT2A and 5-HT2C receptors revealed by heterologous expression. Naunyn-Schmiedeberg’s Arch Pharmacol 359:21–27.

    CAS  Google Scholar 

  • Grottick AJ, Fletcher PJ, Higgins GA (2000) Studies to investigate the role of 5-HT2C receptors on cocaine-and food-maintained behavior. J Pharmacol Exp Ther 295:1183–1191.

    PubMed  CAS  Google Scholar 

  • Gurevich I, Englander MT, Adlesberg M, et al (2002) Modulation of serotonin2C receptor editing by sustained changes in serotonergic neurotransmission. J Neurosci 22:10529–10532.

    PubMed  CAS  Google Scholar 

  • Harvey JA, Welsh SE, Hood H, et al (1999). Effect of 5-HT2 antagonists on cranial nerve reflex in the rabbit: evidence for inverse agonism. Psychopharmacology 141:163–168.

    Google Scholar 

  • Heisler LK, Zhou L, Bajwa P, et al (2007) Serotonin 5-HT2C receptros regulate anxiety-like behavior. Genes Brain Behav 6:491–496.

    PubMed  CAS  Google Scholar 

  • Herrick-Davis K, Grinde E, Niswender CM (1999) Serotonin 5-HT2C receptor RNA editing alters receptor basal activity: implications for serotonergic signal transduction. J Neurochem 73:1711–1717.

    PubMed  CAS  Google Scholar 

  • Herrick-Davis K, Grinde E, Teitler M (2000) Inverse agonist activity of atypical antipsychotic drugs at human 5-hydroxytryptamine2C receptors. J Pharmacol Exp Ther 295:226–232.

    PubMed  CAS  Google Scholar 

  • Hutson PH, Barton CL, Jay M, et al (2000) Activation of mesolimbic dopamine function by phencyclidine is enhanced by 5-HT2C/2B receptor antagonists: neurochemical and behavioural studies. Neuropharmacology 39:2318–2328.

    PubMed  CAS  Google Scholar 

  • Ichikawa J, Dai J, Meltzer HY (2001) DOI, a 5-HT2A/2C receptor agonist, attenuates clozapine-induced cortical dopamine release. Brain Res 907:151–155.

    PubMed  CAS  Google Scholar 

  • Ichikawa J, Chung Y-C, Dai J, et al (2005). Valproic acid potentiates both typical and atypical antipsychotic-induced prefrontal cortical dopamine release. Brain Res 1052:56–62.

    PubMed  CAS  Google Scholar 

  • Jaskiw GE, Kirkbride B, Newbould E, et al (2005) Clozapine-induced dopamine release in the medial prefrontal cortex is augmented by a moderate concentration of locally administered tyrosine but attenuated by high tyrosine concentrations or by tyrosine depletion. Psychopharmacology (Berl) 179:713–724.

    CAS  Google Scholar 

  • Javed A, Van de Kar LD, Gray TS (1998) The 5-HT1A and 5-HT2A/2C receptor antagonists WAY-100635 and ritanserin do not attenuate D-fenfluramine-induced fos expression in the brain. Brain Res 791 :67–74.

    PubMed  CAS  Google Scholar 

  • Jones BJ, Blackburn TP (2002) The medical benefit of 5-HT research. Pharmacol Biochem Behav 71:555–568.

    PubMed  CAS  Google Scholar 

  • Kalén P, Strecker RE, Rosengren E, et al (1988). Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric ­detection. J Neurochem 51:1422–1435.

    PubMed  Google Scholar 

  • Kelland MD, Chiodo LA, Freeman AS (1991) Dissociative anesthesia and striatal neuronal electrophysiology. Synapse 9:75–78.

    PubMed  CAS  Google Scholar 

  • Kenakin T (2001) Inverse, protean, and ligand-selective agonism: matters of receptor conformation FASEB J 15:598–611.

    PubMed  CAS  Google Scholar 

  • Kenakin T (2004) Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol 65:2–11.

    PubMed  CAS  Google Scholar 

  • Kennett GA, Curzon G (1988) Evidence that mCPP may have behavioural effects mediated by central 5-HT1C receptors. Br J Pharmacol 94:137–147.

    PubMed  CAS  Google Scholar 

  • Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T, Thomas DR, Baxter GS, Forbes IT, Ham P, Blackburn TP (1996) In vitro and in vivo profile of SB 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties. Br J Pharmacol 117:427–434.

    PubMed  CAS  Google Scholar 

  • Kennett GA, Wood MD, Bright F, et al (1997) SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology 36:609–620.

    PubMed  CAS  Google Scholar 

  • Kuroki T, Meltzer HY, Ichikawa J (1999) Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 288:774–781.

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ (1993) G-protein-coupled receptors. Turned on to ill effect. Nature 365:603–604.

    PubMed  CAS  Google Scholar 

  • Leggio GM, Cathala A, Moison D, et al (2008) Serotonin(2C) receptors in the medial prefrontal cortex facilitate cocaine-induced dopamine release in the rat nucleus accumbens. Neuropharmacology 56:507–513.

    PubMed  Google Scholar 

  • Li Z, Ichikawa J, Huang M, et al (2005a) ACP-103, a 5-HT2A/2C inverse agonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Psychopharmacology (Berl) 183:144–153.

    CAS  Google Scholar 

  • Li Z, Huang M, Ichikawa J, et al (2005b) N-desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M1 muscarinic receptors. Neuropsychopharmacology 30:1986–1995.

    PubMed  CAS  Google Scholar 

  • Lucas G, Bonhomme N, De Deurwaerdère P, et al (1997) 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 131:57–63.

    PubMed  CAS  Google Scholar 

  • Lucas G, De Deurwaerdère P, Caccia S, et al (2000) The effect of serotonergic agents on haloperidol-induced striatal dopamine release in vivo: opposite role of 5-HT2A and 5-HT2C receptor subtypes and significance of the haloperidol dose used. Neuropharmacology 39:1053–1063.

    PubMed  CAS  Google Scholar 

  • Marcus MM, Nomikos GG, Svensson TH (1996) Differential actions of typical and atypical antipsychotic drugs on dopamine release in the core and shell of the nucleus accumbens. Eur Neuropsychopharmacol 6:29–38.

    PubMed  CAS  Google Scholar 

  • Marion S, Weiner DM, Caron MG (2004) RNA editing induces variation in desensitization and trafficking of 5-hydroxytryptamine2C receptor isoforms. J Biol Chem 279:2945–54.

    PubMed  CAS  Google Scholar 

  • Marquis KL, Sabb AL, Logue SF, et al (2007) WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole]: A novel 5-hydroxytryptamine2C receptor-selective agonist with preclinical antipsychotic-like activity. J Pharmacol Exp Ther 320:486–496.

    PubMed  CAS  Google Scholar 

  • McCreary AC, Cunningham KA (1999) Effects of the 5-HT2C/2B antagonist SB 206553 on hyperactivity induced by cocaine. Neuropsychopharmacology 20:556–564.

    PubMed  CAS  Google Scholar 

  • Mereu G, Fanni B, Gessa GL (1984) General anesthetics prevent dopaminergic neuron stimulation by neuroleptics. In: Usdin E, Carlsson A, Dahlstrom A, Engel J (eds.). Catecholamines: Neuropharmacology and Central Nervous System – Theoretical Aspects. Alan R Liss Inc.: New York, pp. 353–358.

    Google Scholar 

  • Millan MJ, Dekeyne A, Gobert A (1998) Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but no 5-HT, release in the frontal cortex in vivo. Neuropharmacology 37:953–955.

    PubMed  CAS  Google Scholar 

  • Millan MJ, Gobert A, Rivet JM, et al (2000) Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of alpha2-adrenergic and serotonin2C receptors: a comparison with citalopram. Eur J Neurosci 12:1079–1095.

    PubMed  CAS  Google Scholar 

  • Millan MJ, Brocco M, Gobert A, et al (2005) Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade. Psychopharmacology (Berl) 177:448–458.

    CAS  Google Scholar 

  • Milligan G, Bond RA (1997) Inverse agonism and the regulation of receptor number. Trends Pharmacol Sci 18: 468–474.

    PubMed  CAS  Google Scholar 

  • Milligan G, Bond RA, Lee M (1995) Inverse agonism: pharmacological curiosity or potential therapeutic strategy? Trends Pharmacol Sci 16:10–13.

    PubMed  CAS  Google Scholar 

  • Moorman JM, Leslie RA (1996) P-chloroamphetamine induces c-fos in rat brain: a study of serotonin2A/2C receptor function. Neuroscience 72:129–139.

    PubMed  CAS  Google Scholar 

  • Morisset S, Rouleau A, Ligneau X, et al (2000) High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408:860–862.

    PubMed  CAS  Google Scholar 

  • Navailles S, De Deurwaerdère P, Porras G, et al (2004) In vivo evidence that 5-HT2C receptor antagonist but not agonist modulates cocaine-induced dopamine outflow in the rat nucleus accumbens and striatum. Neuropsychopharmacology 29:319–326.

    PubMed  CAS  Google Scholar 

  • Navailles S, Moison D, Ryczko D, et al (2006a) Region-dependent regulation of mesoaccumbens dopamine neurons in vivo by the constitutive activity of central serotonin2C receptors. J Neurochem 99:1311–1319.

    PubMed  CAS  Google Scholar 

  • Navailles S, De Deurwaerdère P, Spampinato U (2006b) Clozapine and haloperidol differentially alter the constitutive activity of central serotonin2C receptors in vivo. Biol Psychiatry 59:568–575.

    PubMed  CAS  Google Scholar 

  • Navailles S, Moison D, Cunningham KA, et al (2008) Differential regulation of the mesoaccumbens dopamine circuit by serotonin2C receptors in the ventral tegmental area and the nucleus accumbens: an in vivo microdialysis study with cocaine. Neuropsychopharmacology 33:237–246.

    PubMed  CAS  Google Scholar 

  • Niswender CM, Copeland SC, Herrick-Davis K, et al (1999) RNA editing of the human serotonin 5-hydroxytryptamine2C receptor silences constitutive activity. J Biol Chem 274:9472–9478.

    PubMed  CAS  Google Scholar 

  • Nomikos GG, Iurlo M, Andersson JL, et al (1994) Systemic administration of amperozide, a new atypical antipsychotic drug, preferentially increases dopamine release in the rat medial prefrontal cortex. Psychopharmacology (Berl) 115:147–156.

    CAS  Google Scholar 

  • Nonogaki K, Abdallah L, Goulding EH, et al (2003) Hyperactivity and reduced energy cost of physical activity in serotonin 5-HT(2C) receptor mutant mice. Diabetes 52:315–320.

    PubMed  CAS  Google Scholar 

  • Olsen CK, Hogg S, Lapiz MD (2002) Tonic immobility in guinea pigs: a behavioural response for detecting an anxiolytic-like effect? Behav Pharmacol 13:261–269.

    PubMed  CAS  Google Scholar 

  • Parsons LH, Justice Jr JB (1993) Perfusate serotonin increases extracellular dopamine in the nucleus accumbens as measured by in vivo microdialysis. Brain Res 606:195–199.

    PubMed  CAS  Google Scholar 

  • Pazos A, Hoyer D, Palacios JM (1984) The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol 106:539–546.

    PubMed  CAS  Google Scholar 

  • Pehek EA (1996) Local infusion of the serotonin antagonists ritanserin or ICS 205,930 increases in vivo dopamine release in the rat medial prefrontal cortex. Synapse 24:12–18.

    PubMed  CAS  Google Scholar 

  • Pehek EA, Bi Y (1997) Ritanserin administration potentiates amphetamine-stimulated dopamine release in the rat prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 21:671–682.

    PubMed  CAS  Google Scholar 

  • Plech A, Brus R, Kalbfleisch J H, et al (1995) Enhanced oral activity responses to intrastriatal SKF 38393 and m-CCP are attenuated by intrastriatal mianserin in neonatal 6-OHDA-lesionned rats. Psychopharmacology (Berl.) 119:466–473.

    CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23:163–178.

    PubMed  CAS  Google Scholar 

  • Porras G, Di Matteo V, Fracass C, et al (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the nucleus accumbens and striatum. Neuropsychopharmacology 26:311–324.

    PubMed  CAS  Google Scholar 

  • Pozzi L, Acconcia S, Ceglia I, et al (2002) Stimulation of 5-hydroxytryptamine (5-HT(2C)) receptors in the ventrotegmental area inhibits stress-induced but not basal dopamine release in the rat prefrontal cortex. J Neurochem 82:93–100.

    PubMed  CAS  Google Scholar 

  • Price RD, Weiner DM, Chang MS, et al (2001) RNA editing of the human serotonin 5-HT2C receptor alters receptor-mediated activation of G13 protein. J Biol Chem 276:55663–55668.

    Google Scholar 

  • Prinssen EP, Koek W, Kleven MS (2000) The effects of antipsychotics with 5-HT(2C) receptor affinity in behavioural assays selective for 5-HT(2C) receptor antagonist properties compounds. Eur J Pharmacol 388:57–67.

    PubMed  CAS  Google Scholar 

  • Prisco S, Pagannone S, Esposito E (1994) Serotonin-dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo. J Pharmacol Exp Ther. 271:83–90.

    PubMed  CAS  Google Scholar 

  • Quirk K, Lawrence A, Jones J, et al (2001) Characterisation of agonist binding on human 5-HT2C receptor isoforms. Eur J Pharmacol 419:107–112.

    PubMed  CAS  Google Scholar 

  • Rauser L, Savage JE, Meltzer HY, et al (2001) Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine(2C) receptor. J Pharmacol Exp Ther 299:83–89.

    PubMed  CAS  Google Scholar 

  • Robinson ES, Dalley JW, Theobald DE, et al (2008) Opposing roles for 5-HT2A and 5-HT2C receptors in the nucleus accumbens on inhibitory response control in the 5-choice serial reaction time task. Neuropsychopharmacology 33:2398–2406.

    PubMed  CAS  Google Scholar 

  • Rosenzweig-Lipson S, Sabb A, Stack G, et al (2007) Antidepressant-like effects of the novel, selective, 5-HT2C receptor agonist WAY-163909 in rodents. Psychopharmacology (Berl) 192:159–170.

    CAS  Google Scholar 

  • Rouillard C, Bovetto S, Gervais J, et al (1996) Fenfluramine-induced activation of the immediate-early gene c-fos in the striatum: possible interaction between serotonin and dopamine. Brain Res Mol Brain Res 37:105–115.

    PubMed  CAS  Google Scholar 

  • Rowley HL, Needham PL, Kilpatrick IC, et al (2000) A comparison of the acute effects of zotepine and other antipsychotics on rat cortical dopamine release in vivo. Naunyn Schmiedeberg’s Arch Pharmacol 361:187–192.

    CAS  Google Scholar 

  • Schmauss C (2003) Serotonin 2C receptors: suicide, serotonin, and runaway RNA editing. Neuroscientist 9:237–242.

    PubMed  CAS  Google Scholar 

  • Schmauss C (2005) Regulation of serotonin2C receptor pre-mRNA editing by serotonin. Int Rev Neurobiol 63:83–100.

    PubMed  CAS  Google Scholar 

  • Schotte A, Janssen PFM, Megens AA, et al (1993) Occupancy of central neurotransmitter receptors by risperidone, clozapine and haloperidol, measured ex vivo by quantitative autoradiography. Brain Res 631:191–202.

    PubMed  CAS  Google Scholar 

  • Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol 366:381–416.

    PubMed  CAS  Google Scholar 

  • Sharp T, Bramwell SR, Grahame-Smith DG (1989) 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol 96:283–290.

    PubMed  CAS  Google Scholar 

  • Shilliam CS, Dawson LE (2005) The effect of clozapine on extracellular dopamine levels in the shell subregion of the rat nucleus accumbens is reversed following chronic administration: comparison with a selective 5-HT2C receptor antagonist. Neuropsychopharmacology 30:372–80.

    PubMed  CAS  Google Scholar 

  • Stark JA, Davies KE, Williams SR, et al (2006) Functional magnetic resonance imaging and c-Fos mapping in rats following an anoretic dose of m-chlorophenylpiperazine. Neuroimage 31:1228–1237.

    PubMed  Google Scholar 

  • Stark JA, McKie S, Davies KE, et al (2008) 5-HT2C antagonism blocks blood oxygen level-dependent pharmacological-challenge magnetic resonance imaging signal in rat brain areas related to feeding. Eur J Neurosci 27:457–465.

    PubMed  Google Scholar 

  • Stewart BR, Jenner P, Marsden CD (1989) Induction of purposeless chewing behaviour in rats by 5-HT agonist drugs. Eur J Pharmacol 162:101–107.

    PubMed  CAS  Google Scholar 

  • Talpos JC, Wilkinson LS, Robbins TW (2006) A comparison of multiple 5-HT receptors in two tasks measuring impulsivity. J Psychopharmacol 20:47–58.

    PubMed  CAS  Google Scholar 

  • Tanda G, Bassareo V, DI Chiara G (1996) Mianserin markedly and selectively increases extracellular dopamine in the prefrontal cortex as compared to the nucleus accumbens of the rat. Psychopharmacology (Berl) 123:127–130.

    CAS  Google Scholar 

  • Tecott LH, Sun LM, Akana SF, et al (1995) Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature 74:542–546.

    Google Scholar 

  • Thomsen WJ, Grottick AJ, Menzaghi F, et al (2008) Lorcaserin, a novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. J Pharmacol Exp Ther 325:577–587.

    PubMed  CAS  Google Scholar 

  • Tomkins DM, Joharchi N, Tampakeras M, et al (2002) An investigation of the role of 5-HT2C receptors in modifying ethanol self-administration behaviour. Pharmacol Biochem Behav 71:735–744.

    PubMed  CAS  Google Scholar 

  • Van Wijngaarden I, Tulp MTM, Soudijn W (1990) The concept of selectivity in 5-HT receptor research. Eur J Pharmacol 188:301–312.

    PubMed  Google Scholar 

  • Ward RP, Dorsa DM (1996) Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C, and 5-HT6 with neuropeptides in rat striatum. J Comp Neurol 370:405–414.

    PubMed  CAS  Google Scholar 

  • Werry TD, Stewart GD, Crouch MF, et al (2008) Pharmacology of 5HT(2C) receptor-mediated ERK1/2 phosphorylation: agonist-specific activation pathways and the impact of RNA editing. Biochem Pharmacol 76:1276–87.

    PubMed  CAS  Google Scholar 

  • Willins DL, Meltzer HY (1998) Serotonin 5-HT2C agonists selectively inhibit morphine-induced dopamine efflux in the nucleus accumbens. Brain Res 781:291–299.

    PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, et al (2004) 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl) 176:376–385.

    CAS  Google Scholar 

  • Wolf WA, Schultz L (1997) The serotonin 5-HT2C receptor is a prominent receptor in basal ganglia: evidence from functional studies on serotonin-mediated phosphoinositide ­hydrolysis. J Neurochem 69:1449–1458.

    PubMed  CAS  Google Scholar 

  • Wolf AW, Bieganski GJ, Guillen V, et al (2005) Enhanced 5-HT2C receptor signalling is associated with haloperidol-induced “early onset” vacuous chewing in rats : implications for antipsychotic drug therapy. Psychopharmacology 182:84–94.

    PubMed  CAS  Google Scholar 

  • Wood MD, Reavill C, Trail B, et al (2001) SB-243213, a selective 5-HT2C receptor inverse agonist with improved anxiolytic profile: lack of tolerance and withdrawal anxiety. Neuropharmacology 41:186–199.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Navailles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Navailles, S., De Deurwaerdère, P. (2011). The Constitutive Activity of 5-HT2C Receptors as an Additional Modality of Interaction of the Serotonergic System. In: Di Giovanni, G., Esposito, E., Di Matteo, V. (eds) 5-HT2C Receptors in the Pathophysiology of CNS Disease. The Receptors, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-941-3_10

Download citation

Publish with us

Policies and ethics