Skip to main content

Physiology of Ejaculation

  • Chapter
  • First Online:

Part of the book series: Current Clinical Urology ((CCU))

Abstract

The human sexual response can be described as a cycle formed by successive distinct, although intimately connected, phases. These are desire, excitation, orgasm, and resolution. In the human male, the orgasm phase actually refers to ejaculation and the intense pleasurable feeling that normally accompanies it. A correct ejaculatory response in human male engaged in sexual intercourse with a female partner is obligatory, although not sufficient, for reproduction. A correct ejaculation can be defined as forceful propulsion of seminal fluid out of the body through the urethral meatus (antegrade ejaculation). Ejaculation consists of the synchronized succession of physiological events that form two distinct phases: emission and expulsion. Emission corresponds to the secretion of the different components of the seminal fluid from accessory sex glands and testes. The composition of the seminal fluid is complex and contains, besides spermatozoa, a variety of enzymes, sugars, lipids, oligo-elements, and other substances. This mixture provides spermatozoa with a ­nutritive and protective milieu promoting their survival and movement during their run through the female reproductive tract to the ovule. The seminal secretions are secreted in a specific sequence into the posterior urethra via phasic contractions of the glands and the relative ducts. This is followed by seminal expulsion, which occurs in the form of intense rhythmic contractions of pelvi–perineal striated muscles. Concluding the ejaculatory response and marking the sexual climax, arises orgasm, a complex neuropsychophysiological process that translates in intense cerebral discharge but also whole-body physiological changes. The orgasmic response is intimately connected to the ejaculatory response but this will not be addressed here as another chapter is dedicated to this aspect of the male sexual response. It is nevertheless of crucial importance to state that orgasm can occur without ejaculation in certain conditions like after radical prostatectomy or after lesion of the sympathetic innervation to the seminal tract following retro-peritoneal lymph node dissection in testicular cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jones RC. To store or mature spermatozoa? The primary role of the epididymis. Int J Androl. 1999;22:57–67.

    Article  PubMed  CAS  Google Scholar 

  2. Nunez R, Gross GH, Sachs BD. Origin and central projections of rat dorsal penile nerve: possible direct projection to autonomic and somatic neurons by primary afferents of nonmuscle origin. J Comp Neurol. 1986;247:417–29.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson RD, Halata Z. Topography and ultrastructure of sensory nerve endings in the glans penis of the rat. J Comp Neurol. 1991;312:299–310.

    Article  PubMed  CAS  Google Scholar 

  4. Halata Z, Munger BL. The neuroanatomical basis for the protopathic sensibility of the human glans penis. Brain Res. 1986;371:205–30.

    Article  PubMed  CAS  Google Scholar 

  5. Kaleczyc J, Scheuermann DW, Pidsudko Z, Majewski M, Lakomy M, Timmermans JP. Distribution, immunohistochemical characteristics and nerve pathways of primary sensory neurons supplying the porcine vas deferens. Cell Tissue Res. 2002;310:9–17.

    Article  PubMed  CAS  Google Scholar 

  6. Pennefather JN, Lau WA, Mitchelson F, Ventura S. The autonomic and sensory innervation of the smooth muscle of the prostate gland: a review of pharmacological and histological studies. J Auton Pharmacol. 2000;20:193–206.

    Article  PubMed  CAS  Google Scholar 

  7. Baron R, Janig W. Afferent and sympathetic neurons projecting into lumbar visceral nerves of the male rat. J Comp Neurol. 1991;314:429–36.

    Article  PubMed  CAS  Google Scholar 

  8. Ueyama T, Arakawa H, Mizuno N. Central distribution of efferent and afferent components of the pudendal nerve in rat. Anat Embryol (Berl). 1987;177:37–49.

    Article  CAS  Google Scholar 

  9. McKenna KE, Nadelhaft I. The organization of the pudendal nerve in the male and female rat. J Comp Neurol. 1986;248:532–49.

    Article  PubMed  CAS  Google Scholar 

  10. Morgan C, deGroat WC, Nadelhaft I. The spinal distribution of sympathetic preganglionic and visceral primary afferent neurons that send axons into the hypogastric nerves of the cat. J Comp Neurol. 1986;243:23–40.

    Article  PubMed  CAS  Google Scholar 

  11. Nadelhaft I, McKenna KE. Sexual dimorphism in sympathetic preganglionic neurons of the rat hypogastric nerve. J Comp Neurol. 1987;256:308–15.

    Article  PubMed  CAS  Google Scholar 

  12. Owman C, Stjernquist M. The peripheral nervous system. In: Bjorklund A, Hokfelt T, Owman C, editors. Handbook of chemical neuroanatomy. Amsterdam, The Netherlands: Elsevier Science; 1988. p. 445–544.

    Google Scholar 

  13. Nadelhaft I, Booth AM. The location and morphology of preganglionic neurons and the distribution of visceral afferents from the rat pelvic nerve: a horseradish peroxidase study. J Comp Neurol. 1984;226:238–45.

    Article  PubMed  CAS  Google Scholar 

  14. Schroder HD. Anatomical and pathoanatomical studies on the spinal efferent systems innervating pelvic structures. 1. Organization of spinal nuclei in animals. 2. The nucleus X-pelvic motor system in man. J Auton Nerv Syst. 1985;14:23–48.

    Article  PubMed  CAS  Google Scholar 

  15. Bergman B, Nilsson S, Petersen I. The effect on erection and orgasm of cystectomy, prostatectomy and vesiculectomy for cancer of the bladder: a clinical and electromyographic study. Br J Urol. 1979;51:114–20.

    Article  PubMed  CAS  Google Scholar 

  16. Truitt WA, Coolen LM. Identification of a potential ejaculation generator in the spinal cord. Science. 2002;297:1566–9.

    Article  PubMed  CAS  Google Scholar 

  17. Coolen LM, Veening JG, Wells AB, Shipley MT. Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: evidence for functional subdivisions. J Comp Neurol. 2003;463:132–56.

    Article  PubMed  Google Scholar 

  18. Xu C, Yaici ED, Conrath M, Blanchard P, Leclerc P, Benoit G, et al. Galanin and neurokinin-1 receptor immunoreactivity spinal neurons controlling the prostate and the bulbospongiosus muscle identified by transsynaptic labeling in the rat. Neuroscience. 2005;134:1325–41.

    Article  PubMed  CAS  Google Scholar 

  19. Borgdorff AJ, Bernabe J, Denys P, Alexandre L, Giuliano F. Ejaculation elicited by microstimulation of lumbar spinothalamic neurons. Eur Urol. 2008;54:449–56.

    Article  PubMed  Google Scholar 

  20. Brackett NL, Ferrell SM, Aballa TC, Amador MJ, Padron OF, Sonksen J, et al. An analysis of 653 trials of penile vibratory stimulation in men with spinal cord injury. J Urol. 1998;159:1931–4.

    Article  PubMed  CAS  Google Scholar 

  21. McKenna KE, Chung SK, McVary KT. A model for the study of sexual function in anesthetized male and female rats. Am J Physiol. 1991;261:R1276–85.

    PubMed  CAS  Google Scholar 

  22. Hamson DK, Watson NV. Regional brainstem expression of Fos associated with sexual behavior in male rats. Brain Res. 2004;1006:233–40.

    Article  PubMed  CAS  Google Scholar 

  23. Heeb MM, Yahr P. Anatomical and functional connections among cell groups in the gerbil brain that are activated with ejaculation. J Comp Neurol. 2001;439:248–58.

    Article  PubMed  CAS  Google Scholar 

  24. Meisel R, Sachs B. The physiology of male sexual behavior. In: Knobil E, Neill J, editors. The physiology of reproduction. New York: Raven; 1994. p. 3–105.

    Google Scholar 

  25. Coolen LM, Peters HJ, Veening JG. Anatomical interrelationships of the medial preoptic area and other brain regions activated following male sexual behavior: a combined fos and tract-tracing study. J Comp Neurol. 1998;397:421–35.

    Article  PubMed  CAS  Google Scholar 

  26. Arendash GW, Gorski RA. Effects of discrete lesions of the sexually dimorphic nucleus of the preoptic area or other medial preoptic regions on the sexual behavior of male rats. Brain Res Bull. 1983;10:147–54.

    Article  PubMed  CAS  Google Scholar 

  27. Hull EM, Eaton RC, Markowski VP, Moses J, Lumley LA, Loucks JA. Opposite influence of medial preoptic D1 and D2 receptors on genital reflexes: implications for copulation. Life Sci. 1992;51:1705–13.

    Article  PubMed  CAS  Google Scholar 

  28. Pehek EA, Thompson JT, Hull EM. The effects of intracranial administration of the dopamine agonist apomorphine on penile reflexes and seminal emission in the rat. Brain Res. 1989;500:325–32.

    Article  PubMed  CAS  Google Scholar 

  29. Larsson K, van Dis H. Seminal discharge following intracranial electrical stimulation. Brain Res. 1970;23:381–6.

    Article  PubMed  CAS  Google Scholar 

  30. Marson L, McKenna KE. Stimulation of the hypothalamus initiates the urethrogenital reflex in male rats. Brain Res. 1994;638:103–8.

    Article  PubMed  CAS  Google Scholar 

  31. Simerly RB, Swanson LW. Projections of the medial preoptic nucleus: a Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat. J Comp Neurol. 1988;270:209–42.

    Article  PubMed  CAS  Google Scholar 

  32. Rizvi TA, Ennis M, Shipley MT. Reciprocal connections between the medial preoptic area and the midbrain periaqueductal gray in rat: A WGA-HRP and PHA-L study. J Comp Neurol. 1992;315:1–15.

    Article  PubMed  CAS  Google Scholar 

  33. Murphy AZ, Rizvi TA, Ennis M, Shipley MT. The organization of preoptic-medullary circuits in the male rat: evidence for interconnectivity of neural structures involved in reproductive behavior, antinociception and cardiovascular regulation. Neuroscience. 1999;91:1103–16.

    Article  PubMed  CAS  Google Scholar 

  34. Swanson LW, Sawchenko PE. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci. 1983;6:269–324.

    Article  PubMed  CAS  Google Scholar 

  35. Luiten PG, ter Horst GJ, Karst H, Steffens AB. The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res. 1985;329:374–8.

    Article  PubMed  CAS  Google Scholar 

  36. Saper CB, Loewy AD, Swanson LW, Cowan WM. Direct hypothalamo-autonomic connections. Brain Res. 1976;117:305–12.

    Article  PubMed  CAS  Google Scholar 

  37. Bancila M, Verge D, Rampin O, Backstrom JR, Sanders-Bush E, McKenna KE, et al. 5-Hydroxytryptamine2C receptors on spinal neurons controlling penile erection in the rat. Neuroscience. 1999;92:1523–37.

    Article  PubMed  CAS  Google Scholar 

  38. Ackerman AE, Lange GM, Clemens LG. Effects of paraventricular lesions on sex behavior and seminal emission in male rats. Physiol Behav. 1997;63:49–53.

    Article  PubMed  CAS  Google Scholar 

  39. Canteras NS, Simerly RB, Swanson LW. Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol. 1995;360:213–45.

    Article  PubMed  CAS  Google Scholar 

  40. Marson L, McKenna KE. A role for 5-hydroxytryptamine in descending inhibition of spinal sexual reflexes. Exp Brain Res. 1992;88:313–20.

    Article  PubMed  CAS  Google Scholar 

  41. Marson L, McKenna KE. CNS cell groups involved in the control of the ischiocavernosus and bulbospongiosus muscles: a transneuronal tracing study using pseudorabies virus. J Comp Neurol. 1996;374:161–79.

    Article  PubMed  CAS  Google Scholar 

  42. Marson L, McKenna KE. The identification of a brainstem site controlling spinal sexual reflexes in male rats. Brain Res. 1990;515:303–8.

    Article  PubMed  CAS  Google Scholar 

  43. Coolen LM, Peters HJ, Veening JG. Distribution of Fos immunoreactivity following mating versus anogenital investigation in the male rat brain. Neuroscience. 1997;77:1151–61.

    Article  PubMed  CAS  Google Scholar 

  44. Marson L. Lesions of the periaqueductal gray block the medial preoptic area-induced activation of the urethrogenital reflex in male rats. Neurosci Lett. 2004;367:278–82.

    Article  PubMed  CAS  Google Scholar 

  45. Murphy AZ, Hoffman GE. Distribution of gonadal steroid receptor-containing neurons in the preoptic-periaqueductal gray-brainstem pathway: a potential circuit for the initiation of male sexual behavior. J Comp Neurol. 2001;438:191–212.

    Article  PubMed  CAS  Google Scholar 

  46. Clement P, Bernabe J, Kia HK, Alexandre L, Giuliano F. D2-like receptors mediate the expulsion phase of ejaculation elicited by 8-hydroxy-2-(di-N-propylamino)tetralin in rats. J Pharmacol Exp Ther. 2006;316:830–4.

    Article  PubMed  CAS  Google Scholar 

  47. Clement P, Bernabe J, Denys P, Alexandre L, Giuliano F. Ejaculation induced by i.c.v. injection of the preferential dopamine D(3) receptor agonist 7-hydroxy-2-(di-N-propylamino)tetralin in anesthetized rats. Neuroscience. 2007;145:605–10.

    Article  PubMed  CAS  Google Scholar 

  48. Kitrey ND, Clement P, Bernabe J, Alexandre L, Giuliano F. Microinjection of the preferential dopamine receptor D3 agonist 7-OH-DPAT into the hypothalamic medial preoptic area induced ejaculation in anesthetized rats. Neuroscience. 2007;149:636–41.

    Article  PubMed  CAS  Google Scholar 

  49. Hull EM, Muschamp JW, Sato S. Dopamine and serotonin: influences on male sexual behavior. Physiol Behav. 2004;83:291–307.

    PubMed  CAS  Google Scholar 

  50. Peeters M, Giuliano F. Central neurophysiology and dopaminergic control of ejaculation. Neurosci Bio­behav Rev. 2007: 10.1016/j.neubiorev.2007.07.013.

    Google Scholar 

  51. Lopez HH, Ettenberg A. Dopamine antagonism attenuates the unconditioned incentive value of estrous female cues. Pharmacol Biochem Behav. 2001;68:411–6.

    Article  PubMed  CAS  Google Scholar 

  52. Lopez HH, Ettenberg A. Sexually conditioned incentives: attenuation of motivational impact during dopamine receptor antagonism. Pharmacol Biochem Behav. 2002;72:65–72.

    Article  PubMed  CAS  Google Scholar 

  53. Melis MR, Argiolas A. Dopamine and sexual behavior. Neurosci Biobehav Rev. 1995;19:19–38.

    Article  PubMed  CAS  Google Scholar 

  54. Melis MR, Succu S, Mascia MS, Argiolas A. PD-168077, a selective dopamine D4 receptor agonist, induces penile erection when injected into the paraventricular nucleus of male rats. Neurosci Lett. 2005;379:59–62.

    Article  PubMed  CAS  Google Scholar 

  55. Ferrari F, Giuliani D. The selective D2 dopamine receptor antagonist eticlopride counteracts the ejaculatio praecox induced by the selective D2 dopamine agonist SND 919 in the rat. Life Sci. 1994;55:1155–62.

    Article  PubMed  CAS  Google Scholar 

  56. Ferrari F, Giuliani D. Sexual attraction and copulation in male rats: effects of the dopamine agonist SND 919. Pharmacol Biochem Behav. 1995;50:29–34.

    Article  PubMed  CAS  Google Scholar 

  57. Stafford SA, Coote JH. Activation of D2-like receptors induces sympathetic climactic-like responses in male and female anaesthetised rats. Br J Pharmacol. 2006;148:510–6.

    Article  PubMed  CAS  Google Scholar 

  58. Ahlenius S, Larsson K. Effects of the dopamine D3 receptor ligand 7-OH-DPAT on male rat ejaculatory behavior. Pharmacol Biochem Behav. 1995;51:545–7.

    Article  PubMed  CAS  Google Scholar 

  59. Ferrari F, Giuliani D. Behavioral effects induced by the dopamine D3 agonist 7-OH-DPAT in sexually-active and -inactive male rats. Neuropharmacology. 1996;35:279–84.

    Article  PubMed  CAS  Google Scholar 

  60. Clement P, Pozzato C, Heidbreder C, Alexandre L, Giuliano F, Melotto S. Delay of ejaculation induced by SB-277011, a selective dopamine D3 receptor antagonist, in the rat. J Sex Med. 2009;6:980–8.

    Article  PubMed  CAS  Google Scholar 

  61. Giuliano F. 5-hydroxytryptamine in premature ejaculation: opportunities for therapeutic intervention. Trends Neurosci. 2007;30:79–84.

    Article  PubMed  CAS  Google Scholar 

  62. Waldinger MD, Olivier B. Utility of selective serotonin reuptake inhibitors in premature ejaculation. Curr Opin Investig Drugs. 2004;5:743–7.

    PubMed  CAS  Google Scholar 

  63. Clement P, Bernabe J, Gengo P, Denys P, Laurin M, Alexandre L, et al. Supraspinal site of action for the inhibition of ejaculatory reflex by dapoxetine. Eur Urol. 2007;51:825–32.

    Article  PubMed  CAS  Google Scholar 

  64. Stafford SA, Bowery NG, Tang K, Coote JH. Activation by p-chloroamphetamine of the spinal ejaculatory pattern generator in anaesthetized male rats. Neuroscience. 2006;140:1031–40.

    Article  PubMed  CAS  Google Scholar 

  65. Giuliano F, Clement P. Serotonin and premature ejaculation: from physiology to patient management. Eur Urol. 2006;50:454–66.

    Article  PubMed  CAS  Google Scholar 

  66. Dyball REJ, Paterson AT. Neurohypophysial hormones and brain function: the neurophysiological effects of oxytocin and vasopressin. Pharmacol Therap. 1983;20:419–36.

    Article  CAS  Google Scholar 

  67. Witt DM, Insel TR. Increased Fos expression in oxytocin neurons following masculine sexual behavior. J Neuroendocrinol. 1994;6:13–8.

    Article  PubMed  CAS  Google Scholar 

  68. Agmo A, Andersson R, Johansson C. Effect of oxytocin on sperm numbers in spontaneous rat ejaculates. Biol Reprod. 1978;18:346–9.

    Article  PubMed  CAS  Google Scholar 

  69. Gupta J, Russell R, Wayman C, Hurley D, Jackson V. Oxytocin-induced contractions within rat and rabbit ejaculatory tissues are mediated by vasopressin V1A receptors and not oxytocin receptors. Br J Pharmacol. 2008;155:118–26.

    Article  PubMed  CAS  Google Scholar 

  70. Argiolas A, Collu M, Gessa GL, Melis MR, Serra G. The oxytocin antagonist d(CH2)5Tyr(Me)-Orn8-vasotocin inhibits male copulatory behaviour in rats. Eur J Pharmacol. 1988;149:389–92.

    Article  PubMed  CAS  Google Scholar 

  71. Arletti R, Bazzani C, Castelli M, Bertolini A. Oxytocin improves male copulatory performance in rats. Horm Behav. 1985;19:14–20.

    Article  PubMed  CAS  Google Scholar 

  72. Clement P, Peeters M, Bernabe J, Denys P, Alexandre L, Giuliano F. Brain oxytocin receptors mediate ejaculation elicited by 7-hydroxy-2-(di-N-propylamino) tetralin (7-OH-DPAT) in anaesthetized rats. Br J Pharmacol. 2008;154:1150–9.

    Article  PubMed  CAS  Google Scholar 

  73. Holstege G, Georgiadis JR, Paans AM, Meiners LC, van der Graaf FH, Reinders AA. Brain activation during human male ejaculation. J Neurosci. 2003;23:9185–93.

    PubMed  CAS  Google Scholar 

  74. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, et al. Acute effects of cocaine on human brain activity and emotion. Neuron. 1997;19:591–611.

    Article  PubMed  CAS  Google Scholar 

  75. Sell LA, Morris J, Bearn J, Frackowiak RS, Friston KJ, Dolan RJ. Activation of reward circuitry in human opiate addicts. Eur J Neurosci. 1999;11:1042–8.

    Article  PubMed  CAS  Google Scholar 

  76. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31:236–50.

    Article  PubMed  CAS  Google Scholar 

  77. Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl). 2005;210:343–52.

    Article  CAS  Google Scholar 

  78. Redoute J, Stoleru S, Gregoire MC, Costes N, Cinotti L, Lavenne F, et al. Brain processing of visual sexual stimuli in human males. Hum Brain Mapp. 2000;11:162–77.

    Article  PubMed  CAS  Google Scholar 

  79. Michael RP, Clancy AN, Zumpe D. Effects of mating on c-fos expression in the brains of male macaques. Physiol Behav. 1999;66:591–7.

    Article  PubMed  CAS  Google Scholar 

  80. Arnow BA, Desmond JE, Banner LL, Glover GH, Solomon A, Polan ML, et al. Brain activation and sexual arousal in healthy, heterosexual males. Brain. 2002;125:1014–23.

    Article  PubMed  Google Scholar 

  81. Johnson RD, Hubscher CH. Brainstem microstimulation differentially inhibits pudendal motoneuron reflex inputs. Neuroreport. 1998;9:341–5.

    Article  PubMed  CAS  Google Scholar 

  82. Bernabe J, Clement P, Denys P, Alexandre L, Giuliano F. Seminal plug expulsion induced by electrical stimulation of the intermesenteric nerve in anesthetized rats. Biol Reprod. 2007;77:717–22.

    Article  PubMed  CAS  Google Scholar 

  83. Nordling J, Andersen JT, Walter S, Meyhoff HH, Hald T, Gammelgaard PA. Evoked response of the bulbocavernosus reflex. Eur Urol. 1979;5:36–8.

    PubMed  CAS  Google Scholar 

  84. Opsomer RJ, Caramia MD, Zarola F, Pesce F, Rossini PM. Neurophysiological evaluation of central-peripheral sensory and motor pudendal fibres. Electro­encephalogr Clin Neurophysiol. 1989;74:260–70.

    Article  PubMed  CAS  Google Scholar 

  85. Shafik A. and El Sibai O. Mechanism of ejection during ejaculation: identification of a urethrocavernosus reflex Arch Androl. 2000;44:77–83.

    CAS  Google Scholar 

  86. Sonksen J, Biering-Sorensen F, Kristensen JK. Ejaculation induced by penile vibratory stimulation in men with spinal cord injuries. The importance of the vibratory amplitude. Paraplegia. 1994;32:651–60.

    Article  PubMed  CAS  Google Scholar 

  87. Marberger H. The mechanisms of ejaculation. In: Coutinho EM, Fuchs F, editors. Physiology and genetics of reproduction. New York: Plenum Press; 1974. p. 99–110.

    Google Scholar 

  88. Levin RJ. The mechanisms of human ejaculation – a critical analysis. Sex Relationship Ther. 2005;20:123–31.

    Article  Google Scholar 

  89. Holmes GM, Sachs BD. The ejaculatory reflex in copulating rats: normal bulbospongiosus activity without apparent urethral stimulation. Neurosci Lett. 1991;125:195–7.

    Article  PubMed  CAS  Google Scholar 

  90. Brindley G. Physiology of erection and management of paraplegic infertility. In: Hargreave TB, editor. Male infertility. Berlin: Springer; 1983. p. 262–78.

    Google Scholar 

  91. Gerstenberg TC, Levin RJ, Wagner G. Erection and ejaculation in man. Assessment of the electromyographic activity of the bulbocavernosus and ischiocavernosus muscles. Br J Urol. 1990;65:395–402.

    Article  PubMed  CAS  Google Scholar 

  92. Hermabessiere J, Guy L, Boiteux JP. Human ejaculation: physiology, surgical conservation of ejaculation. Prog Urol. 1999;9:305–9.

    PubMed  CAS  Google Scholar 

  93. Gil-Vernet Jr JM, Alvarez-Vijande R, Gil-Vernet A, Gil-Vernet JM. Ejaculation in men: a dynamic endorectal ultrasonographical study. Br J Urol. 1994;73:442–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clément, P., Giuliano, F. (2011). Physiology of Ejaculation. In: Mulhall, J., Incrocci, L., Goldstein, I., Rosen, R. (eds) Cancer and Sexual Health. Current Clinical Urology. Humana Press. https://doi.org/10.1007/978-1-60761-916-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-916-1_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-915-4

  • Online ISBN: 978-1-60761-916-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics