Skip to main content

Capillary Electrophoresis and Its Microchip Format for the Analysis of Glycosaminoglycans

  • Chapter
  • First Online:
Capillary Electrophoresis of Carbohydrates

Abstract

Glycosaminoglycans (GAGs), linear negatively charged polysaccharides, possess highly structural heterogeneity caused by modifications of amino and hydroxyl groups. Heterogeneity of molecular sizes is also an important feature. These characteristics participate in many cellular events and physiological and pathological processes. Capillary electrophoresis (CE) is one of the most powerful technologies for characterization of such heterogeneous macromolecules based on its high resolving performance. Glycosaminoglycans are generally analyzed by CE both as the intact form and as their enzymatic digested products. This chapter outlines the CE analysis of GAGs. Furthermore, microchip-based capillary electrophoresis for the analysis of GAGs is also introduced, which affords rapid analysis on a time scale of second. This technology has great potential as a tool for routine assessment of pharmaceutical preparations and for clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APTS:

1-aminopyrene-3,6,8-trisulfonic acid

CE:

capillary electrophoresis

CS/DS:

chondroitin sulfate/dermatan sulfate

EDA:

ethylenediamine

FDA:

Food and Drug Administration

FGF:

fibroblast growth factor

GAG:

glycosaminoglycan

HA:

hyaluronic acid

HP:

heparin

HS:

heparan sulfate

KS:

keratan sulfate

LED:

light-emitting diode

LIF:

laser-induced fluorescence

MC:

methylcellulose

ME:

microchip electrophoresis

MECK:

micellar electrokinetic chromatography

NeuAc:

N-acetylneuraminic acid

OSCS:

oversulfated chondroitin sulfate

PEG70000:

polyethyleneglycol

PGs:

proteoglycans

PMMA:

polymethylmetacrylate

ssDNA:

single-stranded DNA.

References

  1. Prabhakar V, Capila I, Sasisekharan R (2009) The structural elucidation of ­glycosaminoglycans. Methods Mol Biol 534:147–156.

    CAS  PubMed  Google Scholar 

  2. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72:455–482.

    Article  CAS  PubMed  Google Scholar 

  3. Yamada S, Sugahara K (2008) Potential therapeutic application of chondroitin ­sulfate/dermatan sulfate. Curr Drug Discov Technol 5:289–301.

    Article  CAS  PubMed  Google Scholar 

  4. Jackson RL, Busch SJ, Cardin AD (1991) Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 71:481–539.

    CAS  PubMed  Google Scholar 

  5. Casu B, Lindahl U (2001) Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 57:159–206.

    Article  CAS  PubMed  Google Scholar 

  6. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777.

    Article  CAS  PubMed  Google Scholar 

  7. Muramatsu T, Muramatsu H (2008) Glycosaminoglycan-binding cytokines as tumor markers. Proteomics 8:3350–3359.

    Article  CAS  PubMed  Google Scholar 

  8. Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell T (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029–1034.

    Article  CAS  PubMed  Google Scholar 

  9. Volpi N, Maccari F, Titze J (2005) Simultaneous detection of submicrogram quantities of hyaluronic acid and dermatan sulfate on agarose-gel by sequential staining with toluidine blue and stains-all. J Chromatogr B Analyt Technol Biomed Life Sci 820:131–135.

    Article  CAS  PubMed  Google Scholar 

  10. Karousou EG, Militsopoulou M, Porta G, De Luca G, Hascall VC, Passi A (2004) Polyacrylamide gel electrophoresis of fluorophore-labeled hyaluronan and chondroitin sulfate disaccharides: application to the analysis in cells and tissues. Electrophoresis 25:2919–2925.

    Article  CAS  PubMed  Google Scholar 

  11. Oonuki Y, Yoshida Y, Uchiyama Y, Asari A (2005) Application of fluorophore-assisted carbohydrate electrophoresis to analysis of disaccharides and oligosaccharides derived from glycosaminoglycans. Anal Biochem 343:212–222.

    Article  CAS  PubMed  Google Scholar 

  12. Volpi N, Maccari F, Linhardt RJ (2008) Capillary electrophoresis of complex natural polysaccharides. Electrophoresis 29:3095–3106.

    Article  CAS  PubMed  Google Scholar 

  13. Matsuno YK, Kinoshita M, Kakehi K (2004) Electrophoretic analysis of di- and oligosaccharides derived from glycosaminoglycans on microchip format. J Pharm Biomed Anal 36:9–15.

    Article  CAS  PubMed  Google Scholar 

  14. Matsuno YK, Kinoshita M, Kakehi K (2005) Fast analysis of glycosaminoglycans by microchip electrophoresis with in situ fluorescent detection using ethidium bromide. J Pharm Biomed Anal 37:429–436.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Ping G, Zhu B, Kaji N, Tokeshi M, Baba Y (2007) Enhanced electrophoretic resolution of monosulfated glycosaminoglycan disaccharide isomers on poly(methylmethacrylate) chips. Electrophoresis 28:414–421.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Ping G, Kaji N, Tokeshi M, Baba Y (2007) Dynamic modification of poly(methylmethacrylate) chips using poly(vinyl alcohol) for glycosaminoglycan disaccharide isomer separation. Electrophoresis 28:3308–3314.

    Article  CAS  PubMed  Google Scholar 

  17. Schulze P, Belder D (2009) Label-free fluorescence detection in capillary and microchip electrophoresis. Anal Bioanal Chem 393:515–525.

    Article  CAS  PubMed  Google Scholar 

  18. Kagebayashi C, Yamaguchi I, Akinaga A, Kitano H, Yokoyama K, Satomura M, Kurosawa T, Watanabe M, Kawabata T, Chang W, Li C, Bousse L, Wada HG, Satomura S (2009) Automated immunoassay system for AFP-L3% using on-chip electrokinetic reaction and separation by affinity electrophoresis. Anal Biochem 388:306–311.

    Article  CAS  PubMed  Google Scholar 

  19. Hayase S, Oda Y, Honda S, Kakehi K (1997) High-performance capillary electrophoresis of hyaluronic acid: determination of its amount and molecular mass. J Chromatogr A 768:295–305.

    Article  CAS  PubMed  Google Scholar 

  20. Grimshaw, J (1997) Analysis of glycosaminoglycans and their oligosaccharide fragments by capillary electrophoresis. Electrophoresis 18:2408–2414.

    Article  CAS  PubMed  Google Scholar 

  21. Kinoshita M, Okino A, Oda Y, Kakehi K (2001) Anomalous migration of hyaluronic acid oligomers in capillary electrophoresis: correlation to susceptibility to hyaluronidase. Electrophoresis 22:3458–3465.

    Article  CAS  PubMed  Google Scholar 

  22. Matsuno YK, Kakoi N, Kinoshita M, Matsuzaki Y, Kumada J, Kakehi K (2008) Electrophoresis studies on the contaminating glycosaminoglycans in commercially available hyaluronic acid products. Electrophoresis 29:3628–3635.

    Article  CAS  PubMed  Google Scholar 

  23. Kakehi K, Kinoshita M, Hayase S, Oda Y (1999) Capillary electrophoresis of N-acetylneuraminic acid polymers and hyaluronic acid: correlation between migration order reversal and biological functions. Anal Chem 71:1592–1596.

    Article  CAS  PubMed  Google Scholar 

  24. Grossman PD, Soane DS (1991) Capillary electrophoresis of DNA in entangled polymer ­solutions. J Chromatogr 559:257–266.

    Article  CAS  PubMed  Google Scholar 

  25. Mohanty U, Searls T, McLaughlin LW (1998) Anomalous migration of short sequences of nucleic acids in polyacrylamide gels: prediction and experiment. J Am Chem Soc 120:8275–8276.

    Article  CAS  Google Scholar 

  26. Hong M, Sudor J, Stefansson M, Novotny MV (1998) High-resolution studies of hyaluronic acid mixtures through capillary gel electrophoresis. Anal Chem 70:568–573.

    Article  CAS  Google Scholar 

  27. Toida T, Linhardt RJ (1996) Detection of glycosaminoglycans as a copper (II) complex in capillary electrophoresis. Electrophoresis 17:341–346.

    Article  CAS  PubMed  Google Scholar 

  28. Stefansson M, Novotny M (1994) Modification of the electrophoretic mobility of neutral and charged polysaccharides. Anal Chem 66:3466–3471.

    Article  CAS  PubMed  Google Scholar 

  29. Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing JC, Guglieri S, Fraser B, Al-Hakim A, Gunay NS, Zhang Z, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt RJ, Casu B, Torri G, Sasisekharan R (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26:669–675.

    Article  CAS  PubMed  Google Scholar 

  30. Trehy ML, Reepmeyer JC, Kolinski RE, Westenberger BJ, Buhse LF (2009) Analysis of heparin sodium by SAX/HPLC for contaminants and impurities. J Pharm Biomed Anal 49:670–673.

    Article  CAS  PubMed  Google Scholar 

  31. Tami C, Puig M, Reepmeyer JC, Ye H, D’Avignon DA, Buhse L, Verthelyi D (2008) Inhibition of Taq polymerase as a method for screening heparin for oversulfated contaminants. Biomaterials 29:4808–4814.

    Article  CAS  PubMed  Google Scholar 

  32. Volpi N, Maccari F, Linhardt RJ (2009) Quantitative capillary electrophoresis determination of oversulfated chondroitin sulfate as a contaminant in heparin preparations. Anal Biochem 388:140–145.

    Article  CAS  PubMed  Google Scholar 

  33. Wielgos T, Havel K, Ivanova N, Weinberger R (2009) Determination of impurities in heparin by capillary electrophoresis using high molarity phosphate buffers. J Pharm Biomed Anal 49:319–329.

    Article  CAS  PubMed  Google Scholar 

  34. Somsen GW, Tak YH, Toraño JS, Jongen PM, de Jong GJ. (2009) Determination of oversulfated chondroitin sulfate and dermatan sulfate impurities in heparin by capillary electrophoresis. J Chromatogr A 1216:4107–4112.

    Article  CAS  PubMed  Google Scholar 

  35. Kakoi N, Kinoshita M, Kawasaki N, Yamaguchi T, Hayakawa T, Kakehi K (2009) Capillary electrophoresis analysis of contaminants in heparin sodium for the Japanese Pharmacopoeia purity test. Yakugaku Zasshi 129(10):1255–1264.

    Article  CAS  PubMed  Google Scholar 

  36. Al-Hakim A, Linhardt RJ (1991) Capillary electrophoresis for the analysis of chondroitin sulfate- and dermatan sulfate-derived disaccharides. Anal Biochem 195:68–73.

    Article  CAS  PubMed  Google Scholar 

  37. Carney SL, Osborne DJ (1991) The separation of chondroitin sulfate disaccharides and hyaluronan oligosaccharides by capillary zone electrophoresis. Anal Biochem 195:132–140.

    Article  CAS  PubMed  Google Scholar 

  38. Honda S, Ueno T, Kakehi K (1992) High-performance capillary electrophoresis of unsaturated oligosaccharides derived from glycosaminoglycans by digestion with chondroitinase ABC as 1-phenyl-3-methyl-5-pyrazolone derivatives. J Chromatogr 608:289–295.

    Article  CAS  PubMed  Google Scholar 

  39. Kitagawa H, Kinoshita A, Sugahara K (1995) Microanalysis of glycosaminoglycan-derived disaccharides labeled with the fluorophore 2-aminoacridone by capillary electrophoresis and high-performance liquid chromatography. Anal Biochem 232:114–121.

    Article  CAS  PubMed  Google Scholar 

  40. El Rassi Z, Postlewait J, Mechref Y, Ostrander GK (1997) Capillary electrophoresis of carboxylated carbohydrates. III. Selective precolumn derivatization of glycosaminoglycan disaccharides with 7-aminonaphthalene-1,3-disulfonic acid fluorescing tag for ultrasensitive laser-induced fluorescence detection. Anal Biochem 244:283–290.

    Article  CAS  PubMed  Google Scholar 

  41. Lamari F, Theocharis A, Hjerpe A, Karamanos NK (1999) Ultrasensitive capillary electrophoresis of sulfated disaccharides in chondroitin/dermatan sulfates by laser-induced fluorescence after derivatization with 2-aminoacridone. J Chromatogr B Biomed Sci Appl 730:129–133.

    Article  CAS  PubMed  Google Scholar 

  42. Militsopoulou M, Lamari FN, Hjerpe A, Karamanos NK (2002) Determination of twelve heparin- and heparan sulfate-derived disaccharides as 2-aminoacridone derivatives by capillary zone electrophoresis using ultraviolet and laser-induced fluorescence detection. Electrophoresis 23:1104–1109.

    Article  CAS  PubMed  Google Scholar 

  43. Matsuno YK, Yamada K, Tanabe A, Kinoshita M, Maruyama SZ, Osaka YS, Masuko T, Kakehi K (2007) Development of an apparatus for rapid release of oligosaccharides at the glycosaminoglycan-protein linkage region in chondroitin sulfate-type proteoglycans. Anal Biochem 362:245–257.

    Article  CAS  PubMed  Google Scholar 

  44. Zinellu A, Sotgia S, Usai MF, Zinellu E, Lepedda AJ, Deiana L, Formato M, Carru C (2008) Short-end injection capillary electrophoresis for quantification of plasma chondroitin sulfate isomer disaccharides. Anal Bioanal Chem 391:2865–2868.

    Article  CAS  PubMed  Google Scholar 

  45. Hitchcock AM, Bowman MJ, Staples GO, Zaia J (2008) Improved workup for glycosaminoglycan disaccharide analysis using CE with LIF detection. Electrophoresis 29:4538–4548.

    Article  CAS  PubMed  Google Scholar 

  46. Harrison DJ, Manz A, Fan ZH, Ludi H, Widmer HM (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64:1926–1932.

    Article  CAS  Google Scholar 

  47. Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897.

    Article  CAS  PubMed  Google Scholar 

  48. Lacher NA, de Rooij NF, Verpoorte E, Lunte SM (2003) Comparison of the performance characteristics of poly(dimethylsiloxane) and Pyrex microchip electrophoresis devices for peptide separations. J Chromatogr A 1004:225–235.

    Article  CAS  PubMed  Google Scholar 

  49. Shadpour H, Hupert ML, Patterson D, Liu C, Galloway M, Stryjewski W, Goettert J, Soper SA (2007) Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array. Anal Chem 79:870–878.

    Article  CAS  PubMed  Google Scholar 

  50. Root BE, Zhang B, Barron AE (2009) Size-based protein separations by microchip electrophoresis using an acid-labile surfactant as a replacement for SDS. Electrophoresis 30:2117–2122.

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki S, Honda S (2003) Miniaturization in carbohydrate analysis. Electrophoresis 24:3577–3582.

    Article  CAS  PubMed  Google Scholar 

  52. Dang F, Zhang L, Jabasini M, Kaji N, Baba Y (2003) Characterization of electrophoretic behavior of sugar isomers by microchip electrophoresis coupled with videomicroscopy. Anal Chem 75:2433–2439.

    Article  CAS  PubMed  Google Scholar 

  53. Sinville R, Soper SA (2007) High resolution DNA separations using microchip electrophoresis. J Sep Sci 30:1714–1728.

    Article  CAS  PubMed  Google Scholar 

  54. Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3908.

    CAS  Google Scholar 

  55. Li SF, Kricka LJ (2006) Clinical analysis by microchip. Capillary electrophoresis. Clin Chem 52:37–45.

    Article  CAS  PubMed  Google Scholar 

  56. Lacher NA, Garrison KE, Martin RS, Lunte SM (2001) Microchip capillary electrophoresis/electrochemistry. Electrophoresis 22:2526–2536.

    Article  CAS  PubMed  Google Scholar 

  57. Wu D, Qin J, Lin B (2008) Electrophoretic separations on microfluidic chips. J Chromatogr A 1184:542–559.

    Article  CAS  PubMed  Google Scholar 

  58. Scott JE, Cummings C, Brass A, Chen Y (1991) Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer. Biochem J 274:699–705.

    CAS  PubMed  Google Scholar 

  59. Scott JE (1992) Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J 6:2639–2645.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Kakehi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kakehi, K., Matsuno, Yk. (2011). Capillary Electrophoresis and Its Microchip Format for the Analysis of Glycosaminoglycans. In: Volpi, N. (eds) Capillary Electrophoresis of Carbohydrates. Humana Press. https://doi.org/10.1007/978-1-60761-875-1_4

Download citation

Publish with us

Policies and ethics