Skip to main content

Monosaccharide Compositional Analysis of Glycoproteins and Glycolipids: Utility in the Diagnosis/Prognosis of Diseases

  • Chapter
  • First Online:
  • 1619 Accesses

Abstract

Different analytical methods have been developed to effectively and accurately determine monosaccharide composition of glycoproteins and glycolipids in biological and biomedical samples. These methods included high-performance anion-exchange chromatography with pulse amperometric detection (HPAEC-PAD), high-performance liquid chromatography with fluorescence detection (HPLC-FL), and capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). This chapter reviews the development of these methods, and evaluates their potential application in the diagnosis or prognosis of diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABEE:

p-aminobenzoic acid ethyl ester

AMAC:

8-aminoacridone

ANDS:

7-aminonaphthalene-1,3-disulfonic acid

ANS:

2-aminonaphthalene-1-sulfonic acid

ANTS:

8-aminonaphthalene-1,3,6-trisulfonic acid

APTS:

1-aminopyrene-3,6,8-trisulfonic acid

CE:

capillary electrophoresis

CEC:

capillary electrochromatography

CE-LIF:

capillary electrophoresis with laser-induced fluorescence detection

CGE:

capillary gel electrophoresis

CZE:

capillary zone electrophoresis

DMB:

1,2-diamino-4,5-methylenedioxybenzene

EOF:

electro-osmotic flow

Gal:

galactose

GalN:

galactosamine

GalNAc:

N-acetylgalactosamine

GCC:

graphitized carbon column

Glc:

glucose

GlcNAc:

N-acetylglucosamine

GlcN:

glucosamine

GlcNc:

N-acetylglucosamine

HCl:

hydrochloric acid

HPAEC-PAD:

high-performance anion-exchange chromatography with pulse amperometric detection

HPLC-FL:

high-performance liquid chromatography with fluorescence detection

HPLC-MS:

high-performance liquid chromatography with mass spectrometry

Man:

mannose

ManN:

mannosamine

MECK:

micellar electrokinetic chromatography

MRM:

multiple reaction monitoring

NeuAc:

N-acetylneuraminic acid

NeuGc:

N-glycolylneuraminic acid

OPD:

O-phenyllenediamine 2 HCl

PAD:

pulsed amperometric detector

TFA:

trifluoroacetic acid.

References

  1. Fukui S, Feizi T, Galustin C, et al (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate–protein interactions. Nat Biotechnol 20:1011–1017.

    CAS  PubMed  Google Scholar 

  2. Bayliss MT, Osborne D, Woodhouse S, et al (1999) Sulfation of chondroitin sulfate in human articular cartilage: the effect of age, topographical position, and zone of cartilage on tissue composition. J Biol Chem 274:15892–15900.

    CAS  PubMed  Google Scholar 

  3. Plaas AH, West LA, Wong-Palms S, et al (1998) Glycosaminoglycan sulfation in human osteoarthritis. Disease-related alterations at the non-reducing termini of chondroitin and dermatan sulfate. J Biol Chem 273:12642–12649.

    CAS  PubMed  Google Scholar 

  4. Tondorov PT, Deacon M, Tisdale MJ (1997) Structural analysis of a tumor-produced sulfated glycoprotein capable of initiating muscle protein degradation. J Biol Chem 272:12279–12288.

    Google Scholar 

  5. Chace KV, Flux M, Sachdev GP (1985) Comparison of physicochemical properties of purified mucus glycoproteins isolated from respiratory secretions of cystic fibrosis and asthmatic patients. Biochemistry 24:7334–7341.

    CAS  PubMed  Google Scholar 

  6. Chace KV, Leahy DS, Martin R, et al (1983) Respiratory mucous secretions in patients with cystic fibrosis: relationship between levels of highly sulfated mucin component and severity of the disease. Clin Chim Acta 132:143–155.

    CAS  PubMed  Google Scholar 

  7. Davril M, Degroote S, Humbert P, et al (1999) The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection. Glycobiology 9:311–321.

    CAS  PubMed  Google Scholar 

  8. Xia B, Royall JA, Damera G, et al (2005) Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis. Glycobiology 15:747–775.

    CAS  PubMed  Google Scholar 

  9. Bowman KG, Cook BN, de Graffenried CL, et al (2001) Biosynthesis of L-selectin ligands: sulfation of sialyl Lewis x-related oligosaccharides by a family of GlcNAc-6-sulfotransferases. Biochemistry 40:5382–5391.

    CAS  PubMed  Google Scholar 

  10. Sangadala S, Bhat UR, Mendicino J (1993) Structures of sulfated oligosaccharides in human trachea mucin glycoproteins. Mol Cell Biochem 126:37–47.

    CAS  PubMed  Google Scholar 

  11. Thomsson KA, Karlsson NG, Hansson GC (1999) Liquid chromatography–electrospray mass spectrometry as a tool for the analysis of sulfated oligosaccharides from mucin glycoproteins. J Chromatogr A 854:131–139.

    CAS  PubMed  Google Scholar 

  12. Baldus SE, Wienand JR, Werner JP, et al (2005) Expression of MUC1, MUC2 and oligosaccharide epitopes in breast cancer: prognostic significance of a sialylated MUC1 epitope. Int J Oncol 27:1289–1297.

    CAS  PubMed  Google Scholar 

  13. Dwek MV, Lacey HA, Leathem A (1998) Breast cancer progression is associated with a reduction in the diversity of sialylated and neutral oligosaccharides. J Clin Chim Acta 271:191–202.

    CAS  Google Scholar 

  14. Handerson T, Camp R, Harigopal M, et al (2005) Beta 1,6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clin Cancer Res 11:2969–2973.

    CAS  PubMed  Google Scholar 

  15. Alper J (2003) Glycobiology. Turning sweet on cancer. Science 301:159–160.

    CAS  PubMed  Google Scholar 

  16. Hakomori S (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)-lipid metabolism. Cancer Res 56:5309–5318.

    CAS  PubMed  Google Scholar 

  17. Kobata A (1998) A retrospective and prospective view of glycopathology. Glycoconj J 15:323–331.

    CAS  PubMed  Google Scholar 

  18. Townsend RR (1993) Quantitative monosaccharide analysis of glycoproteins. In: Horvath C, Ettre LS (eds) Chromatography in Biotechnology (pp. 86–101). American Chemical Society, Washington, DC.

    Google Scholar 

  19. Anumula KR, Taylor PB (1991) Rapid characterization of asparagine-linked oligosaccharides isolated from glycoproteins using a carbohydrate analyzer. Eur J Biochem 195:269–280.

    CAS  PubMed  Google Scholar 

  20. Takeuchi M, Takasaki S, Inoue N, et al (1987) Sensitive methods for carbohydrate composition analysis of glycoproteins by high-performance liquid chromatography. J Chromatogr 400:207–213.

    CAS  PubMed  Google Scholar 

  21. Eggert FM, Jones MJ (1985) Measurement of neutral sugars in glycoproteins as dansyl derivatives by automated high-performance liquid chromatography. J Chromatogr 333:123–131.

    CAS  PubMed  Google Scholar 

  22. Hardy MR, Townsend RR, Lee YC (1988) Monosaccharide analysis of glycoconjugates by anion exchange chromatography with pulsed amperometric detection. Anal Biochem 170:54–62.

    CAS  PubMed  Google Scholar 

  23. Varki A, Diaz S (1984) The release and purification of sialic acids from glycoconjugates: methods to minimize the loss and migration of O-acetyl groups. Anal Biochem 137:236–247.

    CAS  PubMed  Google Scholar 

  24. Schauer R (1978) Characterization of sialic acids. Methods Enzymol 50:64–89.

    CAS  PubMed  Google Scholar 

  25. Varki A, Kornfeld S (1980) An autosomal dominant gene regulates the extent of 9-O-acetylation of murine erythrocyte sialic acids. A probable explanation for the variation in capacity to activate the human alternate complement pathway. J Exp Med 152:532–544.

    CAS  PubMed  Google Scholar 

  26. Neuberger A, Ratcliffe WA (1972) The acid and enzymatic hydrolysis of O-acetylated sialic acid residues from rabbit Tamm–Horsfall glycoprotein. Biochem J 129:683–693.

    CAS  PubMed  Google Scholar 

  27. Neuberger A, Ratcliffe WA (1973) Kinetic studies on the acid hydrolysis of the methyl ketoside of unsubstituted and O-acetylated N-acetylneuraminic acid. Biochem J 133:623–628.

    CAS  PubMed  Google Scholar 

  28. Conboy JJ, Henion JD (1992) High-performance anion-exchange chromatography coupled with mass spectrometry for the determination of carbohydrates. Biol Mass Spectrom 21:397–407.

    CAS  PubMed  Google Scholar 

  29. Conboy JJ, Henion JD, Martin MW, et al (1990) Ion chromatography/mass spectrometry for the determination of organic ammonium and sulfate compounds. Anal Chem 62:800–807.

    CAS  Google Scholar 

  30. Simpson RC, Fenselau CC, Hardy MR, et al (1990) Adaptation of a thermospray liquid chromatography/mass spectrometry interface for use with alkaline anion exchange liquid chromatography of carbohydrates. Anal Chem 62:248–252.

    CAS  PubMed  Google Scholar 

  31. Torto N, Hofte AJP, van der Hoeven RAM, et al (1998) Microdialysis introduction high-performance anion-exchange chromatography/ionspray mass spectrometry for monitoring of on-line desalted carbohydrate hydrosylates. J Mass Spectrom 33:334–341.

    CAS  Google Scholar 

  32. van der Hoeven RAM, Hofte AJP, Tjaden UR, et al (1998) Sensitivity improvement in the analysis of oligosaccharides by on-line high-performance anion-exchange chromatography/ion spray mass spectrometry. Rapid Commun Mass Spectrom 12:69–74.

    Google Scholar 

  33. Cataldi TRI, Campa C, De Benedetto GE (2000) Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: the potential is still growing. Fresenius J Anal Chem 368:739–758.

    CAS  PubMed  Google Scholar 

  34. Lee YC (1996) Carbohydrate analyses with high-performance anion-exchange chromatography. J Chromatogr A 720:137–149.

    CAS  Google Scholar 

  35. Spellman MW (1990) Carbohydrate characterization of recombinant glycoproteins of pharmaceutical interest. Anal Chem 62:1714–1722.

    CAS  PubMed  Google Scholar 

  36. Huck CW, Huber CG, Bonn GK (2002) HPLC of carbohydrate with cation- and anion-exchange silica and resin-based stationary phases. In: El Rassi Z (ed) Carbohydrate Analysis by Modern Chromatography and Electrophoresis (pp. 182–201). Elsevier Science B.V., Amsterdam.

    Google Scholar 

  37. Hayase T, Sheykhanazari M, Bhavanandan VP, et al (1993) Separation and identification of O-linked oligosaccharides derived from glycoproteins by high-pH anion-exchange chromatography. Anal Biochem 211:72–80.

    CAS  PubMed  Google Scholar 

  38. Lloyd KO, Savage A (1991) High performance anion exchange chromatography of reduced oligosaccharides from sialomucins. Glycoconj J 8:493–498.

    CAS  PubMed  Google Scholar 

  39. Reddy GP, Bush CA (1991) High-performance anion exchange-chromatography of neutral milk oligosaccharides and oligosaccharide alditols derived from mucin glycoproteins. Anal Biochem 198:278–284.

    CAS  PubMed  Google Scholar 

  40. Kumarasamy R (1990) Oligosaccharide mapping of therapeutic glycoproteins by high-pH anion-exchange high-performance liquid chromatography. J Chromatogr 512:149–155.

    CAS  Google Scholar 

  41. McGuire JM, Douglas M, Smith KD (1996) The resolution of the neutral N-linked oligosaccharides of IgG by high pH anion-exchange chromatography. Carbohydr Res 292:1–9.

    CAS  PubMed  Google Scholar 

  42. Hermentin P, Witzel R, Doenges R (1992) The mapping by high-pH anion-exchange chromatography with pulsed amperometric detection and capillary electrophoresis of the carbohydrate moieties of human plasma α1-acid glycoprotein. Anal Biochem 206:419–429.

    CAS  PubMed  Google Scholar 

  43. Kishinoa S, Nomurab A, Sugawaraa M, et al (1995) Purification method for α-1-acid glycoprotein with subsequent high-performance liquid chromatographic determination of monosaccharides in plasma of healthy subjects and patients with renal insufficiency. J Chromatogr B 672:199–205.

    Google Scholar 

  44. Rice KG, Takahashi N, Namiki Y, et al (1992) Quantitative mapping of the N-linked sialyloligosaccharides of recombinant erythropoietin: combination of direct high-performance anion-exchange chromatography and 2-aminopyridine derivatization. Anal Biochem 206:278–287.

    CAS  PubMed  Google Scholar 

  45. Weitzhandler M, Kadlecek D, Avdalovic N, et al (1993) Monosaccharide and oligosaccharide analysis of proteins transferred to polyvinylidene fluoride membranes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 268:5121–5130.

    CAS  PubMed  Google Scholar 

  46. Landberg E, Pahlsson P, Krotkiewski H (1997) Glycosylation of bile-salt-stimulated lipase from human milk: comparison of native and recombinant forms. Arch Biochem Biophys 344:94–102.

    CAS  PubMed  Google Scholar 

  47. Mechref Y, Chen P, Novotny MV (1999) Structural characterization of the N-linked oligosaccharides in bile salt-stimulated lipase originated from human breast milk. Glycobiology 9:227–234.

    CAS  PubMed  Google Scholar 

  48. Laferte S, Dennis JW (1989) Purification of two glycoproteins expressing b1–6 branched Asn-linked oligosaccharides from metastatic tumor cells. Biochem J 259:569–576.

    CAS  PubMed  Google Scholar 

  49. Chen JW, Pan W, D’Souza MP, et al (1985) Lysosome-associated membrane proteins: characterization of LAMP-1 of macrophage P388 and mouse embryo 3T3 cultured cells. Arch Biochem Biophys 239:574–586.

    CAS  PubMed  Google Scholar 

  50. Spellman MW, Basa LJ, Leonard CK, et al (1989) Carbohydrate structures of human tissue plasminogen activator expressed in Chinese Hamster ovary cells. J Biol Chem 264:14100–14111.

    CAS  PubMed  Google Scholar 

  51. Davidson DJ, Fraser MJ, Castellino FJ (1990) Oligosaccharide processing in the expression of human plasminogen cDNA by lepidopteran insect (Spodoptera frugiperda) cells. Biochemistry 29:5584–5590.

    CAS  PubMed  Google Scholar 

  52. Yu Ip CC, Miller WJ, Kubek DJ, et al (1992) Structural characterization of the N-glycans of a recombinant hepatitis B surface antigen derived from yeast. Biochemistry 31:285–295.

    Google Scholar 

  53. Yu Ip CC, Miller WJ (1993) Monosaccharide compositional analysis of Haemophilus influenzae type b conjugate vaccine. In: Horvath C, Ettre LS (eds) Chromatography in Biotechnology (pp. 132–143). American Chemical Society, Washington, DC.

    Google Scholar 

  54. Haynes PA, Bately M, Peach RJ, et al (1992) Characterization of oligosaccharides from a glycoprotein variant of human serum albumin (albumin Casebrook) using high-performance anion-exchange chromatography and nuclear magnetic resonance spectroscopy. J Chromatogr 581:187–193.

    CAS  PubMed  Google Scholar 

  55. Karlsson NG, Hansson GC (1995) Analysis of monosaccharide composition of mucin oligosaccharide alditols by high-performance anion-exchange chromatography. Anal Biochem 224:538–541.

    CAS  PubMed  Google Scholar 

  56. Cheetham NWH, Sirimanne P, Day WR (1981) High-performance liquid chromatography separation of carbohydrate oligomers. J Chromatogr 207:439–444.

    CAS  Google Scholar 

  57. Morelle W, Strecker G (1998) Isolation of the O-glycosidically linked oligosaccharides obtained by alkaline borohydride degradation from oviducal mucins of the toad Bufo bufo. J Chromatogr B 706:101–111.

    CAS  Google Scholar 

  58. Heyraud A, Rinaudo M (1980) Carbohydrate analysis by high-pressure liquid chromatography using water as the eluent. J Liq Chromatogr 3:721–739.

    CAS  Google Scholar 

  59. Capon C, Cache P, Leroy Y, et al (1988) Isolation of the major O-glycosidically linked oligosaccharides obtained by alkaline borohydride degradation of human meconium glycoproteins. J Chromatogr 425:35–45.

    CAS  PubMed  Google Scholar 

  60. Hase S, Ikenaka T, Matsushima Y (1978) Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun 85:257–263.

    CAS  PubMed  Google Scholar 

  61. Hase S, Ikenaka T, Matsushima Y (1981) A highly sensitive method for analyses of sugar moieties of glycoproteins by fluorescence labeling. J Biochem 90:407–414.

    CAS  PubMed  Google Scholar 

  62. Hase S, Ibuki T, Ikenaka T (1984) Reexamination of the amination with 2-aminopyridine used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J Biochem 95:197–203.

    CAS  PubMed  Google Scholar 

  63. Suzuki S, Kelly JF, Locke SJ, et al (2003) Derivatization of carbohydrates. In: Thibault P, Honda S (eds) Methods in Molecular Biology Capillary Electrophoresis of Carbohydrates (pp. 41–69). Humana Press, Totowa, NJ.

    Google Scholar 

  64. Anumula KP (1994) Quantitative determination of monosaccharides in glycoproteins by high-performance liquid chromatography with highly sensitive fluorescence detection. Anal Biochem 275:275.

    Google Scholar 

  65. Bigge JC, Patel TP, Bruce JA, et al (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 230:229–238.

    CAS  PubMed  Google Scholar 

  66. Anumula KR (2000) High-sensitivity and high-resolution methods for glycoprotein analysis. Anal Biochem 283:17–26.

    CAS  PubMed  Google Scholar 

  67. Anumula KR (2006) Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem 350:1–23.

    CAS  PubMed  Google Scholar 

  68. Iwase H, Ishii-Karakasa I, Urata T, et al (1990) Extraction method for preparing pyridylamino sugars derivatives and application to porcine gastric mucus glycoproteins analysis. Anal Biochem 188:200–202.

    CAS  PubMed  Google Scholar 

  69. Anumula KR, Du P (1999) Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins. Anal Biochem 275:236–242.

    CAS  PubMed  Google Scholar 

  70. Racaityte K, Kiessig S, Kalman F (2005) Application of capillary electrophoresis and reversed-phase high-performance liquid chromatography in the biopharmaceutical industry for the quantitative analysis of the monosaccharides released from a highly glycosylated therapeutic protein. J Chromatogr A 1079:354–365.

    CAS  PubMed  Google Scholar 

  71. Hara S, Takemori Y, Yamaguchi M, et al (1987) Fluorometric high-performance liquid chromatography of N-acetyl- and N-glycolylneuraminic acids and its application on their microdetermination in human and animal sera, glycoproteins, and glycolipids. Anal Biochem 164:138–145.

    CAS  PubMed  Google Scholar 

  72. MAPG, Shen Z, Kecorius EA (1995) Application of a sensitive HPLC-based fluorometric assay to determine the sialic acid content of human gonadotropin isoforms. J Biochem Biohys Methods 30:37–48.

    Google Scholar 

  73. Anumula KP (1995) Rapid quantitative determination of sialic acids in glycoproteins by high-performance liquid chromatography with a sensitive fluorescence detection. Anal Biochem 230:24–30.

    CAS  PubMed  Google Scholar 

  74. Saddic GN, Ebert MB, Dhume ST (2002) Carbohydrate composition analysis of glycoproteins using highly sensitive fluorescence detection methods. In: Kannicht C (ed) Methods in Molecular Biology, Posttranslational Modifications of Proteins. Humana Press, Totowa, NJ.

    Google Scholar 

  75. Yasuno S, Kokubo K, Kamei M (1999) New method for determining the sugar composition of glycoproteins, glycolipids, and oligosaccharides by high-performance liquid chromatography. Biosci Biotechnol Biochem 63:1353–1359.

    CAS  PubMed  Google Scholar 

  76. Kwon H, Kim J (1993) Determination of monosaccharides in glycoproteins by reverse-phase high-performance liquid chromatography. Anal Biochem 215:243–252.

    CAS  PubMed  Google Scholar 

  77. Harvey DJ (2005) Fragmentation of negative ions from carbohydrates: part 1. Use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J Am Soc Mass Spectrom 16:622–630.

    CAS  PubMed  Google Scholar 

  78. Kohler M, Leary J (1995) LC–MS/MS of carbohydrates with postcolumn addition of metal chlorides using triaxial electrospray probe. Anal Chem 67:3501–3508.

    CAS  PubMed  Google Scholar 

  79. Yang C, Cole RB (2002) Stabilization of anionic adducts in negative ion electrospray mass spectrometry. Anal Chem 74:985–991.

    Google Scholar 

  80. McIntosh TS, Davis HM, Matthews DE (2002) A liquid chromatography–mass spectrometry method to measure stable isotopic tracer enrichments of glycerol and glucose in human serum. Anal Biochem 300:163–169.

    CAS  PubMed  Google Scholar 

  81. Rogatsky E, Jayatillake H, Goswami G, et al (2005) Sensitive LC MS quantitative analysis of carbohydrates by Cs+ attachment. J Am Soc Mass Spectrom 16:1805–1811.

    CAS  PubMed  Google Scholar 

  82. Wan ECH, Yu JZ (2006) Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry. J Chromatogr A 1107:175–181.

    CAS  PubMed  Google Scholar 

  83. Guignard C, Jouve L, Bogeat-Triboulot MB, et al (2005) Analysis of carbohydrates in plants by high-performance anion-exchange chromatography coupled with electrospray mass spectrometry. J Chromatogr A 1085:137–142.

    CAS  PubMed  Google Scholar 

  84. Kato Y, Numajiri Y (1991) Chloride attachment negative-ion mass spectra of sugars by combined liquid chromatography and atmospheric pressure chemical ionization mass spectrometry. J Chromatogr 562:81–97.

    CAS  PubMed  Google Scholar 

  85. Liang HR, Takagaki T, Foltz RL, et al (2005) Quantitative determination of endogenous sorbitol and fructose in human erythrocytes by atmospheric-pressure chemical ionization LC tandem mass spectrometry. J Chromatogr B 824:36–44.

    CAS  Google Scholar 

  86. Rogatsky E, Tomuta V, Stein DT (2007) LC/MS quantitative study of glucose by iodine attachment. Anal Chim Acta 591:155–160.

    CAS  PubMed  Google Scholar 

  87. Hammad LA, Saleh MM, Novotny MV, et al (2009) Multiple-reaction monitoring liquid chromatography mass spectrometry for monosaccharide compositional analysis of glycoproteins. J Am Soc Mass Spectrom 20:1224–1234.

    CAS  PubMed  Google Scholar 

  88. Guttman A (1997) Analysis of monosaccharide composition by capillary electrophoresis. J Chromatogr A 763:271–277.

    CAS  PubMed  Google Scholar 

  89. Hermentin P, Doenges R, Witzel R, et al (1994) A Strategy for the mapping of N-glycans by high-performance capillary electrophoresis. Anal Biochem 221:29–41.

    CAS  PubMed  Google Scholar 

  90. Honda S, Makino A, Suzuki S, et al (1990) Analysis of the oligosaccharides in ovalbumin by high-performance capillary electrophoresis. Anal Biochem 191:228–234.

    CAS  PubMed  Google Scholar 

  91. Camilleri P, Harland GB, Okafo G (1995) High resolution and rapid analysis of branched oligosaccharides by capillary electrophoresis. Anal Biochem 230:115–122.

    CAS  PubMed  Google Scholar 

  92. Palm A, Novotny MV (1997) Macroporous polyacrylamide/poly(ethylene glycol) matrixes as stationary phases in capillary electrochromatography. Anal Chem 69:4499–4507.

    CAS  Google Scholar 

  93. Que A, Novotny MV (2003) Structural characterization of neutral oligosaccharide mixtures through a combination of capillary electrochromatography and ion trap tandem mass spectrometry. Anal Bioanal Chem 375:599–608.

    CAS  PubMed  Google Scholar 

  94. Que AH, Mechref Y, Huang Y (2003) Coupling capillary electrochromatography with electrospray Fourier transform mass spectrometry for characterizing complex oligosaccharide pools. Anal Chem 75:1684–1690.

    CAS  PubMed  Google Scholar 

  95. Que AH, Novotny MV (2002) Separation of neutral saccharide mixtures with capillary electrochromatography using hydrophilic monolithic columns. Anal Chem 74:5184–5191.

    CAS  PubMed  Google Scholar 

  96. Guttman A, Chen F-TA, Evangelista RA, Cooke N (1996) High-resolution capillary gel electrophoresis of reducing oligosaccharides labeled with 1-aminopyrene-3,6,8-trisulfonate. Anal Biochem 233:234–242.

    CAS  PubMed  Google Scholar 

  97. Guttman A, Pritchett T (1995) Capillary gel electrophoresis separation of high-mannose type oligosaccharides derivatized by 1-aminopyrene-3,6,8-trisulfonic acid. Electrophoresis 16:1906–1911.

    CAS  PubMed  Google Scholar 

  98. Liu J, Hsieh Y-Z, Wiesler D, et al (1991) Design of 3-(4-carboxybenzoyl)-2-quinolinecarboxaldehyde as a reagent for ultra-sensitive determination of primary amines by capillary electrophoresis using laser fluorescence detection. Anal Chem 63:408–412.

    CAS  PubMed  Google Scholar 

  99. Ma S, Nashabeh W (1999) Carbohydrate analysis of a chimeric recombinant monoclonal antibody by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 71:5185–5192.

    CAS  PubMed  Google Scholar 

  100. Liu J, Shirota O, Novotny M (1991) Separation of fluorescent oligosaccharide derivatives by microcolumn techniques based on electrophoresis and liquid chromatography. J Chromatogr A 559:223–235.

    CAS  Google Scholar 

  101. Liu J, Shirota O, Wiesler D (1991) Ultrasensitive fluorometric detection of carbohydrates as derivatives in mixtures separated by capillary electrophoresis. Proc Natl Acad Sci USA 88:2302–2306.

    CAS  PubMed  Google Scholar 

  102. Liu J, Shirota O, Novotny MV (1992) Sensitive, laser-assisted determination of complex oligosaccharide mixtures separated by capillary gel electrophoresis at high resolution. Anal Chem 64:973–975.

    CAS  PubMed  Google Scholar 

  103. Chiesa C, O’Neill RA (1994) Capillary zone electrophoresis of oligosaccharides derivatized with various aminonaphthalene sulfonic acids. Electrophoresis 15:1132–1140.

    CAS  PubMed  Google Scholar 

  104. Stefansson M, Novotny M (1994) Resolution of the branched forms of oligosaccharides by high-performance capillary electrophoresis. Carbohydr Res 258:1–9.

    CAS  PubMed  Google Scholar 

  105. Stefansson M, Novotny MV (1994) Separation of complex oligosaccharide mixtures by capillary electrophoresis in the open-tubular format. Anal Chem 66:1134–1140.

    CAS  PubMed  Google Scholar 

  106. Klockow A, Widmer HM, Amado R (1994) Capillary electrophoresis of ANTS labeled oligosaccharide ladders and complex carbohydrates. Fresenius J Anal Chem 350:415–425.

    CAS  Google Scholar 

  107. Klockow A, Amado R, Widmer HM (1995) Separation of 8-aminonapthalene-1,3,6-trisulfonic acid-labeled neutral and sialylated N-linked complex oligosaccharides by capillary electrophoresis. J Chromatogr A 716:241–257.

    CAS  PubMed  Google Scholar 

  108. Klockow A, Amado R, Widmer HM, et al (1996) The influence of buffer composition on separation efficiency and resolution in capillary electrophoresis of 8-aminonaphthalene-1,3,6-trisulfonic acid labeled monosaccharides and complex carbohydrates. Electrophoresis 17:110–119.

    CAS  PubMed  Google Scholar 

  109. Guttman A, Chen F-T, Evangelista RA (1996) Separation of 1-aminopyrene-3,6,8-trisulfonate-labeled asparagine-linked fetuin glycans by capillary gel electrophoresis. Electrophoresis 17:412–417.

    CAS  PubMed  Google Scholar 

  110. Guttman A, Starr CM (1995) Capillary and slab gel electrophoresis profiling of oligosaccharides. Electrophoresis 16:993–997.

    CAS  PubMed  Google Scholar 

  111. Evangelista RA, Liu MS, Chen F-T. 1995. Characterization of 9-aminopyrene-1,4,6-trisulfonate derivatized sugars by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 67:2239–2245.

    CAS  Google Scholar 

  112. Chen F-T, Evangelista RA (1995) Analysis of mono- and oligosaccharide isomers derivatized with 9-aminopyrene-1,4,6-trisulfonate by capillary electrophoresis with laser-induced fluorescence. Anal Biochem 230:273–280.

    CAS  PubMed  Google Scholar 

  113. Evangelista RA, Guttman A, Chen F-T (1996) Acid-catalyzed reductive amination of aldoses with 8-aminopyrene-1,3,6-trisulfonate. Electrophoresis 17:347–351.

    CAS  PubMed  Google Scholar 

  114. Guttman A (1997) Multistructure sequencing of N-linked fetuin glycans by capillary gel electrophoresis and enzyme matrix digestion. Electrophoresis 18:1136–1141.

    CAS  PubMed  Google Scholar 

  115. Charlwood J, Birrell H, Gribble A, et al (2000) A probe for the versatile analysis and characterization of N-linked oligosaccharides. Anal Chem 72:1453–1461.

    CAS  PubMed  Google Scholar 

  116. Chen F-T, Dobashi TS, Evangelista RA (1998) Quantitative analysis of sugar constituents of glycoproteins by capillary electrophoresis. Glycobiology 8:1045–1052.

    CAS  PubMed  Google Scholar 

  117. Stefansson M, Novotny M (1993) Electrophoretic resolution of monosaccharide enantiomers in borate–oligosaccharide complexation media. J Am Chem Soc 115:11573–11580

    CAS  Google Scholar 

  118. Zhang Y, Arriaga E, Diedrich P, et al (1995) Nanomolar determination of aminated sugars by capillary electrophoresis. J Chromatogr A 716:221–229.

    CAS  Google Scholar 

  119. Lamari FN, Kuhn R, Karamanos NK (2003) Derivatization of carbohydrates for chromatographic, electrophoretic and mass spectrometric structure analysis. J Chromatogr B 793:15–36.

    CAS  Google Scholar 

  120. Thompson S, Dargan E, Griffiths ID, et al (1993) The glycosylation of haptoglobin in rheumatoid arthritis. Clin Chim Acta 220:107–114.

    CAS  PubMed  Google Scholar 

  121. Mann AC, Record CO, Self CH (1994) Monosaccharide composition of heptoglobin in liver diseases and alcohol abuse: large changes in glycosylation associated with alcoholic liver disease. Clin Chim Acta 227:69–78.

    CAS  PubMed  Google Scholar 

  122. Anderson N, Pollacchi A, Hayes P, et al (2002) A preliminary evaluation of the differences in the glycosylation os alpha-1-acid glycoprotein between individual liver diseases. Biomed Chromatogr 16:365–372.

    CAS  PubMed  Google Scholar 

  123. Goodarzi MT, Turner GA (1998) Reproducible and sensitive determination of charged oligosaccharides from hepatoglobin by PNGase F digestion and HPAEC/PAD analysis: glycan composition varies with disease. Glycoconj J 15:469–475.

    CAS  PubMed  Google Scholar 

  124. Thronton DJ, Carlstedt I, Howard M, et al (1996) Respiratory mucins: identification of core proteins and glycoforms. Biochem J 316:967–975.

    Google Scholar 

  125. Thompson S, Kelly CA, Griffiths ID, et al (1989) Abnormally fucosylated serum haptoglobin in patients with inflammatory diseases. Clin Chim Acta 184:251–258.

    CAS  PubMed  Google Scholar 

  126. Liu JP, Osamu O, Novotny MV (1991) Capillary electrophoresis of amino sugars with laser-induced fluorescence detection. Anal Chem 63:413–417.

    CAS  PubMed  Google Scholar 

  127. Sdiamantopoulou S, Stagiannis KD, Vasilopoulos K, Barlas P, Tsegenidis T, Karamanos NK (1999) Importance of high-performance liquid chromatographic analysis of serum N-acetylneuraminic acids in evaluation surgical treatment in patients with early endometrial cancer. J Chromatogr B 732:375–381.

    Google Scholar 

  128. Dong X, Xu X, Han F, et al (2001) Determination of sialic acids in the serum of cancer patients by capillary electrophoresis. Electrophoresis 22:2231–2235.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Indiana Metabolomics and Cytomics Initiative (METACyt), funded by a grant from Eli Lilly Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehia Mechref .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mechref, Y. (2011). Monosaccharide Compositional Analysis of Glycoproteins and Glycolipids: Utility in the Diagnosis/Prognosis of Diseases. In: Volpi, N. (eds) Capillary Electrophoresis of Carbohydrates. Humana Press. https://doi.org/10.1007/978-1-60761-875-1_10

Download citation

Publish with us

Policies and ethics