Skip to main content

Epigenetic Identity in Cancer Stem Cells

  • Chapter
  • First Online:
  • 1985 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Growing evidence supports the existence of a subpopulation of cancer cells with stem cell characteristics within tumors. As occurs with normal embryogenesis, epigenetic changes define the balance between pluripotency and differentiation in cancer stem cells (CSCs). The basis and implications of this novel concept are discussed, together with the evidence supporting a role for epigenetic mechanisms in the induction of CSCs. We discuss the evidence favoring the plasticity of these mechanisms and its potential therapeutic implications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Evans, M.J., and Kaufman, M.H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  2. Fuchs, E., and Segre, J.A. (2000) Stem cells: a new lease on life. Cell 100, 143–155.

    Article  PubMed  CAS  Google Scholar 

  3. Niwa, H. (2007) How is pluripotency determined and maintained? Development 134, 635–646.

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein, B.E., Mikkelsen, T.S., Xie, X. et al. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.

    Article  PubMed  CAS  Google Scholar 

  5. Cowan, C.A., Atienza, J., Melton, D.A. et al. (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373.

    Article  PubMed  CAS  Google Scholar 

  6. Shukla, V., Vaissiere, T. and Herceg, Z. (2008) Histone acetylation and chromatin signature in stem cell identity and cancer. Mutat Res 637, 1–15.

    Article  PubMed  CAS  Google Scholar 

  7. Visvader, J.E., and Lindeman, G.J. (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768.

    Article  PubMed  CAS  Google Scholar 

  8. Stingl, J., and Caldas, C. (2007) Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat. Rev. Cancer 7, 791–799.

    Article  PubMed  CAS  Google Scholar 

  9. Weissman, I.L. (2005) Normal and neoplastic stem cells. Novartis Found Symp 265, 35–50; discussion 50–34, 92–37.

    Article  PubMed  Google Scholar 

  10. Niwa, H. (2007) Open conformation chromatin and pluripotency. Genes Dev 21, 2671–2676.

    Article  PubMed  CAS  Google Scholar 

  11. Barnhart, B.C., and Simon, M.C. (2007) Metastasis and stem cell pathways. Cancer Metastasis Rev 26, 261–271.

    Article  PubMed  CAS  Google Scholar 

  12. Feinberg, A.P., Ohlsson, R. and Henikoff, S. (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7, 21–33.

    Article  PubMed  CAS  Google Scholar 

  13. Bibikova, M., Chudin, E., Wu, B. et al. (2006) Human embryonic stem cells have a unique epigenetic signature. Genome Res 16, 1075–1083.

    Article  PubMed  CAS  Google Scholar 

  14. Meshorer, E., Yellajoshula, D., George, E. et al. (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116.

    Article  PubMed  CAS  Google Scholar 

  15. Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21.

    Article  PubMed  CAS  Google Scholar 

  16. Spivakov, M., and, Fisher, A.G. (2007) Epigenetic signatures of stem-cell identity. Nat. Rev. Genet. 8, 263–271.

    Article  PubMed  CAS  Google Scholar 

  17. Irizarry, R.A., Ladd-Acosta, C., Wen, B. et al. (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186.

    Article  PubMed  CAS  Google Scholar 

  18. Bernstein, B.E., Meissner, A., and Lander, E.S. (2007) The mammalian epigenome. Cell 128, 669–681.

    Article  PubMed  CAS  Google Scholar 

  19. Farthing, C.R., Ficz, G., Ng, R.K. et al. (2008) Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4, e1000116.

    Article  PubMed  Google Scholar 

  20. Reik, W. (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432.

    Article  PubMed  CAS  Google Scholar 

  21. Monk, M., Boubelik, M., and Lehnert, S. (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382.

    PubMed  CAS  Google Scholar 

  22. Kafri, T., Ariel, M., Brandeis, M. et al. (1992) Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 6, 705–714.

    Article  PubMed  CAS  Google Scholar 

  23. Freitag, M., and Selker, E.U. (2005) Controlling DNA methylation: many roads to one modification. Curr. Opin. Genet. Dev. 15, 191–199.

    Article  PubMed  CAS  Google Scholar 

  24. Turek-Plewa, J., and, Jagodzinski, P.P. (2005) The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol. Biol. Lett. 10, 631–647.

    PubMed  CAS  Google Scholar 

  25. Okano, M., Bell, D.W., Haber, D.A. et al. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.

    Article  PubMed  CAS  Google Scholar 

  26. Weih, F., Nitsch, D., Reik, A. et al. (1991) Analysis of CpG methylation and genomic footprinting at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to prevent protein binding in vivo. EMBO J 10, 2559–2567.

    PubMed  CAS  Google Scholar 

  27. Campanero, M.R., Armstrong, M.I., and Flemington, E.K. (2000) CpG methylation as a mechanism for the regulation of E2F activity. Proc. Natl. Acad. Sci. USA 97, 6481–6486.

    Article  PubMed  CAS  Google Scholar 

  28. Eden, S., Hashimshony, T., Keshet, I. et al. (1998) DNA methylation models histone acetylation. Nature 394, 842.

    Article  PubMed  CAS  Google Scholar 

  29. Bird, A.P., and Wolffe, A.P. (1999) Methylation-induced repression-belts, braces, and chromatin. Cell 99, 451–454.

    Article  PubMed  CAS  Google Scholar 

  30. Bannister, A.J., Zegerman, P., Partridge, J.F. et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124.

    Article  PubMed  CAS  Google Scholar 

  31. Lachner, M., O’Carroll, D., Rea, S. et al. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120.

    Article  PubMed  CAS  Google Scholar 

  32. Ringrose, L., Ehret, H., and Paro, R. (2004) Distinct contributions of histone H3 lysine 9 and 27 methylation to locus-specific stability of polycomb complexes. Mol. Cell. 16, 641–653.

    Article  PubMed  CAS  Google Scholar 

  33. Wernig, M., Meissner, A., Foreman, R. et al. (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324.

    Article  PubMed  CAS  Google Scholar 

  34. Golan-Mashiach, M., Dazard, J.E., Gerecht-Nir, S. et al. (2005) Design principle of gene expression used by human stem cells: implication for pluripotency. FASEB J 19, 147–149.

    PubMed  CAS  Google Scholar 

  35. Jackson, M., Krassowska, A., Gilbert, N. et al. (2004) Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol. Cell. Biol. 24, 8862–8871.

    Article  PubMed  CAS  Google Scholar 

  36. Zvetkova, I., Apedaile, A., Ramsahoye, B. et al. (2005) Global hypomethylation of the genome in XX embryonic stem cells. Nat. Genet. 37, 1274–1279.

    Article  PubMed  CAS  Google Scholar 

  37. Calvisi, D.F., Ladu, S., Gorden, A. et al. (2007) Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J. Clin. Invest. 117, 2713–2722.

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki, K., Suzuki, I., Leodolter, A. et al. (2006) Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 9, 199–207.

    Article  PubMed  CAS  Google Scholar 

  39. Jones, P.A., and,Baylin, S.B. (2002) The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428

    Article  PubMed  CAS  Google Scholar 

  40. Baylin, S.B., and Ohm, J.E. (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer 6, 107–116.

    Article  PubMed  CAS  Google Scholar 

  41. Issa, J.P. (2004) CpG island methylator phenotype in cancer. Nat. Rev. Cancer 4, 988–993.

    Article  PubMed  CAS  Google Scholar 

  42. Ohm, J.E., McGarvey, K.M., Yu, X. et al. (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39, 237–242.

    Article  PubMed  CAS  Google Scholar 

  43. Cheng, A.S., Culhane, A.C., Chan, M.W. et al. (2008) Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Res. 68, 1786–1796.

    Article  PubMed  CAS  Google Scholar 

  44. Calvanese, V., Horrillo, A., Hmadcha, A. et al. (2008) Cancer genes hypermethylated in human embryonic stem cells. PLoS ONE 3, e3294.

    Article  PubMed  Google Scholar 

  45. Meissner, A., Mikkelsen, T.S., Gu, H. et al. (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770.

    PubMed  CAS  Google Scholar 

  46. Widschwendter, M., Fiegl, H., Egle, D. et al. (2007) Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157–158.

    Article  PubMed  CAS  Google Scholar 

  47. Schuebel, K., Chen, W., and Baylin, S.B. (2006) CIMPle origin for promoter hypermethylation in colorectal cancer? Nat Genet 38, 738–740.

    Article  PubMed  CAS  Google Scholar 

  48. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A. et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  49. Bloushtain-Qimron, N., Yao, J., Snyder, E.L. et al. (2008) Cell type-specific DNA methylation patterns in the human breast. Proc. Natl. Acad. Sci. USA 105, 14076–14081.

    Article  PubMed  CAS  Google Scholar 

  50. Shipitsin, M., Campbell, L.L., Argani, P. et al. (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11, 259–273.

    Article  PubMed  CAS  Google Scholar 

  51. Dontu, G., Abdallah, W.M., Foley, J.M. et al. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253–1270.

    Article  PubMed  CAS  Google Scholar 

  52. Singh, S.K., Hawkins, C., Clarke, I.D. et al. (2004) Identification of human brain tumour initiating cells. Nature 432, 396–401.

    Article  PubMed  CAS  Google Scholar 

  53. Ricci-Vitiani, L., Lombardi, D.G., Pilozzi, E. et al. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115.

    Article  PubMed  CAS  Google Scholar 

  54. Yi, J.M., Tsai, H.C., Glockner, S.C. et al. (2008) Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res. 68, 8094–8103.

    Article  PubMed  CAS  Google Scholar 

  55. Brunner, A.L., Johnson, D.S., Kim, S.W. et al. (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19, 1044–1056.

    Google Scholar 

  56. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693–705.

    Article  PubMed  CAS  Google Scholar 

  57. Strahl, B.D. and Allis, C.D. (2000) The language of covalent histone modifications. Nature 403, 41–45

    Article  PubMed  CAS  Google Scholar 

  58. McGarvey, K.M., Fahrner, J.A., Greene, E. et al. (2006) Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer research 66, 3541–3549.

    Article  PubMed  CAS  Google Scholar 

  59. Berezikov, E., Guryev, V., van de Belt, J. et al. (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21–24.

    Article  PubMed  CAS  Google Scholar 

  60. Gartel, A.L., and Kandel, E.S. (2006) RNA interference in cancer. Biomol. Engg. 23, 17–34.

    Article  CAS  Google Scholar 

  61. Park, S.M., Shell, S., Radjabi, A.R. et al. (2007) Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle 6, 2585–2590.

    Article  PubMed  CAS  Google Scholar 

  62. Yu, F., Yao, H., Zhu, P. et al. (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123.

    Article  PubMed  CAS  Google Scholar 

  63. Iorio, M.V., Ferracin, M., Liu, C.G. et al. (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Research 65, 7065–7070.

    Article  PubMed  CAS  Google Scholar 

  64. Shell, S., Park, S.M., Radjabi, A.R. et al. (2007) Let-7 expression defines two differentiation stages of cancer. Proc. Natl. Acad. Sci. USA 104, 11400–11405.

    Article  PubMed  CAS  Google Scholar 

  65. Garzia, L., Andolfo, I., Cusanelli, E. et al. (2009) MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS ONE 4, e4998.

    Article  PubMed  Google Scholar 

  66. Holst, C.R., Nuovo, G.J., Esteller, M. et al. (2003) Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res. 63, 1596–1601.

    PubMed  CAS  Google Scholar 

  67. Kawakami, K., Ruszkiewicz, A., Bennett, G. et al. (2006) DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Br. J. Cancer 94, 593–598.

    Article  PubMed  CAS  Google Scholar 

  68. Minucci, S., and Pelicci, P.G. (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 6, 38–51.

    Article  PubMed  CAS  Google Scholar 

  69. Yoo, C.B. and Jones, P.A. (2006) Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Disc. 5, 37–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenko Herceg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ouzounova, M., Hernandez-Vargas, H., Herceg, Z. (2011). Epigenetic Identity in Cancer Stem Cells. In: Appasani, K., Appasani, R. (eds) Stem Cells & Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-860-7_8

Download citation

Publish with us

Policies and ethics