Skip to main content

Muscle-Derived Stem Cells: A Model for Stem Cell Therapy in Regenerative Medicine

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Our research group has shown that a population of muscle-derived stem cells (MDSCs) isolated by a modified preplate technique from murine postnatal skeletal muscle displays a high transplantation capacity in both ­skeletal and cardiac muscles. The ability of MDSCs to proliferate in vivo for an extended period of time, combined with their strong capacity for self-renewal, resistance to stress, ­ability to undergo multilineage differentiation, ability to induce neovascularization and the paracrine effects that they have on the host, at least partially explains the high regenerative capacity of these cells in vivo. Although the true origin of MDSCs is unclear, the similarity to human blood vessel–derived stem cells suggests a ­putative origin from the vascular wall. This chapter reviews current knowledge on the utility of the MDSCs to improve the healing of various musculoskeletal tissues and injured cardiac muscle and lists the potential clinical applications based on this knowledge. We propose that these cells are a successful model for the use in regenerative medicine but emphasize that other factors, such as age and sex of the host and donor cells, should be considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aejaz, H., Aleem, N., Parveen, M., et al. (2007) Stem cell therapy: present status. Transplant Proc. 39, 694–9.

    Article  PubMed  CAS  Google Scholar 

  2. Amabile, G. and Meissner, A. (2009) Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med. 15, 59–68.

    Article  PubMed  CAS  Google Scholar 

  3. Gussoni, E., Soneoka, Y., Strickland, C.D., et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. 401, 390–4.

    PubMed  CAS  Google Scholar 

  4. Partridge, T. (2000) The current status of myoblast transfer. Neurol Sci. 21, S939–42.

    Article  PubMed  CAS  Google Scholar 

  5. Peault, B., Rudnicki, M., Torrente, Y., et al. (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther. 15, 867–77.

    Article  PubMed  CAS  Google Scholar 

  6. Deasy, B.M., Li, Y., and Huard, J. (2004) Tissue engineering with muscle-derived stem cells. Curr Opin Biotechnol. 15, 419–23.

    Article  PubMed  CAS  Google Scholar 

  7. Tajbakhsh, S. (2009) Skeletal muscle stem cells in developmental versus regenerative ­myogenesis. J Intern Med. 266, 372–89.

    Article  PubMed  CAS  Google Scholar 

  8. Qu-Petersen, Z., Deasy, B., Jankowski, R., et al. (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol. 157, 851–64.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, J.Y., Qu-Petersen, Z., Cao, B., et al. (2000) Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol. 150, 1085–100.

    Article  PubMed  CAS  Google Scholar 

  10. Gharaibeh, B., Lu, A., Tebbets, J., et al. (2008) Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc. 3, 1501–9.

    Article  PubMed  CAS  Google Scholar 

  11. Deasy, B., Gharaibeh, B., Pollett, J., et al. (2005) Long-term self-renewal of postnatal muscle-derived stem cells. Mol Cell Biol. 16, 3323–33.

    Article  CAS  Google Scholar 

  12. Carr, L., Steele, D., Steele, S., et al. (2008) 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct. 19, 881–3.

    Article  PubMed  CAS  Google Scholar 

  13. Huard, J., Cao, B., and Qu-Petersen, Z. (2003) Muscle-derived stem cells: potential for muscle regeneration. Birth Defects Res C Embryo Today. 69, 230–7.

    Article  PubMed  CAS  Google Scholar 

  14. Deasy, B.M. and Huard, J. (2002) Gene therapy and tissue engineering based on muscle-derived stem cells. Curr Opin Mol Ther. 4, 382–9.

    PubMed  CAS  Google Scholar 

  15. Jankowski, R.J., Deasy, B.M., and Huard, J. (2002) Muscle-derived stem cells. Gene Ther. 9, 642–7.

    Article  PubMed  CAS  Google Scholar 

  16. Mauro, A. (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 9, 493–5.

    Article  PubMed  CAS  Google Scholar 

  17. Asakura, A., Seale, P., Girgis-Gabardo, A., et al. (2002) Myogenic specification of side ­population cells in skeletal muscle. J Cell Biol. 159, 123–34.

    Article  PubMed  CAS  Google Scholar 

  18. Zheng, B., Cao, B., Crisan, M., et al. (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol. 25, 1025–34.

    Article  PubMed  CAS  Google Scholar 

  19. Tavian, M., Zheng, B., Oberlin, E., et al. (2005) The vascular wall as a source of stem cells. Ann N Y Acad Sci. 1044, 41–50.

    Article  PubMed  Google Scholar 

  20. Crisan, M., Yap, S., Casteilla, L., et al. (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 3, 301–13.

    Article  PubMed  CAS  Google Scholar 

  21. Okada, M., Payne, T.R., Zheng, B., et al. (2008) Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium. J Am Coll Cardiol. 52, 1869–80.

    Article  PubMed  Google Scholar 

  22. Oshima, H., Payne, T., Urish, K., et al. (2005) Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Mol Ther. 12, 1130–41.

    Article  PubMed  CAS  Google Scholar 

  23. Payne, T., Oshima, H., Okada, M., et al. (2007) A relationship between VEGF, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol. 50, 1677–84.

    Article  PubMed  CAS  Google Scholar 

  24. Deasy, B., Feduska, J., Payne, T., et al. (2009) Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther. 17, 1788–98.

    Article  PubMed  CAS  Google Scholar 

  25. Cao, B., Zheng, B., Jankowski, R.J., et al. (2003) Muscle stem cells differentiate into ­haematopoietic lineages but retain myogenic potential. Nat Cell Biol. 5, 640–6.

    Article  PubMed  CAS  Google Scholar 

  26. Payne, T., Oshima, H., Sakai, T., et al. (2005) Regeneration of dystrophin-expressing ­myocytes in the mdx heart by skeletal muscle stem cells. Gene Ther. 12, 1264–74.

    Article  PubMed  CAS  Google Scholar 

  27. Tang, Y.L., Zhao, Q., Qin, X., et al. (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg. 80, 229–36; discussion 236–7.

    Article  PubMed  Google Scholar 

  28. Corsi, K., Pollett, J., Phillippi, J., et al. (2007) Osteogenic potential of postnatal skeletal muscle-derived stem cells is influenced by donor sex. J Bone Miner Res. 22, 1592–602.

    Article  PubMed  Google Scholar 

  29. Peng, H., Wright, V., Usas, A., et al. (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest. 110, 751–759.

    PubMed  CAS  Google Scholar 

  30. Lavasani, M., Lu, A., Peng, H., et al. (2006) Nerve growth factor improves the muscle regeneration capacity of muscle stem cells in dystrophic muscle. Hum Gene Ther. 17, 180–92.

    Article  PubMed  CAS  Google Scholar 

  31. Lavasani, M., Lu, A., Usas, A., et al. (2008) Human muscle-derived progenitor cells express neuronal and glial markers in vitro and promote peripheral nerve repair. Orthopaedic Research Society. Abstract 1625. March 2–5, San Francisco, CA.

    Google Scholar 

  32. Peng, H. and Huard, J. (2004) Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl Immunol. 12, 311–9.

    Article  PubMed  CAS  Google Scholar 

  33. Lee, J.Y., Musgrave, D., Pelinkovic, D., et al. (2001) Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. J Bone Joint Surg Am. 83-A, 1032–9.

    PubMed  CAS  Google Scholar 

  34. Shen, H.C., Peng, H., Usas, A., et al. (2004) Ex vivo gene therapy-induced endochondral bone formation: comparison of muscle-derived stem cells and different subpopulations of primary muscle-derived cells. Bone. 34, 982–92.

    Article  PubMed  CAS  Google Scholar 

  35. Peng, H., Usas, A., Gearhart, B., et al. (2004) Development of a self-inactivating tet-on ­retroviral vector expressing bone morphogenetic protein 4 to achieve regulated bone ­formation. Mol Ther. 9, 885–94.

    Article  PubMed  CAS  Google Scholar 

  36. Shen, H., Peng, H., Usas, A., et al. (2004) Structural and functional healing of critical-size segmental bone defects by transduced muscle-derived cells expressing BMP4. J Gene Med. 6, 984–91.

    Article  PubMed  CAS  Google Scholar 

  37. Peng, H., Usas, A., Hannallah, D., et al. (2005) Noggin improves bone healing elicited by muscle stem cells expressing inducible BMP4. Mol Ther. 12, 239–46.

    Article  PubMed  CAS  Google Scholar 

  38. Hannallah, D., Peng, H., Young, B., et al. (2004) Retroviral delivery of Noggin inhibits the formation of heterotopic ossification induced by BMP-4, demineralized bone matrix, and trauma in an animal model. J Bone Joint Surg Am. 86-A, 80–91.

    PubMed  Google Scholar 

  39. Lehto, M., Duance, V., and Restall, D. (1985) Collagen and fibronectin in a healing skeletal muscle injury. J Bone Joint Surg Br. 67, 820–8.

    PubMed  CAS  Google Scholar 

  40. Zhu, J., Li, Y., Shen, W., et al. (2007) Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J Biol Chem. 282, 25852–63

    Article  PubMed  CAS  Google Scholar 

  41. Li, Y., Li, J., Zhu, J., et al. (2007) Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol Ther. 15, 1616–22.

    Article  PubMed  CAS  Google Scholar 

  42. Nozaki, M., Li, Y., Zhu, J., et al. (2008) Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth. Am J Sports Med. 36, 2354–62.

    Article  PubMed  Google Scholar 

  43. Bosch, P., Musgrave, D., Ghivizzani, S., et al. (2000) The efficiency of muscle-derived cell-mediated bone formation. Cell Transplant. 9, 463–70.

    PubMed  CAS  Google Scholar 

  44. Matsumoto, T., Cooper, G.M., Gharaibeh, B., et al. (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum. 60, 1390–405.

    Article  PubMed  Google Scholar 

  45. Boyle, A., Schulman, S., Hare, J., et al. (2006) Is stem cell therapy ready for patients? Stem cell therapy for cardiac repair. Ready for the next step. Circulation. 114, 339–52.

    Article  PubMed  Google Scholar 

  46. Fujii, T., Yau, T., Weisel, R., et al. (2003) Cell transplantation to prevent heart failure: a ­comparison of cell types. Ann Thorac Surg. 76, 2062–70.

    Article  PubMed  Google Scholar 

  47. Urish, K., Vella, J., Okada, M., et al. (2008) Antioxidant levels represent a major determinant in the regenerative capacity of muscle stem cells. Mol Biol Cell. 20, 509–20.

    Article  PubMed  Google Scholar 

  48. Uemura, R., Xu, M., Ahmad, N., et al. (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 98, 1414–21.

    Article  PubMed  CAS  Google Scholar 

  49. Jain, M., DerSimonian, H., Brenner, D., et al. (2001) Cell Therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation. 103, 1920–7.

    Article  PubMed  CAS  Google Scholar 

  50. Murry, C., Reinecke, H., and Pabon, L. (2006) Regeneration gap observations on stem cells and cardiac repair. J Am Coll Cardiol. 47, 1777–85.

    Article  PubMed  Google Scholar 

  51. Carlson, M. and Conboy, I. (2007) Loss of stem cell regenerative capacity within aged niches. Aging Cell. 6, 371–82.

    Article  PubMed  CAS  Google Scholar 

  52. Collins, C., Zammit, P., Ruiz, A., et al. (2007) A population of myogenic stem cells that ­survives skeletal muscle aging. Stem Cells. 25, 885–94.

    Article  PubMed  CAS  Google Scholar 

  53. Shefer, G., Mark, D.V.d., Richardson, J., et al. (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol. 294, 50–66.

    Article  PubMed  CAS  Google Scholar 

  54. Gopinath, S.D. and Rando, T.A. (2008) Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell. 7, 590–8.

    Article  PubMed  CAS  Google Scholar 

  55. Deasy, B., Lu, A., Tebbets, J., et al. (2007) A role for cell sex in stem cell-mediated skeletal muscle regeneration: female cells have higher muscle regeneration efficiency. J Cell Biol. 177, 73–86.

    Article  PubMed  CAS  Google Scholar 

  56. Matsumoto, T., Kubo, S., Meszaros, L.B., et al. (2008) The influence of sex on the chondrogenic potential of muscle-derived stem cells: implications for cartilage regeneration and repair. Arthritis Rheum. 58, 3809–19.

    Article  PubMed  CAS  Google Scholar 

  57. Crisostomo, P., Markel, T.A., Wang, M., et al. (2007) In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery. 142, 215–21.

    Article  PubMed  Google Scholar 

  58. Drowley, L., Okada, M., Payne, T.R., et al. (2009) Sex of muscle stem cells does not influence potency for cardiac cell therapy. Cell Transplant. 18, 1137–46.

    Article  PubMed  Google Scholar 

  59. Dernbach, E., Urbich, C., Brandes, R., et al. (2004) Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood. 104, 3591–7.

    Article  PubMed  CAS  Google Scholar 

  60. He, T., Peterson, T., Homuhamedov, E., et al. (2004) Human endothelial progenitor cells ­tolerate oxidative stress due to intrinsically high expression of manganese superoxide ­dismutase. Arterioscler Thromb Vasc Biol. 24, 2021–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny Huard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gharaibeh, B., Drowley, L., Huard, J. (2011). Muscle-Derived Stem Cells: A Model for Stem Cell Therapy in Regenerative Medicine. In: Appasani, K., Appasani, R. (eds) Stem Cells & Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-860-7_34

Download citation

Publish with us

Policies and ethics