Skip to main content

Thiamine in Diabetic Renal Disease: Dietary Insufficiency, Renal Washout, Antistress Gene Response, Therapeutic Supplements, Risk Predictor, and Link to Genetic Susceptibility

  • Chapter
  • First Online:
  • 922 Accesses

Abstract

Thiamine (vitamin B1) has a key role in protection against renal disease by providing the thiamine pyrophosphate cofactor for transketolase and thereby maintaining oxidative and reductive pentosephosphate pathway activities key in countering oxidative and metabolic stress. The link to renal disease is amplified by increased washout and deficiency in renal disease, which in diabetic nephropathy may be linked to tissue-specific downregulation of thiamine transporters. Transketolase is part of the antistress gene response coordinated by transcription factor NF-E2–related factor-2 (nrf2) and activated by dietary bioactive and synthetic activators. Such activators have been found to be beneficial in the treatment of diabetic nephropathy wherein increased transketolase activity may have a key role. High dose thiamine supplements prevented the development of nephropathy in experimental diabetes and in a recent pilot scale trial reversed early stage nephropathy in patients with type 2 diabetes. Transketolase gene TKT variability and increased fractional excretion of thiamine were linked to susceptibility and progression of diabetic nephropathy. A definitive, large-scale trial of thiamine supplements for treatment of early stage diabetic nephropathy is now desirable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brady JA, Rock CL, Horneffer MR. Thiamin status, diuretic medications, and the management of congestive heart failures. J Am Diet Assoc 1995; 95: 541–544.

    Article  CAS  PubMed  Google Scholar 

  2. Thornalley PJ, Babaei-Jadidi R, Al Ali H et al. High prevalence of low plasma thiamine concentration in diabetes linked to marker of vascular disease. Diabetologia 2007; 50: 2164–2170.

    Google Scholar 

  3. Soh Y, Song BJ, Jeng JJ et al. Critical role of Arg(433) in rat transketolase activity as probed by site-directed mutagenesis. Biochem J 1998; 333: 367–372.

    CAS  PubMed  Google Scholar 

  4. Finglas PM. Thiamin. Int J Vitam Nutr Res 1993; 63: 270–274.

    CAS  PubMed  Google Scholar 

  5. Tasevska N, Runswick SA, McTaggart A et al. Twenty-four-hour urinary thiamine as a biomarker for the assessment of thiamine intake. Eur J Clin Nutr 2007; 62: 1139–1147.

    Article  PubMed  Google Scholar 

  6. European Food Safety Authority. Scientific Opinion of the Panel on Food Additives and Nutrient Sources added to Food (ANS) on a request from the Commission on Benfotiamine, thiamine monophosphate chloride and thiamine pyrophosphate chloride, as sources of vitamin B1. EFSA J 2008; 864: 1–31.

    Google Scholar 

  7. Rabbani N, Shahzad Alam S, Riaz S et al. High dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a pilot randomised, double-blind, placebo-controlled study. Diabetologia 2008; 52: 208–212.

    Article  PubMed  Google Scholar 

  8. Wang AYM, Sea MMM, Ip R et al. Independent effects of residual renal function and dialysis adequacy on dietary micronutrient intakes in patients receiving continuous ambulatory peritoneal dialysis. Am J Clin Nutr 2002; 76: 569–576.

    CAS  PubMed  Google Scholar 

  9. Heaf J, Jakobsen U, Tvedegaard E et al. Dietary habits and nutritional status of renal transplant patients. J Renal Nutr 2004; 14: 20–25.

    Article  Google Scholar 

  10. Hung SC, Hung SH, Tarng DC et al. Thiamine deficiency and unexplained encephalopathy in hemodialysis and peritoneal dialysis patients. Am J Kidney Dis 2001; 38: 941–947.

    Article  CAS  PubMed  Google Scholar 

  11. Dutta B, Huang W, Molero M et al. Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem 1999; 274: 31925–31929.

    Article  CAS  PubMed  Google Scholar 

  12. Rajgopal A, Edmondnson A, Goldman ID et al. SLC19A3 encodes a second thiamine transporter ThTr2. Biochim Biophys Acta Mol Basis Dis 2001; 1537: 175–178.

    CAS  Google Scholar 

  13. Matherly LH. Molecular and cellular biology of the human reduced folate carrier. Prog Nucleic Acid Res Mol Biol 2001; 67: 131–162.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao R, Gao F, Goldman ID. Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells. Am J Physiol Cell Physiol 2002; 282: C1512–C1517.

    CAS  PubMed  Google Scholar 

  15. Zhao RB, Gao F, Wang YH et al. Impact of the reduced folate carrier on the accumulation of active thiamin metabolites in murine leukemia cells. J Biol Chem 2001; 276: 1114–1118.

    Article  CAS  PubMed  Google Scholar 

  16. Lindhurst MJ, Fiermonte G, Song S et al. Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. PNAS 2006; 103: 15927–15932.

    Article  CAS  PubMed  Google Scholar 

  17. Kang J, Samuels DC. The evidence that the DNC (SLC25A19) is not the mitochondrial deoxyribonucleotide carrier. Mitochondrion 2008; 8: 103–108.

    Article  CAS  PubMed  Google Scholar 

  18. Said HM, Balamurugan K, Subramanian VS et al. Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine. Am J Physiol Gastrointest Liver Physiol 2004; 286: G491–G498.

    Article  CAS  PubMed  Google Scholar 

  19. Reidling JC, Subramanian VS, Dudeja PK et al. Expression and promoter analysis of SLC19A2 in the human intestine. Biochim Biophys Acta 2002; 1561: 180–187.

    Article  CAS  PubMed  Google Scholar 

  20. Eudy JD, Spiegelstein O, Barber RC et al. Identification and characterization of the human and mouse SLC19A3 gene: A novel member of the reduced folate family of micronutrient transporter genes. Mol Genet Metab 2000; 71: 581–590.

    Article  CAS  PubMed  Google Scholar 

  21. Trippett TM, Garcia S, Manova K et al. Localization of a human reduced folate carrier protein in the mitochondrial as well as the cell membrane of leukemia cells. Cancer Res 2001; 61: 1941–1947.

    CAS  PubMed  Google Scholar 

  22. Babaei-Jadidi R, Karachalias N, Kupich C et al. High dose thiamine therapy counters dyslipidaemia in streptozotocin-induced diabetic rats. Diabetologia 2004; 47: 2235–2246.

    Article  CAS  PubMed  Google Scholar 

  23. Chin E, Zhou J, Bondy C. Anatomical and developmental patterns of facilitative glucose transporter gene-expression in the rat kidney. J Clin Invest 1993; 91: 1810–1815.

    Article  CAS  PubMed  Google Scholar 

  24. Tallaksen CME, Bohmer T, Karlsen J et al. Determination of thiamin and its phosphate esters in human blood, plasma, and urine. Vitam Coenzymes 1997; 279 (Pt I): 67–74.

    CAS  Google Scholar 

  25. Dolce V, Fiermonte G, Runswick MJ et al. The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals. Proc Natl Acad Sci USA 2001; 98: 2284–2288.

    Article  CAS  PubMed  Google Scholar 

  26. Gastaldi G, Coya E, Verri A et al. Transport of thiamin in rat renal brush border membrane vesicles. Kidney Int 2002; 57: 2043–2054.

    Article  Google Scholar 

  27. Morshed KM, Ross DM, McMartin KE. Folate transport proteins mediate the bidirectional transport of 5-methyltetrahydrofolate in cultured human proximal tubule cells. J Nutr 1997; 127: 1137–1147.

    CAS  PubMed  Google Scholar 

  28. Rindi G, Laforenza U. Thiamine intestinal transport and related issues: recent aspects. PSEBM 2000; 224: 246–255.

    Article  CAS  Google Scholar 

  29. Balamurugan K, Said HM. Functional role of specific amino acid residues in human thiamine transporter SLC19A2: mutational analysis. Am J Physiol Gastrointest Liver Physiol 2002; 283: G37–G43.

    CAS  PubMed  Google Scholar 

  30. Fleming JC, Tartaglini E, Steinkamp MP et al. The gene mutated in thiamine-responsive anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat Genet 1999; 22: 305–308.

    Article  CAS  PubMed  Google Scholar 

  31. Diaz GA, Banikazemi M, Oishi K et al. Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat Genet 1999; 22: 309–312.

    Article  CAS  PubMed  Google Scholar 

  32. Labay V, Raz T, Baron D et al. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet 1999; 22: 300–304.

    Article  CAS  PubMed  Google Scholar 

  33. Rosenberg MJ, Agarwala R, Bouffard G et al. Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nat Genet 2002; 32: 175–179.

    Article  CAS  PubMed  Google Scholar 

  34. Larkin JR, Thornalley PJ. High glucose causes a decrease in expression of thiamine transporters in human proximal tubule epithelial cells in vitro. Diabetologia 2008; 51: 219.

    Google Scholar 

  35. Patrini C, Laforenza U, Gastaldi G et al. Effects of insulin on thiamine intestinal transport in rat everted jejunal sacs. J Physiol (London) 1996; 493: 100S–101S.

    Google Scholar 

  36. Babaei-Jadidi R, Karachalias N, Ahmed N et al. Prevention of incipient diabetic nephropathy by high dose thiamine and Benfotiamine. Diabetes 2003; 52: 2110–2120.

    Article  CAS  PubMed  Google Scholar 

  37. Naggar H, Ola MS, Moore P et al. Downregulation of reduced-folate transporter by glucose in cultured RPE cells and in RPE of diabetic mice. Invest Ophthalmol Vis Sci 2002; 43: 556–563.

    PubMed  Google Scholar 

  38. Laforenza U, Patrini C, Alvisi C et al. Thiamine uptake in human intestinal biopsy specimens, including observations from a patient with acute thiamine deficiency. Am J Clin Nutr 1997; 66: 320–326.

    CAS  PubMed  Google Scholar 

  39. AntonySunil A, Babaei-Jadidi R, Rabbani N et al. Increased thiamine transporter contents of red blood cells and peripheral blood mononuclear leukocytes in type 1 and type 2 diabetic patients. Diabetes 2007; 56: A609.

    Google Scholar 

  40. Halwachs S, Kneuer C, Honscha W. Downregulation of the reduced folate carrier transport activity by phenobarbital-type cytochrome P450 inducers and protein kinase C activators. Biochim Biophys Acta 2007; 1768: 1671–1679.

    Article  CAS  PubMed  Google Scholar 

  41. Heinz J, Domrose U, Westphal S et al. Washout of water-soluble vitamins and of homocysteine during haemodialysis: effect of high-flux and low-flux dialyser membranes. Nephrology 2008; 13: 384–389.

    Article  PubMed  Google Scholar 

  42. Chychul LM, Basu TK, Dasgupta MK. Continuous ambulatory peritoneal dialysis and micronutrients: a review. Nutr Res 1991; 11: 513–525.

    Article  Google Scholar 

  43. Cheng JZ, Yang YS, Singh SP et al. Two distinct 4-hydroxynonenal metabolizing glutathione S-transferase isozymes are differentially expressed in human tissues. Biochem Biophys Res Commun 2001; 282: 1268–1274.

    Article  CAS  PubMed  Google Scholar 

  44. Xue M, Qian Q, Adaikalakoteswari A et al. Activation of NF-E2-related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease. Diabetes 2008; 57: 2809–2817.

    Article  CAS  PubMed  Google Scholar 

  45. Thornalley PJ, Qian Q, Rabbani N. Prevention of dicarbonyl stress induced by hyperglycaemia in microvascular endothelial cells by sulforaphane. Diabetologia 2008; 51: 1301.

    Google Scholar 

  46. Thornalley PJ. The potential role of thiamine (vitamin B1) in diabetic complications. Curr Diabetes Res 2005; 1: 287–298.

    Article  CAS  Google Scholar 

  47. Terbukhina RV, Ostrovsky YM, Petushok VG et al. Effect of thiamine deprivation on thiamine metabolism in mice. J Nutr 1981; 111: 505–513.

    Google Scholar 

  48. Thimmulappa RK, Mai KH, Srisuma S et al. Identification of nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide array. Cancer Res 2002; 62: 5196–5203.

    CAS  PubMed  Google Scholar 

  49. Kwak MK, Wakabayashi N, Itoh K et al. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 2003; 278: 8135–8145.

    Article  CAS  PubMed  Google Scholar 

  50. Thornalley PJ, IARC Workgroup. Cruciferous vegetables, isothiocyanates and indoles. IARC handbook on chemoprevention of cancer. Lyon: IARC Press, 2004.

    Google Scholar 

  51. Maiyoh GK, Kuh JE, Casaschi A et al. Cruciferous indole-3-carbinol inhibits apolipoprotein B secretion in HepG2 cells. J Nutr 2007; 137: 2185–2189.

    CAS  PubMed  Google Scholar 

  52. Chen C, Pung D, Leong V et al. Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor nrf2: effect of chemical structure and stress signals. Free Radic Biol Med 2004; 37: 1578–1590.

    Article  CAS  PubMed  Google Scholar 

  53. Tanigawa S, Fujii M, Hou DX. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med 2007; 42: 1690–1703.

    Article  CAS  PubMed  Google Scholar 

  54. Mann GE, Rowlands DJ, Li FYL et al. Activation of endothelial nitric oxide synthase by dietary isoflavones: role of NO in nrf2-mediated antioxidant gene expression. Cardiovasc Res 2007; 75: 261–274.

    Article  CAS  PubMed  Google Scholar 

  55. Ben Dor A, Steiner M, Gheber L et al. Carotenoids activate the antioxidant response element transcription system. Mol Cancer Ther 2005; 4: 177–186.

    CAS  PubMed  Google Scholar 

  56. Gao L, Wang JK, Sekhar KR et al. Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J Biol Chem 2007; 282: 2529–2537.

    Article  CAS  PubMed  Google Scholar 

  57. Yates MS, Tauchi M, Katsuoka F et al. Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol Cancer Ther 2007; 6: 154–162.

    Article  CAS  PubMed  Google Scholar 

  58. Fukuchi Y, Kato Y, Okunishi I et al. 6-Methylsulfinylhexyl isothiocyanate, an antioxidant derived from Wasabia japonica MATUM, ameliorates diabetic nephropathy in type 2 diabetic mice. Food Sci Technol Res 2004; 10: 290–295.

    Article  CAS  Google Scholar 

  59. Sharma S, Anjaneyulu M, Kulkarni SK et al. Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. Pharmacology 2006; 76: 69–75.

    Article  CAS  PubMed  Google Scholar 

  60. Anjaneyulu M, Chopra K. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 2004; 31: 244–248.

    Article  CAS  PubMed  Google Scholar 

  61. Schwartz SL, Denham DS, Hurwitz CA et al. Bardoxolone methyl shown to improve renal function in patients with chronic kidney disease and type 2 diabetes mellitus. Diabetes 2009; 58: A30.

    Article  Google Scholar 

  62. Rabbani N, Alam S, Riaz S et al. Thiamine in diabetic nephropathy: a novel treatment modality? Reply to Alkhalaf A, Kleefstra N, Groenier KH et al. [letter]. Diabetologia 2009; 52: 1214–1216.

    Article  Google Scholar 

  63. AntonySunil A, Perkins B, Krolewski A et al. Thiamine status and risk of early renal function decline in type 1 diabetic patients. Diabetologia 2008; 51: S98.

    Google Scholar 

  64. Lapsys NM, Layfield R, Baker E et al. Chromosomal location of the human transketolase gene. Cytogenet Cell Genet 1992; 61: 274–277.

    Article  CAS  PubMed  Google Scholar 

  65. Freedman BI, Bowden DW, Rich SS et al. Genome-wide linkage scans for renal function and albuminuria in type 2 diabetes mellitus: the Diabetes Heart Study. Diabet Med 2008; 25: 268–276.

    Article  CAS  PubMed  Google Scholar 

  66. Pacal L, Tomandl J, Tanhauserova V et al. Thiamine levels and transketolase genetic variants as modifiers of progression of diabetic nephropathy. Diabetologia 2009; 52: 1079.

    Google Scholar 

  67. Bakker SJL, Hoogeveen EK, Nijpels G et al. The association of dietary fibres with glucose is partly explained by concomitant intake of thiamine: the Hoorn study. Diabetologia 1998; 41: 1168–1175.

    Article  CAS  PubMed  Google Scholar 

  68. Wong CY, Qiuwaxi JA, Chen H et al. Daily intake of thiamine correlates with the circulating level of endothelial progenitor cells and the endothelial function in patients with type II diabetes. Mol Nutr Food Res 2008; 52: 1421–1427.

    Article  CAS  PubMed  Google Scholar 

  69. Arora S, Lidor A, Abularrage CJ et al. Thiamine (vitamin B1) improves endothelium-dependent vasodilatation in the presence of hyperglycemia. Ann Vasc Surg 2006; 20: 653–658.

    Article  PubMed  Google Scholar 

  70. Jerums G et al. Does Benfotiamine alter microalbuminia and hyperfiltration in patients with type 2 diabetes. In: The Maillard Reaction: Interface Between Aging, Nutrition and Metabolism (Thomas M and Forbes J eds.), in press.

    Google Scholar 

  71. Alkhalaf A, Klooster A, van Oeveren W et al. A Double-Blind, Randomized, Placebo-Controlled Clinical Trial on Benfotiamine Treatment in Patients with Diabetic Nephropathy. Diabetes Care 2010; 33: 1598-1601.

    Google Scholar 

Download references

Acknowledgments

We thank Diabetes UK, Juvenile Diabetes Research Foundation, and the Pakistan Higher Education Commission for support for our thiamine-related research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Thornalley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thornalley, P.J., Rabbani, N. (2011). Thiamine in Diabetic Renal Disease: Dietary Insufficiency, Renal Washout, Antistress Gene Response, Therapeutic Supplements, Risk Predictor, and Link to Genetic Susceptibility. In: Miyata, T., Eckardt, KU., Nangaku, M. (eds) Studies on Renal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60761-857-7_5

Download citation

Publish with us

Policies and ethics