Skip to main content

Anemia and Progression of Chronic Kidney Disease

  • Chapter
  • First Online:
Studies on Renal Disorders

Abstract

Tubulointerstitial fibrosis that results from renal tissue hypoxia is thought to be a key element of progressive chronic kidney diseases (CKD). Findings from epidemiological studies suggest that anemia in patients with CKD due to inadequate erythropoietin (EPO) secretion may contribute to progression. However, results of prospective controlled studies that evaluated the effect of recombinant human erythropoietin (rHuEPO) on the course of CKD were inconsistent. Nevertheless, slowing CKD progression with rHuEPO (and correction of anemia) may be achieved with a better understanding of the processes involved in the damage caused by renal tissue hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOLD-MRI:

Blood oxygenation level-dependent magnetic resonance imaging

C.E.R.A.:

Continuous erythropoietin receptor activator

CKD:

Chronic kidney disease

EPO:

Erythropoietin

EPOR:

Erythropoietin receptor

eGFR:

Estimated glomerular filtration rate

GFR:

Glomerular filtration rate

HIF:

Hypoxia-inducible factor

NO:

Nitric oxide

pO2 :

Partial oxygen pressure

rHuEPO:

Recombinant human erythropoietin

ROS:

Reactive oxygen species

RRT:

Renal replacement therapy

STAT:

Signal transducers and activators of transcription

VEGF:

Vascular endothelial growth factor

References

  1. Brenner BM, Meyer TW, Hostetter TH (1982) Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307:652–659

    Article  CAS  PubMed  Google Scholar 

  2. Bohle A, Müller GA, Wehrmann M et al (1996) Pathogenesis of chronic renal failure in the primary glomerulopathies, renal vasculopathies, and chronic interstitial nephritides. Kidney Int 49[Suppl 54]:S2–S9

    Google Scholar 

  3. Remuzzi G, Bertani T (1998) Pathophysiology of progressive nephropathies. N Engl J Med 339:1448–1456

    Article  CAS  PubMed  Google Scholar 

  4. De Heer E, Sijpkens YW, Verkade M et al (2000) Morphometry of interstitial fibrosis. Nephrol Dial Transplant 15[Suppl 6]:72–73

    Article  PubMed  Google Scholar 

  5. Brezis M, Rosen S (1995) Hypoxia of the renal medulla – its implications for disease. N Engl J Med 332:647–655

    Article  CAS  PubMed  Google Scholar 

  6. Fine LG, Bandyopadhay D, Norman JT (2000) Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia. Kidney Int 57[Suppl 75]:S22–S26

    Article  Google Scholar 

  7. Kang DH, Kanellis J, Hugo C et al (2002) Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol 13:806–816

    Article  PubMed  Google Scholar 

  8. Seron D, Alexopulos E, Raftery MJ et al (1990) Number of interstitial capillary cross-section assessed by monoclonal antibodies: relation to interstitial damage. Nephrol Dial Transplant 5:889–893

    CAS  PubMed  Google Scholar 

  9. Orphanides C, Fine LG, Norman JT (1997) Hypoxia stimulates proximal tubular cell matrix production via a TGF-beta1-independent mechanism. Kidney Int 52:637–647

    Article  CAS  PubMed  Google Scholar 

  10. Morigi M, Macconi D, Zoja C et al (2002) Protein overload-induced NF-kappaβ activation in proximal tubular cells requires H2O2 through a PKC-dependent pathway. J Am Soc Nephrol 13:1179–1189

    CAS  PubMed  Google Scholar 

  11. Nath KA, Grande J, Croatt A et al (1998) Redox regulation of renal DNA synthesis, transforming growth factor-beta 1 and collagen gene expression. Kidney Int 53:367–381

    Article  CAS  PubMed  Google Scholar 

  12. Norman JT, Clark IM, Garcia PL (2000) Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int 58:2351–2366

    Article  CAS  PubMed  Google Scholar 

  13. Heyman SN, Khamaisi M, Rosen S et al (2008) Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol 28:998–1006

    Article  CAS  PubMed  Google Scholar 

  14. Pedersen M, Dissing TH, Morkenborg J et al (2005) Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. Kidney Int 67:2305–2312

    Article  PubMed  Google Scholar 

  15. Welch WJ, Baumgartl H, Lubbers D et al (2001) Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int 59:230–237

    Article  CAS  PubMed  Google Scholar 

  16. Haase VH (2006) Hypoxia-inducible factors in the kidney. Am J Physiol Renal Physiol 291:F271–F281

    Article  CAS  PubMed  Google Scholar 

  17. Rosenberger C, Rosen S, Heyman S (2005) Current understanding of HIF in renal disease. Kidney Blood Press Res 28:325–340

    Article  PubMed  Google Scholar 

  18. Rosenberger C, Shina A, Rosen S et al (2006) Hypoxia inducible factors and tubular cell survival in isolated perfused kidneys. Kidney Int 70:60–70

    Article  CAS  PubMed  Google Scholar 

  19. Rosenberger C, Goldfarb M, Khamaisi M et al (2008) Acute kidney injury in the diabetic rat: studies in the isolated perfused and intact kidney. Am J Nephrol 28:831–839

    Article  PubMed  Google Scholar 

  20. Rosenberger C, Mandriota S, Jurgensen JS et al (2002) Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 13:1721–1732

    Article  CAS  PubMed  Google Scholar 

  21. Rosenberger C, Heyman SN, Rosen S et al (2005) Up-regulation of HIF in experimental acute renal failure: evidence for a protective transcriptional response to hypoxia. Kidney Int 67:531–542

    Article  CAS  PubMed  Google Scholar 

  22. Manotham K, Ongvilawan B, Urusopone P et al (2006) Intra-renal hypoxia in CKD patients, a BOLD MRI study. J Am Soc Nephrol 17:164A

    Google Scholar 

  23. Norman JT, Stidwill R, Singer M et al (2003) Angiotensin II blockade augments renal cortical microvascular pO2 indicating a novel, potentially renoprotective action. Nephron Physiol 94:39–46

    Article  Google Scholar 

  24. Textor SC, Glockner JF, Lerman LO et al (2008) The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J Am Soc Nephrol 19:780–788

    Article  PubMed  Google Scholar 

  25. Basile DP, Donohoe D, Roethe K et al (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281:F887–F899

    CAS  PubMed  Google Scholar 

  26. Matsumoto M, Tanaka T, Yamamoto T et al (2004) Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol 15:1574–1581

    Article  PubMed  Google Scholar 

  27. Manotham K, Tanaka T, Matsumoto M et al (2004) Evidence of tubular hypoxia in the early phase of the remnant kidney model. J Am Soc Nephrol 15:1277–1288

    Article  PubMed  Google Scholar 

  28. Goldfarb M, Rosenberger C, Abassi Z et al (2006) Acute-on-chronic renal failure in the rat: functional compensation and hypoxia tolerance. Am J Nephrol 26:22–33

    Article  PubMed  Google Scholar 

  29. Kairaitis LK, Wang Y, Gassman M et al (2005) HIF-1α expression follows microvascular loss in advanced murine adriamycin nephrosis. Am J Physiol Renal Physiol 288:F198–F206

    Article  CAS  PubMed  Google Scholar 

  30. Zhong Z, Arteel GE, Connor HD et al (1998) Cyclosporin A increases hypoxia and free radical production by rat kidneys: prevention by dietary glycine. Am J Physiol 275:F595–F604

    CAS  PubMed  Google Scholar 

  31. Yuan H-T, Li X-Z, Pitera JE et al (2003) Peritubular capillary loss after mouse acute nephrotoxicity correlates with down-regulation of vascular endothelial growth factor A and hypoxia-inducible factor-1alpha. Am J Pathol 163:2289–2301

    CAS  PubMed  Google Scholar 

  32. Rosenberger C, Pratschke J, Rudolph B et al (2007) Immunohistochemical detection of hypoxia-inducible factor-1alpha in human renal allograft biopsies. J Am Soc Nephrol 18:343–351

    Article  CAS  PubMed  Google Scholar 

  33. Sadowski EA, Fain SB, Alford SK et al (2005) Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology 236:911–919

    Article  PubMed  Google Scholar 

  34. Epstein FH, Prasad P (2000) Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int 57:2080–2083

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka T, Kato H, Kojima I et al (2006) Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J Gerontol A Biol Sci Med Sci 61:795–805

    PubMed  Google Scholar 

  36. Adler S, Huang H, Wolin MS et al (2004) Oxidant stress leads to impaired regulation of renal cortical oxygen consumption by nitric oxide in the aging kidney. J Am Soc Nephrol 15:52–60

    Article  CAS  PubMed  Google Scholar 

  37. Palm F, Cederberg J, Hansell P (2003) Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 46:1153–1160

    Article  CAS  PubMed  Google Scholar 

  38. Ries M, Basseau F, Tyndal B et al (2003) Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen leveled pendent. J Magn Reson Imaging 17:104–113

    Article  PubMed  Google Scholar 

  39. Epstein FH, Veves A, Prasad PV (2002) Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care 25:575–578

    Article  PubMed  Google Scholar 

  40. Rosenberger C, Khamaisi M, Abassi Z et al (2008) Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 73:34–42

    Article  CAS  PubMed  Google Scholar 

  41. Katavetin P, Miyata T, Inagi R et al (2006) High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J Am Soc Nephrol 17:1405–1413

    Article  CAS  PubMed  Google Scholar 

  42. Palm F, Friederich M, Carlsson PO et al (2008) Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability. Am J Physiol Renal Physiol 294:F30–F37

    Article  CAS  PubMed  Google Scholar 

  43. Welch WJ (2006) Intra-renal oxygen and hypertension. Clin Exp Pharmacol Physiol 33:1002–1005

    Article  CAS  PubMed  Google Scholar 

  44. Stillman LE, Brezis M, Heyman SN et al (1994) Effects of salt depletion on the kidney: changes in medullary oxygenation and thick ascending limb size. J Am Soc Nephrol 4:1538–1545

    CAS  PubMed  Google Scholar 

  45. Nangaku M (2006) Chronic hypoxia and tubulo-interstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17:17–25

    Article  CAS  PubMed  Google Scholar 

  46. Johannes T, Mik EG, Nohe B et al (2007) Acute decrease in renal microvascular pO2 during acute normovolemic hemodilution. Am J Physiol Renal Physiol 292:F796–F803

    Article  CAS  PubMed  Google Scholar 

  47. Rossert J, Fouqueray B, Boffa JJ (2003) Anemia management and delay of chronic renal failure. J Am Soc Nephrol 14:S173–S177

    Article  PubMed  Google Scholar 

  48. Mohanram A, Zhang Z, Shahinfar S et al (2004) Anemia and end-stage renal disease in patients with type 2 diabetes and nephropathy. Kidney Int 66:1183–1189

    Article  Google Scholar 

  49. Ravani P, Tripepi G, Malberti F et al (2005) Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol 16:2449–2455

    Article  CAS  PubMed  Google Scholar 

  50. Furth SL, Cole SR, Fadrowski JJ et al; Council of Pediatric Nephrology and Urology, New York/New Jersey; Kidney and Urology Foundation of America (2007) The association of anemia and hypoalbuminemia with accelerated decline in GFR among adolescents with chronic kidney disease. Pediatr Nephrol 22:265–271

    Google Scholar 

  51. Johnson ES, Thorp ML, Platt RW et al (2008) Predicting the risk of dialysis and transplant among patients with CKD: a retrospective cohort study. Am J Kindey Dis 52:653–660

    Article  PubMed  Google Scholar 

  52. Zanjani ED, Poster J, Burlington H et al (1977) Liver as the primary site of erythropoietin formation in the fetus. J Lab Clin Med 89:640–644

    CAS  PubMed  Google Scholar 

  53. Rankin EB, Biju MP, Liu Q et al (2007) Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 117:1068–1077

    Article  CAS  PubMed  Google Scholar 

  54. Juul SE, Yachnis AT, Rojiani AM et al (1999) Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr Dev Pathol 2:148–158

    Article  CAS  PubMed  Google Scholar 

  55. Masuda S, Kobayashi T, Chikuma M et al (2000) The oviduct produces erythropoietin in an estrogen- and oxygen-dependent manner. Am J Physiol Endocrinol Metab 278:E1038–E1044

    CAS  PubMed  Google Scholar 

  56. Magnanti M, Gandini O, Giuliani L et al (2001) Erythropoietin expression in primary rat Sertoli and peritubular myoid cells. Blood 98:2872–2874

    Article  CAS  PubMed  Google Scholar 

  57. Conrad KP, Benyo DF, Westerhausen-Larsen A et al (1996) Expression of erythropoietin by the human placenta. FASEB J 10:760–768

    CAS  PubMed  Google Scholar 

  58. Vogt C, Pentz S, Rich IN (1989) A role for the macrophage in normal hemopoiesis: III. In vitro and in vivo erythropoietin gene expression in macrophages detected by in situ hybridization. Exp Hematol 17:391–397

    CAS  PubMed  Google Scholar 

  59. Stopka T, Zivny JH, Stopkova P, Prchal JF, Prchal JT (1998) Human hematopoietic progenitors express erythropoietin. Blood 91:3766–3772

    CAS  PubMed  Google Scholar 

  60. Sato T, Maekawa T, Watanabe S et al (2000) Erythroid progenitors differentiate and mature in response to endogenous erythropoietin. J Clin Invest 106:263–270

    Article  CAS  PubMed  Google Scholar 

  61. Liu C, Shen K, Liu Z et al (1997) Regulated human erythropoietin receptor expression in mouse brain. J Biol Chem 272:32395–32400

    Article  CAS  PubMed  Google Scholar 

  62. Grimm C, Wenzel A, Groszer M et al (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8:718–724

    Article  CAS  PubMed  Google Scholar 

  63. Wu H, Lee SH, Gao J et al (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–3605

    CAS  PubMed  Google Scholar 

  64. Westenfelder C, Biddle DL, Baranowski RL (1999) Human, rat, and mouse kidney cells express functional erythropoietin receptors. Kidney Int 55:808–820

    Article  CAS  PubMed  Google Scholar 

  65. Ammarguellat F, Gogusev J, Drueke TB (1996) Direct effect of erythropoietin on rat vascular smooth-muscle cell via a putative erythropoietin receptor. Nephrol Dial Transplant 11:687–692

    CAS  PubMed  Google Scholar 

  66. Ogilvie M, Yu X, Nicolas-Metral V et al (2000) Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts. J Biol Chem 275:39754–39761

    Article  CAS  PubMed  Google Scholar 

  67. Anagnostou A, Liu Z, Steiner M et al (1994) Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci U S A 91:3974–3978

    Article  CAS  PubMed  Google Scholar 

  68. Kertesz N, Wu J, Chen TH et al (2004) The role of erythropoietin in regulating angiogenesis. Dev Biol 276:101–110

    Article  CAS  PubMed  Google Scholar 

  69. Gross AW, Lodish HF (2006) Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem 281:2024–2032

    Article  CAS  PubMed  Google Scholar 

  70. Frank SJ (2002) Receptor dimerization in GH and erythropoietin action – it takes two to tango, but how? Endocrinology 143:2–10

    Article  CAS  PubMed  Google Scholar 

  71. McCaffery PJ, Fraser JK, Lin FK (1989) Subunit structure of the erythropoietin receptor. J Biol Chem 264:10507–10512

    CAS  PubMed  Google Scholar 

  72. Brines M, Grasso G, Fiordaliso F et al (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci U S A 101:14907–14912

    Article  CAS  PubMed  Google Scholar 

  73. Leist M, Ghezzi P, Grasso G et al (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305:239–242

    Article  CAS  PubMed  Google Scholar 

  74. Sawada K, Krantz SB, Sawyer ST et al (1998) Quantitation of specific binding of erythropoietin to human erythroid colony-forming cells. J Cell Physiol 137:337–345

    Article  Google Scholar 

  75. Fraser JK, Lin FK, Berridge MV (1988) Expression of high affinity receptors for erythropoietin on human bone marrow cells and on the human erythroleukemic cell line, HEL. Exp Hematol 16:836–842

    CAS  PubMed  Google Scholar 

  76. Byts N, Samoylenko A, Fasshauer T et al (2008) Essential role for STAT5 in the neurotrophic but not in the neuroprotective effect of erythropoietin. Cell Death Differ 15:783–792

    Article  CAS  PubMed  Google Scholar 

  77. Socolovsky M, Fallon AE, Wang S et al (1999) Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for STAT5 in Bcl-X(L) induction. Cell 98:181–191

    Article  CAS  PubMed  Google Scholar 

  78. Haseyama Y, Sawada K, Oda A et al (1999) Phosphatidylinositol 3-kinase is involved in the protection of primary cultured human erythroid precursor cells from apoptosis. Blood 94:1568–1577

    CAS  PubMed  Google Scholar 

  79. Akimoto T, Kusano E, Inaba T et al (2000) Erythropoietin regulates vascular smooth muscle cell apoptosis by a phosphatidylinositol 3 kinase-dependent pathway. Kidney Int 58:269–282

    Article  CAS  PubMed  Google Scholar 

  80. Um M, Lodish HF (2006) Antiapoptotic effects of erythropoietin in differentiated neuroblastoma SH-SY5Y cells require activation of both the STAT5 and AKT signaling pathways. J Biol Chem 281:5648–5656

    Article  CAS  PubMed  Google Scholar 

  81. Um M, Gross AW, Lodish HF (2007) A “classical” homodimeric erythropoietin receptor is essential for the antiapoptotic effects of erythropoietin on differentiated neuroblastoma SH-SY5Y and pheochromocytoma PC-12 cells. Cell Signal 19:634–645

    Article  CAS  PubMed  Google Scholar 

  82. Garcia DL, Anderson S, Rennke HG et al (1988) Anemia lessens and its prevention with recombinant human erythropoietin worsens glomerular injury and hypertension in rats with reduced renal mass. Proc Natl Acad Sci U S A 85:6142–6146

    Article  PubMed  Google Scholar 

  83. Rossert J, Froissart M (2006) Role of anemia in progression of chronic kidney disease. Semin Nephrol 26:283–289

    Article  CAS  PubMed  Google Scholar 

  84. Roth D, Smith RD, Schulman G et al (1994) Effects of recombinant human erythropoietin on renal function in chronic renal failure predialysis patients. Am J Kidney Dis 24:777–784

    CAS  PubMed  Google Scholar 

  85. Kuriyama S, Tomonari H, Yoshida H et al (1997) Reversal of anemia by erythropoietin therapy retards the progression of chronic renal failure, especially in nondiabetic patients. Nephron 77:176–185

    Article  CAS  PubMed  Google Scholar 

  86. Jungers P, Choukroun G, Oualim Z et al (2001) Beneficial influence of recombinant human erythropoietin therapy on the rate of progression of chronic renal failure in predialysis patients. Nephrol Dial Transplant 16:307–312

    Article  CAS  PubMed  Google Scholar 

  87. Tapolyai M, Kadomatsu S, Perera-Chong M (2003) rhu-erythropoietin (EPO) treatment of pre-ESRD patients slows the rate of progression of renal decline. BMC Nephrol 4:3

    Article  PubMed  Google Scholar 

  88. Gouva C, Nikolopoulos P, Ioannidis JP et al (2004) Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney Int 66:753–760

    Article  PubMed  Google Scholar 

  89. Rossert J, Levin A, Roger SD et al (2006) Effect of early correction of anemia on the progression of CKD. Am J Kidney Dis 47:738–750

    Article  CAS  PubMed  Google Scholar 

  90. Furumatsu Y, Nagasawa Y, Hamano T et al (2008) Integrated therapies including erythropoietin decrease the incidence of dialysis: lessons from mapping the incidence of end-stage renal disease in Japan. Nephrol Dial Transplant 23:984–990

    Article  CAS  PubMed  Google Scholar 

  91. Torffvit O (2009) Effect of epoetin induced normal Hb on progression of nephropathy in insulin treated diabetic patients with renal failure. J Nephrol Urol 1:113–123

    Google Scholar 

  92. Furulund H, Linde T, Ahlmen J et al (2003) A randomized controlled trial of haemoglobin normalization with epoetin alpha in pre-dialysis and dialysis patients. Nephrol Dial Transplant 18:353–361

    Article  Google Scholar 

  93. Roger SD, McMahon LP, Clarkson A et al (2004) Effects of early and late intervention with epoetin alpha on left ventricular mass among patients with chronic kidney disease: results of a randomized clinical trial. J Am Soc Nephrol 15:148–156

    Article  CAS  PubMed  Google Scholar 

  94. Ritz E, Laville M, Bilous RW et al; Anemia Correction in Diabetes Study Investigators (2007) Target level for hemoglobin correction in patients with diabetes and CKD: primary results of the Anemia Correction in Diabetes (ACORD) study. Am J Kidney Dis 49:194–207

    Article  CAS  Google Scholar 

  95. Drueke TB, Locatelli F, Clyne N et al (2006) Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 355:2071–2084

    Article  CAS  PubMed  Google Scholar 

  96. Singh AK, Szczech L, Tang KL et al (2006) Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 355:2085–2098

    Article  CAS  PubMed  Google Scholar 

  97. Szczech LA, Barnhart HX, Inrig JK et al (2008) Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int 74:791–798

    Article  CAS  PubMed  Google Scholar 

  98. Fliser D, De Groot K, Bahlmann FH et al (2006) Mechanisms of disease: erythropoietin – an old hormone with a new mission? Nat Clin Pract Cardiovasc Med 3:563–572

    Article  CAS  PubMed  Google Scholar 

  99. Brines ML, Ghezzi P, Keenan S et al (2000) Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97:10526–10531

    Article  CAS  PubMed  Google Scholar 

  100. Celik M, Gokmen N, Erbayraktar S et al (2002) Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci U S A 99:2258–2263

    Article  CAS  PubMed  Google Scholar 

  101. Carlini RG, Alonzo EJ, Dominguez J et al (1999) Effect of recombinant human erythropoietin on endothelial cell apoptosis. Kidney Int 55:546–553

    Article  CAS  PubMed  Google Scholar 

  102. Ashley RA, Dubuque SH, Dvorak B et al (2002) Erythropoietin stimulates vasculogenesis in neonatal rat mesenteric microvascular endothelial cells. Pediatr Res 51:472–478

    Article  CAS  PubMed  Google Scholar 

  103. Ribatti D, Presta M, Vacca A et al (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93:2627–2636

    CAS  PubMed  Google Scholar 

  104. Yang B, Johnson TS, Thomas GL et al (2001) Expression of apoptosis-related genes and proteins in experimental chronic renal scarring. J Am Soc Nephrol 12:275–288

    CAS  PubMed  Google Scholar 

  105. Yang B, Johnson TS, Thomas GL et al (2001) Apoptosis and caspase-3 in experimental anti-glomerular basement membrane nephritis. J Am Soc Nephrol 12:485–495

    CAS  PubMed  Google Scholar 

  106. Grune T, Sommerburg O, Siems WG (2000) Oxidative stress in anemia. Clin Nephrol 53[Suppl 1]:S18–S22

    CAS  PubMed  Google Scholar 

  107. Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves cross-talk between JAK2 and NF-kappaB signalling cascades. Nature 412:641–647

    Article  CAS  PubMed  Google Scholar 

  108. Bernhardt W, Câmpean V, Kany S et al (2006) Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J Am Soc Nephrol 17:1970–1978

    Article  CAS  PubMed  Google Scholar 

  109. Bahlman FH, Fliser D (2009) Erythropoetin and renoprotection. Curr Opin Nephrol Hypertens 18:15–20

    Article  CAS  Google Scholar 

  110. Bahlmann FH, Song R, Boehm SM et al (2004) Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. Circulation 110:1006–1012

    Article  CAS  PubMed  Google Scholar 

  111. Fliser D, Bahlmann FH, Haller H (2006) EPO: renoprotection beyond anemia correction. Pediatr Nephrol 21:1785–1789

    Article  PubMed  Google Scholar 

  112. Menne J, Park JK, Shushakova N et al (2007) The continuous erythropoietin receptor activator affects different pathways of diabetic renal injury. J Am Soc Nephrol 18:2046–2053

    Article  CAS  PubMed  Google Scholar 

  113. Schiffer M, Tossidou I, Bartels J et al (2008) Erythropoietin-analog as podocyte protective agents in diabetic nephropathy. Kidney Blood Press Res 31:411–415

    Article  CAS  PubMed  Google Scholar 

  114. Eto N, Wada T, Inagi R et al (2007) Podocyte protection by darbepoetin: preservation of the cytoskeleton and nephrin expression. Kidney Int 72:455–463

    Article  CAS  PubMed  Google Scholar 

  115. Katavetin P, Inagi R, Miyata T et al (2007) Erythropoietin induces heme oxygenase-1 expression and attenuates oxidative stress. Biochem Biophys Res Commun 359:928–934

    Article  CAS  PubMed  Google Scholar 

  116. Logar CM, Brinkkoetter PT, Krofft RD et al (2007) Darbepoetin alfa protects podocytes from apoptosis in vitro and in vivo. Kidney Int 72:489–498

    Article  CAS  PubMed  Google Scholar 

  117. Coleman TR, Westenfelder C, Togel FE et al (2006) Cytoprotective doses of erythropoietin or carbamylated erythropoietin have markedly different procoagulant and vasoactive activities. Proc Natl Acad Sci U S A 103:5965–5970

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Fliser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fliser, D., Bahlmann, F.H. (2011). Anemia and Progression of Chronic Kidney Disease. In: Miyata, T., Eckardt, KU., Nangaku, M. (eds) Studies on Renal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60761-857-7_31

Download citation

Publish with us

Policies and ethics