Skip to main content

Advanced Glycation End Products Inhibitor

  • Chapter
  • First Online:
Studies on Renal Disorders

Abstract

Early intensive glycemic control in both type 1 and type 2 diabetes mellitus retards in the long term the development and progression of microvascular complications such as diabetic nephropathy, even despite a worsening glycemic control. This phenomenon is a so-called metabolic memory or legacy effect, partly ascribed to the advanced glycation end products (AGEs), whose formation is closely linked to the glycoxidative biology. In this chapter we summarize the role of AGEs and their receptor (receptor for AGEs: RAGE) in the onset and progression of diabetic vascular complications, especially in diabetic nephropathy, and review current and future treatment strategies targeting the AGE-RAGE system, including (a) AGE formation inhibitor (including angiotensin receptor blocker [ARB]), (b) AGE cross-link breaker, (c) RAGE antagonist, (d) AGE binder including sRAGE (soluble receptor for AGEs), and (e) hypoxia-inducible factor (HIF) activator. Several inhibitors of tissue accumulation of AGEs in diabetes have been clinically tested, including inhibitors of AGE formation, such as aminoguanidine, benfotiamine, and pyridoxamine, or AGE cross-link breakers, such as ALT-711. The clinical benefits of ARBs to protect the kidney are, at least in part, due to the inhibition of AGE formation. Recently antagonists of the peroxisome proliferator-activated receptor-γ (PPAR-γ), such as rosiglitazone and pioglitazone, which also provide renal benefits clinically, have been recognized as RAGE antagonists. Oral adsorbents, such as AST-120 (Kremezin) and Sevelamer carbonate, bind AGEs and reduce their plasma levels in experimental models. Several other approaches relying on the AGE hypothesis have been proposed to treat diabetic complications in experimental models, but their benefits are yet to be documented clinically. In summary, inhibition of the AGE-RAGE system confers some degree of experimental or clinical protection against diabetic microvascular complications, albeit to different degrees and by different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diabetes Control and Complications Trial Research Group. The effect of intensive therapy of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–986.

    Google Scholar 

  2. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853.

    Article  Google Scholar 

  3. Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005;353:2643–2653.

    Article  PubMed  Google Scholar 

  4. Genuth S, Sun W, Cleary P, et al. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes 2005;54:3103–3111.

    Article  CAS  PubMed  Google Scholar 

  5. White NH, Sun W, Cleary PA, et al. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the diabetes control and complications trial. Arch Ophthalmol 2008;126:1707–1715.

    Article  PubMed  Google Scholar 

  6. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 2002;287:2563–2569.

    Google Scholar 

  7. Martin CL, Albers J, Herman WH, et al. Neuropathy among the diabetes control and complications trail cohort 8 years after trial completion. Diabetes Care 2006;29:340–344.

    Article  PubMed  Google Scholar 

  8. Ceriello A, Ihnat MA, Thorpe JE. Clinical review 2: the “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications? J Clin Endocrinol Metab 2009;94:410–415.

    Article  CAS  PubMed  Google Scholar 

  9. Soldatos G, Cooper ME. Does intensive glycemic control for type 2 diabetes mellitus have long-term benefits for cardiovascular disease risk? Nat Clin Pract Endocrinol Metab 2009;5:138–139.

    Article  PubMed  Google Scholar 

  10. Chalmers J, Cooper ME. UKPDS and the legacy effect. N Engl J Med 2008;359:1618–1620.

    Article  CAS  PubMed  Google Scholar 

  11. Del Prato S. Megatrials in type 2 diabetes. From excitement to frustration? Diabetologia 2009;52:1219–1226.

    Article  CAS  PubMed  Google Scholar 

  12. Monnier VM, Cerami A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 1981;211:491–493.

    Article  CAS  PubMed  Google Scholar 

  13. Monnier VM, Vishwanath V, Frank KE, et al. Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N Engl J Med 1986;314:403–408.

    Article  CAS  PubMed  Google Scholar 

  14. Wells-Knecht KJ, Brinkmann E, Wells-Knecht MC, et al. New biomarkers of Maillard reaction damage to proteins. Nephrol Dial Transplant 1996;11:41–47.

    CAS  PubMed  Google Scholar 

  15. Vlassara H, Brownlee M, Cerami A. Nonenzymatic glycosylation: role in the pathogenesis of diabetic complications. Clin Chem 1986;32:B37–B41.

    CAS  PubMed  Google Scholar 

  16. Monnier VM, Sell DR, Genuth S. Glycation products as markers and predictors of the progression of diabetic complications. Ann N Y Acad Sci 2005;1043:567–581.

    Article  CAS  PubMed  Google Scholar 

  17. Ahmed N, Babaei-Jadidi R, Howell SK, et al. Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care 2005;28:2465–2471.

    Article  CAS  PubMed  Google Scholar 

  18. Miyata T, Ueda Y, Yamada Y, et al. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J Am Soc Nephrol 1998;9:2349–2356.

    CAS  PubMed  Google Scholar 

  19. Singh R, Barden A, Mori T, et al. Advanced glycation end-products: a review. Diabetologia 2001;44:129–146.

    Article  CAS  PubMed  Google Scholar 

  20. Miyata T, Ishikawa N, van Ypersele de Strihou C. Carbonyl stress and diabetic complications. Clin Chem Lab Med 2003;41:1150–1158.

    Google Scholar 

  21. Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996;49:1304–1313.

    Article  CAS  PubMed  Google Scholar 

  22. Miyata T, van Ypersele de Strihou C, Kurokawa K, et al. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 1999;55:389–399.

    Google Scholar 

  23. Horie K, Miyata T, Maeda K, et al. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J Clin Invest 1997;100:2995–3004.

    Article  CAS  PubMed  Google Scholar 

  24. Uesugi N, Sakata N, Horiuchi S, et al. Glycoxidation-modified macrophages and lipid peroxidation products are associated with the progression of human diabetic nephropathy. Am J Kidney Dis 2001;38:1016–1025.

    Article  CAS  PubMed  Google Scholar 

  25. Neeper M, Schmidt A, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992;267:14998–15004.

    CAS  PubMed  Google Scholar 

  26. Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 1996;382:685–691.

    Article  CAS  PubMed  Google Scholar 

  27. Hori O, Brett J, Slattery T, et al. The receptor for advanced glycation end product (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 1995;270:25752–25761.

    Article  CAS  PubMed  Google Scholar 

  28. Hofmann MA, Drury S, Fu C, et al. RAGE mediates a novel proinflammatory axis; a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999;97:889–901.

    Article  CAS  PubMed  Google Scholar 

  29. Sousa MM, Yan SD, Stern D, et al. Interaction of the receptor for advanced glycation end products (RAGE) with transthyretin triggers nuclear transcription factor κB (NF-κB) activation. Lab Invest 2000;80:1101–1110.

    CAS  PubMed  Google Scholar 

  30. Abel M, Ritthaler U, Zhang Y, et al. Expression of receptors for advanced glycosylated end-products in renal disease. Nephrol Dial Transplant 1995;10:1662–1667.

    CAS  PubMed  Google Scholar 

  31. Yamamoto Y, Kato I, Doi T, et al. Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest 2001;108:261–268.

    CAS  PubMed  Google Scholar 

  32. Yonekura H, Yamamoto Y, Sakurai S, et al. Roles of the receptor for advanced glycation endproducts in diabetes-induced vascular injury. J Pharmacol Sci 2005;97:305–311.

    Article  CAS  PubMed  Google Scholar 

  33. Yonekura H, Yamamoto Y, Sakurai S, et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 2003;370:1097–1109.

    Article  CAS  PubMed  Google Scholar 

  34. Brownlee M, Vlassara H, Kooney A, et al. Aminoguanidine prevents diabetes- induced arterial wall protein cross-linking. Science 1986;232:1629–1632.

    Article  CAS  PubMed  Google Scholar 

  35. Bucala R, Vlassara H. Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis 1995;26:875–888.

    Article  CAS  PubMed  Google Scholar 

  36. Bolton WK, Cattran DC, Williams ME, et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol 2004;24:32–40.

    Article  CAS  PubMed  Google Scholar 

  37. Whittier F, Spinowitz B, Wuerth JP. Pimagedine safety profile in patients with type 1 diabetes. J Am Soc Nephrol 1999;10:184A (Abstract A0941)

    Google Scholar 

  38. Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 2003;419:31–40.

    Article  CAS  PubMed  Google Scholar 

  39. Khalifah RG, Chen Y, Wassenberg JJ. Post-Amadori AGE inhibition as a therapeutic target for diabetic complications: a rational approach to second-generation Amadorin design. Ann N Y Acad Sci 2005;1043:793–806.

    Article  CAS  PubMed  Google Scholar 

  40. Chetyrkin SV, Zhang W, Hudson BG, et al. Pyridoxamine protects proteins from functional damage by 3-deoxyglucosone: mechanism of action of pyridoxamine. Biochemistry 2008;47:997–1006.

    Article  CAS  PubMed  Google Scholar 

  41. Degenhardt TP, Alderson NL, Arrington DD, et al. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int 2002;61:939–950.

    Article  CAS  PubMed  Google Scholar 

  42. Williams ME, Bolton WK, Khalifah RG, et al. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol 2007;27:605–614.

    Article  CAS  PubMed  Google Scholar 

  43. Kakuta T, Tanaka R, Satoh Y, et al. Pyridoxamine improves functional, structural, and biochemical alterations of peritoneal membranes in uremic peritoneal dialysis rats. Kidney Int 2005;68:1326–1336.

    Article  CAS  PubMed  Google Scholar 

  44. Berrone E, Beltramo E, Solimine C, et al. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J Biol Chem 2006;281:9307–9313.

    Article  CAS  PubMed  Google Scholar 

  45. Babaei-Jadidi R, Karachalias N, Ahmed N, et al. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 2003;52:2110–2120.

    Article  CAS  PubMed  Google Scholar 

  46. Stirban A, Negrean M, Stratmann B, et al. Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care 2006;29:2064–2071.

    Article  CAS  PubMed  Google Scholar 

  47. Du X, Edelstein D, Brownlee M. Oral benfotiamine plus alpha-lipoic acid normalizes complication-causing pathways in type 1 diabetes. Diabetologia 2008;51:1930–1932.

    Article  CAS  PubMed  Google Scholar 

  48. Beisswenger PJ, Howell SK, Touchette AD, et al. Metformine reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 1999;48:198–202.

    Article  CAS  PubMed  Google Scholar 

  49. Urios P, Grigorova-Borsos AM, Sternberg M. Aspirin inhibits the formation of pentosidine, a cross-linking advanced glycation end product, in collagen. Diabetes Res Clin Pract 2007;77:337–340.

    Article  CAS  PubMed  Google Scholar 

  50. Suarez G, Rajaram R, Bhuyan KC, et al. Administration of an aldose reductase inhibitor induces a decrease of collagen fluorescence in diabetic rats. J Clin Invest 1988;82:624–627.

    Article  CAS  PubMed  Google Scholar 

  51. Hamada Y, Nakamura J, Naruse K, et al. Epalrestat, an aldose reductase inhibitor, reduces the levels of Nε-(carboxymethyl)lysine protein adducts and their precursors in erythrocytes from diabetic patients. Diabetes Care 2000;23:1539–1544.

    Article  CAS  PubMed  Google Scholar 

  52. Brown MJ, Bird SJ, Watling S, et al. Natural progression of diabetic peripheral neuropathy in the Zenarestat study population. Diabetes Care 2004;27:1153–1159.

    Article  PubMed  Google Scholar 

  53. Kinekawa F, Kubo F, Matsuda K, et al. Effect of an aldose reductase inhibitor on esophageal dysfunction in diabetic patients. Hepatogastroenterology 2005;52:471–474.

    CAS  PubMed  Google Scholar 

  54. Dan Q, Wong R, Chung SK, et al. Interaction between the polyol pathway and non-enzymatic glycation on mesangial cell gene expression. Nephron Exp Nephrol 2004;98:e89–e99.

    Article  CAS  PubMed  Google Scholar 

  55. Wilkinson-Berka JL, Kelly DJ, Koerner SM, et al. ALT-946 and aminoguanidine, inhibitors of advanced glycation, improve severe nephropathy in the diabetic transgenic (mREN-2)27 rat. Diabetes 2002;51:3283–3289.

    Article  CAS  PubMed  Google Scholar 

  56. Forbes JM, Soulis T, Thallas V, et al. Renoprotective effects of a novel inhibitor of advanced glycation. Diabetologia 2001;44:108–114.

    Article  CAS  PubMed  Google Scholar 

  57. Figarola JL, Scott S, Loera S, et al. LR-90 a new advanced glycation endproduct inhibitor prevents progression of diabetic nephropathy in streptozotocin-diabetic rats. Diabetologia 2003;46:1140–1152.

    Article  CAS  PubMed  Google Scholar 

  58. Figarola JL, Loera S, Weng Y, et al. LR-90 prevents dyslipidaemia and diabetic nephropathy in the Zucker diabetic fatty rat. Diabetologia 2008;51:882–891.

    Article  CAS  PubMed  Google Scholar 

  59. Nakamura S, Makita Z, Ishikawa S, et al. Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes 1997;46:895–899.

    Article  CAS  PubMed  Google Scholar 

  60. Miyata T, Ishikawa S, Asahi K, et al. 2-Isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide (OPB-9195) treatment inhibits the development of intimal thickening after balloon injury of rat carotid artery: role of glycoxidation and lipoxidation reactions in vascular tissue damage. FEBS Lett 1999;445:202–206.

    Article  CAS  PubMed  Google Scholar 

  61. Mizutani K, Ikeda K, Tsuda K, et al. Inhibitor for advanced glycation end products formation attenuates hypertension and oxidative damage in genetic hypertensive rats. J Hypertens 2002;20:1607–1614.

    Article  CAS  PubMed  Google Scholar 

  62. Miyata T, van Ypersele de Strihou C, Ueda Y, et al. Angiotensin II receptor antagonists and angiotensin converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms. J Am Soc Nephrol 2002;13:2478–2487.

    Google Scholar 

  63. Tsujita K, Shimomura H, Kawano H, et al. Effects of edaravone on reperfusion injury in patients with acute myocardial infarction. Am J Cardiol 2004;94:481–484.

    Article  CAS  PubMed  Google Scholar 

  64. Izuhara Y, Nangaku M, Takizawa S, et al. A novel class of advanced glycation inhibitors ameliorates renal and cardiovascular damage in experimental rat models. Nephrol Dial Transplant 2008;23:497–509.

    Article  CAS  PubMed  Google Scholar 

  65. Takizawa S, Izuhara Y, Kitao Y, et al. A novel inhibitor of advanced glycation and endoplasmic reticulum stress reduces infarct volume in rat focal cerebral ischemia. Brain Res 2007;1183:124–137.

    Article  CAS  PubMed  Google Scholar 

  66. Seikaly MG, Arant BS Jr, Seney BS Jr. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest 1990;86:1352–1357.

    Article  CAS  PubMed  Google Scholar 

  67. Forbes JM, Cooper ME, Thallas V, et al. Reduction of accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy. Diabetes 2002;51:3274–3282.

    Article  CAS  PubMed  Google Scholar 

  68. Izuhara Y, Nangaku M, Inagi R, et al. Renoprotective properties of angiotensin receptor blockers beyond blood pressure lowering. J Am Soc Nephrol 2005;16:3631–3641.

    Article  CAS  PubMed  Google Scholar 

  69. Wolf G, Ritz E. Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications. Kidney Int 2005;67:799–812.

    Article  CAS  PubMed  Google Scholar 

  70. Izuhara Y, Sada T, Yanagisawa H, et al. A novel sartan derivative with very low angiotensin II type 1 receptor affinity protects the kidney in type 2 diabetic rats. Arterioscler Thromb Vasc Biol 2008;28:1767–1773.

    Article  CAS  PubMed  Google Scholar 

  71. Takizawa S, Dan T, Uesugi T, et al. A sartan derivative with a very low angiotensin II receptor affinity ameliorates ischemic cerebral damage. J Cereb Blood Flow Metab 2009;29:1665–1672.

    Article  CAS  PubMed  Google Scholar 

  72. Vasan S, Zhang X, Zhang X, et al. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 1996;382:275–278.

    Article  CAS  PubMed  Google Scholar 

  73. Cooper ME, Thallas V, Forbes J, et al. The cross-link breaker, N-phenacylthiazolium bromide prevents vascular advanced glycation endproduct accumulation. Diabetologia 2000;43:660–664.

    Article  CAS  PubMed  Google Scholar 

  74. Forbes JM, Thallas V, Thomas MC, et al. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J 2003;17:1762–1764.

    CAS  PubMed  Google Scholar 

  75. Vasan S, Foiles P, Founds H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys 2003;419:89–96.

    Article  CAS  PubMed  Google Scholar 

  76. Little WC, Zile MR, Kitzman DW, et al. The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J Card Fail 2005;11:191–195.

    Article  CAS  PubMed  Google Scholar 

  77. Myint KM, Yamamoto Y, Doi T, et al. RAGE control of diabetic nephropathy in a mouse model: effects of RAGE gene disruption and administration of low-molecular weight heparin. Diabetes 2006;55:2510–2522.

    Article  CAS  PubMed  Google Scholar 

  78. Bierhaus A, Chevion S, Chevion M, et al. Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 1997;46:1481–1490.

    Article  CAS  PubMed  Google Scholar 

  79. Wang K, Zhou Z, Zhang M, et al. Peroxisome proliferator activated receptor gamma down-regulates receptor for advanced glycation end products and inhibits smooth muscle cell proliferation in a diabetic and nondiabetic rat carotid artery injury model. J Pharmacol Exp Ther 2006;317:37–43.

    Article  CAS  PubMed  Google Scholar 

  80. Hirasawa Y, Matsui Y, Yamane K, et al. Pioglitazone improves obesity type diabetic nephropathy: relation to the mitigation of renal oxidative reaction. Exp Anim 2008;57:423–432.

    Article  CAS  PubMed  Google Scholar 

  81. Tan KC, Chow WS, Tso AW, et al. Thiazolidinedione increases serum soluble receptor for advanced glycation end-products in type 2 diabetes. Diabetologia 2007;50:1819–1825.

    Article  CAS  PubMed  Google Scholar 

  82. Bierhaus A, Humpert PM, Stern DM, et al. Advanced glycation end product receptor-mediated cellular dysfunction. Ann N Y Acad Sci 2005;1043:676–680.

    Article  CAS  PubMed  Google Scholar 

  83. Forbes JM, Thorpe SR, Thallas-Bonke V, et al. Modulation of soluble receptor for advanced glycation end products by angiotensin-converting enzyme-1 inhibition in diabetic nephropathy. J Am Soc Nephrol 2005;16:2363–2372.

    Article  CAS  PubMed  Google Scholar 

  84. Goh SY, Cooper ME. The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 2008;93:1143–1152.

    Article  CAS  PubMed  Google Scholar 

  85. Vlassara H, Cai W, Crandall J, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A 2002;99:15596–15601.

    Article  CAS  PubMed  Google Scholar 

  86. Lin RY, Choudhury RP, Cai W, et al. Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E deficient mice. Atherosclerosis 2003;168:213–220.

    Article  CAS  PubMed  Google Scholar 

  87. Yamagishi S, Nakamura K, Matsui T, et al. Oral administration of AST-120 (Kremezin) is a promising therapeutic strategy for advanced glycation end product (AGE)-related disorders. Med Hypotheses 2007;69:666–668.

    Article  CAS  PubMed  Google Scholar 

  88. Li YM, Tan AX, Vlassara H. Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation-modified proteins to a conserved motif. Nat Med 1995;1:1057–1061.

    Article  CAS  PubMed  Google Scholar 

  89. Mitsuhashi T, Li YM, Fishbane S, et al. Depletion of reactive advanced glycation endproducts from diabetic uremic sera using a lysozyme-linked matrix. J Clin Invest 1997;100:847–854.

    Article  CAS  PubMed  Google Scholar 

  90. Zheng F, Cai W, Mitsuhashi T, et al. Lysozyme enhances renal excretion of advanced glycation endproducts in vivo and suppresses adverse age-mediated cellular effects in vitro: a potential AGE sequestration therapy for diabetic nephropathy? Mol Med 2001;7:737–747.

    CAS  PubMed  Google Scholar 

  91. Liu H, Zheng F, Cao Q, et al. Amelioration of oxidant stress by the defensin lysozyme. Am J Physiol Endocrinol Metab 2006;290:E824–E832.

    Article  CAS  PubMed  Google Scholar 

  92. Liu H, Zheng F, Zhu L, Uribarri J, Tunstead JR, Ren B, Badimon J, Striker GE, Vlassara H. The immune defense protein lysozyme ameliorates acute vascular injury and atherosclerosis in hyperlipidemic mice. Am J Pathol 2005.

    Google Scholar 

  93. Yamamoto M, Izuhara Y, Kakuta T, et al. Carbonyl stress reduction in peritoneal dialysis fluid: development of a novel high-affinity adsorption bead. Perit Dial Int 2007;27:300–308.

    CAS  PubMed  Google Scholar 

  94. Ohtomo S, Nangaku M, Izuhara Y, et al. Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. Nephrol Dial Transplant 2007;23:1166–1172.

    Article  PubMed  Google Scholar 

  95. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 2006;17:17–25.

    Article  CAS  PubMed  Google Scholar 

  96. Salnikow K, Donald SP, Bruick RK, et al. Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress. J Biol Chem 2004;279:40337–40344.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Dan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dan, T., Strihou, C.v., Miyata, T. (2011). Advanced Glycation End Products Inhibitor. In: Miyata, T., Eckardt, KU., Nangaku, M. (eds) Studies on Renal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60761-857-7_20

Download citation

Publish with us

Policies and ethics