Skip to main content

Oxidative/Carbonyl Stress in the Renal Circulation and Cardiovascular Renal Injury

  • Chapter
  • First Online:
Studies on Renal Disorders

Abstract

Both clinical and animal studies have demonstrated that oxidative and carbonyl stress are involved in the pathogenesis of hypertension, diabetes, and chronic kidney disease (CKD). Not only does direct biochemical action cause renal injury, but oxidative/carbonyl stress also participates in the physiological role on sodium homeostasis and regulation of blood pressure. The physiological role of oxidative stress relies on the balance between nitric oxide (NO) and reactive oxygen species (ROS). The balance between NO and ROS regulates renal medullary circulation and regulates blood pressure. In physiological conditions, NO is largely produced in the tubules and diffuses into the surrounding capillaries such as the vasa recta. These NO can be counter-balanced by the ROS produced in the tubules of renal medulla such as the medullary thick ascending limb. This tubulovascular NO crosstalk in the medulla regulates medullary blood flow (MBF). Reduction of MBF with reduction of NO and increased ROS increases sodium reabsorption and thereby develops hypertension. This is one of the mechanisms of salt-sensitive hypertension seen in Dahl-salt sensitive rats. Since oxygen tension of renal medulla is flow limited, reduction of renal MBF induces hypoxia as well as ischemia. Therefore, the outer medulla is an early target for enhanced oxidative stress, such as in hypertension and diabetes. Enhanced oxidative/carbonyl stress is also involved in insulin sensitivity, which is a key pathogenesis of CKD and metabolic syndrome. An increase in renal perfusion pressure results in the enhanced expression of molecules related to oxidative stress, inflammation, and wound healing. These mechanisms had an advantage for lifestyle in ancient days but have become a silent killer in modern culture. This paradigm shift of antiaging could explain why oxidative/carbonyl stress is enhanced in modern lifestyle diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, McCullough PA, Kasiske BL, Kelepouris E, Klag MJ, Parfrey P, Pfeffer M, Raij L, Spinosa DJ, Wilson PW. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension 2003 Nov;42(5):1050–65.

    Article  CAS  PubMed  Google Scholar 

  2. Ibsen H, Olsen MH, Wachtell K, Borch-Johnsen K, Lindholm LH, Mogensen CE, Dahlof B, Snapinn SM, Wan Y, Lyle PA. Does albuminuria predict cardiovascular outcomes on treatment with losartan versus atenolol in patients with diabetes, hypertension, and left ventricular hypertrophy? The LIFE study. Diabetes Care 2006 Mar;29(3):595–600.

    Article  CAS  PubMed  Google Scholar 

  3. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, Gans RO, Janssen WM, Grobbee DE, de Jong PE. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 2002 Oct;106(14):1777–82.

    Article  CAS  PubMed  Google Scholar 

  4. Cubeddu LX, Hoffmann IS, Aponte LM, Nunez-Bogesits R, Medina-Suniaga H, Roa M, Garcia RS. Role of salt sensitivity, blood pressure, and hyperinsulinemia in determining high upper normal levels of urinary albumin excretion in a healthy adult population. Am J Hypertens 2003 May;16(5 Pt 1):343–9.

    Article  CAS  PubMed  Google Scholar 

  5. Miyata T, Ueda Y, Yamada Y, Izuhara Y, Wada T, Jadoul M, Saito A, Kurokawa K, van Ypersele de Strihou C. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J Am Soc Nephrol 1998 Dec;9(12):2349–56.

    CAS  PubMed  Google Scholar 

  6. Suzuki D, Miyata T, Saotome N, Horie K, Inagi R, Yasuda Y, Uchida K, Izuhara Y, Yagame M, Sakai H, Kurokawa K. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J Am Soc Nephrol 1999 Apr;10(4):822–32.

    CAS  PubMed  Google Scholar 

  7. Miyata T, Kurokawa K, van Ypersele de Strihou C. Relevance of oxidative and carbonyl stress to long-term uremic complications. Kidney Int Suppl 2000 Aug;76:S120–5.

    Article  CAS  PubMed  Google Scholar 

  8. Mori T, Cowley AW, Jr., Ito S. Molecular mechanisms and therapeutic strategies of chronic renal injury: physiological role of angiotensin II-induced oxidative stress in renal medulla. J Pharmacol Sci 2006 Jan;100(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  9. Nishiyama A, Yoshizumi M, Hitomi H, Kagami S, Kondo S, Miyatake A, Fukunaga M, Tamaki T, Kiyomoto H, Kohno M, Shokoji T, Kimura S, Abe Y. The SOD mimetic tempol ameliorates glomerular injury and reduces mitogen-activated protein kinase activity in Dahl salt-sensitive rats. J Am Soc Nephrol 2004 Feb;15(2):306–15.

    Article  CAS  PubMed  Google Scholar 

  10. Kumagai T, Nangaku M, Kojima I, Nagai R, Ingelfinger JR, Miyata T, Fujita T, Inagi R. Glyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats. Am J Physiol Renal Physiol 2009 Apr;296(4):F912–21.

    Article  CAS  PubMed  Google Scholar 

  11. Zou AP, Li N, Cowley AW, Jr. Production and actions of superoxide in the renal medulla. Hypertension 2001 Feb;37(2 Pt 2):547–53.

    CAS  PubMed  Google Scholar 

  12. Meng S, Cason GW, Gannon AW, Racusen LC, Manning RD, Jr. Oxidative stress in Dahl salt-sensitive hypertension. Hypertension 2003 Jun;41(6):1346–52.

    Article  CAS  PubMed  Google Scholar 

  13. Nishiyama A, Fukui T, Fujisawa Y, Rahman M, Tian RX, Kimura S, Abe Y. Systemic and regional hemodynamic responses to tempol in angiotensin II-infused hypertensive rats. Hypertension 2001 Jan;37(1):77–83.

    CAS  PubMed  Google Scholar 

  14. Schnackenberg CG, Wilcox CS. Two-week administration of tempol attenuates both hypertension and renal excretion of 8-Iso prostaglandin f2alpha. Hypertension 1999 Jan;33(1 Pt 2):424–8.

    CAS  PubMed  Google Scholar 

  15. Welch WJ, Tojo A, Wilcox CS. Roles of NO and oxygen radicals in tubuloglomerular feedback in SHR. Am J Physiol Renal Physiol 2000 May;278(5):F769–76.

    CAS  PubMed  Google Scholar 

  16. Mori T, Polichnowski A, Glocka P, Kaldunski M, Ohsaki Y, Liang M, Cowley AW, Jr. High perfusion pressure accelerates renal injury in salt-sensitive hypertension. J Am Soc Nephrol 2008 Aug;19(8):1472–82.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor NE, Glocka P, Liang M, Cowley AW, Jr. NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats. Hypertension 2006 Apr;47(4):692–8.

    Article  CAS  PubMed  Google Scholar 

  18. Meng S, Roberts LJ, II, Cason GW, Curry TS, Manning RD, Jr. Superoxide dismutase and oxidative stress in Dahl salt-sensitive and -resistant rats. Am J Physiol Regul Integr Comp Physiol 2002 Sep;283(3):R732–8.

    CAS  PubMed  Google Scholar 

  19. Cowley AW, Jr., Roman RJ, Kaldunski ML, Dumas P, Dickhout JG, Greene AS, Jacob HJ. Brown Norway chromosome 13 confers protection from high salt to consomic Dahl S rat. Hypertension 2001 Feb;37(2 Pt 2):456–61.

    CAS  PubMed  Google Scholar 

  20. Makino A, Skelton MM, Zou AP, Roman RJ, Cowley AW, Jr. Increased renal medullary oxidative stress produces hypertension. Hypertension 2002 Feb;39(2 Pt 2):667–72.

    Article  CAS  PubMed  Google Scholar 

  21. Cowley AW, Jr., Stoll M, Greene AS, Kaldunski ML, Roman RJ, Tonellato PJ, Schork NJ, Dumas P, Jacob HJ. Genetically defined risk of salt sensitivity in an intercross of Brown Norway and Dahl S rats. Physiol Genomics 2000 Apr;2(3):107–15.

    CAS  PubMed  Google Scholar 

  22. Wu F, Park F, Cowley AW, Jr., Mattson DL. Quantification of nitric oxide synthase activity in microdissected segments of the rat kidney. Am J Physiol 1999 Jun;276(6 Pt 2):F874–81.

    CAS  PubMed  Google Scholar 

  23. Tojo A, Kimoto M, Wilcox CS. Renal expression of constitutive NOS and DDAH: separate effects of salt intake and angiotensin. Kidney Int 2000 Nov;58(5):2075–83.

    Article  CAS  PubMed  Google Scholar 

  24. Ito S, Carretero OA, Abe K. Role of nitric oxide in the control of glomerular microcirculation. Clin Exp Pharmacol Physiol 1997 Aug;24(8):578–81.

    Article  CAS  PubMed  Google Scholar 

  25. Mattson DL, Lu S, Nakanishi K, Papanek PE, Cowley AW, Jr. Effect of chronic renal medullary nitric oxide inhibition on blood pressure. Am J Physiol 1994 May;266(5 Pt 2):H1918–26.

    CAS  PubMed  Google Scholar 

  26. Nakanishi K, Mattson DL, Cowley AW, Jr. Role of renal medullary blood flow in the development of l-NAME hypertension in rats. Am J Physiol 1995 Feb;268(2 Pt 2):R317–23.

    CAS  PubMed  Google Scholar 

  27. Zou AP, Wu F, Cowley AW, Jr. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation. Hypertension 1998 Jan;31(1 Pt 2):271–6.

    CAS  PubMed  Google Scholar 

  28. Szentivanyi M, Jr., Maeda CY, Cowley AW, Jr. Local renal medullary l-NAME infusion enhances the effect of long-term angiotensin II treatment. Hypertension 1999 Jan;33(1 Pt 2):440–5.

    CAS  PubMed  Google Scholar 

  29. Cowley AW, Jr., Mori T, Mattson D, Zou AP. Role of renal NO production in the regulation of medullary blood flow. Am J Physiol Regul Integr Comp Physiol 2003 Jun;284(6):R1355–69.

    CAS  PubMed  Google Scholar 

  30. Rhinehart KL, Pallone TL. Nitric oxide generation by isolated descending vasa recta. Am J Physiol Heart Circ Physiol 2001 Jul;281(1):H316–24.

    CAS  PubMed  Google Scholar 

  31. Dickhout JG, Mori T, Cowley AW, Jr. Tubulovascular nitric oxide crosstalk: buffering of angiotensin II-induced medullary vasoconstriction. Circ Res 2002 Sep;91(6):487–93.

    Article  CAS  PubMed  Google Scholar 

  32. Mori T, Cowley AW, Jr. Angiotensin II-NAD(P)H oxidase-stimulated superoxide modifies tubulovascular nitric oxide cross-talk in renal outer medulla. Hypertension 2003 Oct;42(4):588–93.

    Article  CAS  PubMed  Google Scholar 

  33. Mori T, O’Connor PM, Abe M, Cowley AW, Jr. Enhanced superoxide production in renal outer medulla of Dahl salt-sensitive rats reduces nitric oxide tubular-vascular cross-talk. Hypertension 2007 Jun;49(6):1336–41.

    Article  CAS  PubMed  Google Scholar 

  34. Abe M, O’Connor P, Kaldunski M, Liang M, Roman RJ, Cowley AW, Jr. Effect of sodium delivery on superoxide and nitric oxide in the medullary thick ascending limb. Am J Physiol Renal Physiol 2006 Aug;291(2):F350–7.

    Article  CAS  PubMed  Google Scholar 

  35. Mori T, Cowley AW, Jr. Renal oxidative stress in medullary thick ascending limbs produced by elevated NaCl and glucose. Hypertension 2004 Feb;43(2):341–6.

    Article  CAS  PubMed  Google Scholar 

  36. Chen YF, Cowley AW, Jr., Zou AP. Increased H(2)O(2) counteracts the vasodilator and natriuretic effects of superoxide dismutation by tempol in renal medulla. Am J Physiol Regul Integr Comp Physiol 2003 Oct;285(4):R827–33.

    CAS  PubMed  Google Scholar 

  37. Makino A, Skelton MM, Zou AP, Cowley AW, Jr. Increased renal medullary H2O2 leads to hypertension. Hypertension 2003 Jul;42(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  38. Taylor NE, Cowley AW, Jr. Effect of renal medullary H2O2 on salt-induced hypertension and renal injury. Am J Physiol Regul Integr Comp Physiol 2005 Dec;289(6):R1573–9.

    CAS  PubMed  Google Scholar 

  39. Liang M, Berndt TJ, Knox FG. Mechanism underlying diuretic effect of l-NAME at a subpressor dose. Am J Physiol Renal Physiol 2001 Sep;281(3):F414–9.

    CAS  PubMed  Google Scholar 

  40. Ortiz PA, Garvin JL. Interaction of O(2)(−) and NO in the thick ascending limb. Hypertension 2002 Feb;39(2 Pt 2):591–6.

    Article  CAS  PubMed  Google Scholar 

  41. Ortiz PA, Garvin JL. Superoxide stimulates NaCl absorption by the thick ascending limb. Am J Physiol Renal Physiol 2002 Nov;283(5):F957–62.

    PubMed  Google Scholar 

  42. Nakayama K, Nakayama M, Iwabuchi M, Terawaki H, Sato T, Kohno M, Ito S. Plasma alpha-oxoaldehyde levels in diabetic and nondiabetic chronic kidney disease patients. Am J Nephrol 2008;28(6):871–8.

    Article  CAS  PubMed  Google Scholar 

  43. Nakayama M, Saito K, Sato E, Nakayama K, Terawaki H, Ito S, Kohno M. Radical generation by the non-enzymatic reaction of methylglyoxal and hydrogen peroxide. Redox Rep 2007;12(3):125–33.

    Article  CAS  PubMed  Google Scholar 

  44. Guo Q, Mori T, Jiang Y, Hu C, Osaki Y, Yoneki Y, Sun Y, Hosoya T, Kawamata A, Ogawa S, Nakayama M, Miyata T, Ito S. Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats. J Hypertens 2009 Aug;27(8):1664–71.

    Article  CAS  PubMed  Google Scholar 

  45. Endo S, Mori T, Yoneki Y, Nakamichi T, Hosoya T, Ogawa S, Tokudome G, Miyata T, Ito S. Blockade of angiotensin II type-1 receptor increases salt sensitivity in Sprague-Dawley rats. Hypertens Res 2009 Jun;32(6):513–9.

    Article  CAS  PubMed  Google Scholar 

  46. Ogawa S, Mori T, Nako K, Kato T, Takeuchi K, Ito S. Angiotensin II type 1 receptor blockers reduce urinary oxidative stress markers in hypertensive diabetic nephropathy. Hypertension 2006 Apr;47(4):699–705.

    Article  CAS  PubMed  Google Scholar 

  47. Fliser D, Buchholz K, Haller H. Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 2004 Aug;110(9):1103–7.

    Article  CAS  PubMed  Google Scholar 

  48. Mori T, Cowley AW, Jr. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats. Hypertension 2004 Apr;43(4):752–9.

    Article  CAS  PubMed  Google Scholar 

  49. Jin C, Hu C, Polichnowski A, Mori T, Skelton M, Ito S, Cowley AW, Jr. Effects of renal perfusion pressure on renal medullary hydrogen peroxide and nitric oxide production. Hypertension 2009 Jun;53(6):1048–53.

    Article  CAS  PubMed  Google Scholar 

  50. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, Halle JP, Young J, Rashkow A, Joyce C, Nawaz S, Yusuf S. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001 Jul;286(4):421–6.

    Article  CAS  PubMed  Google Scholar 

  51. Ito S, Nagasawa T, Abe M, Mori T. Strain vessel hypothesis: a viewpoint for linkage of albuminuria and cerebro-cardiovascular risk. Hypertens Res 2009 Feb;32(2):115–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yoshimi Yoneki, Hiroko Ito, and Kiyomi Kisu for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takefumi Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mori, T., Miyata, T., Ito, S. (2011). Oxidative/Carbonyl Stress in the Renal Circulation and Cardiovascular Renal Injury. In: Miyata, T., Eckardt, KU., Nangaku, M. (eds) Studies on Renal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60761-857-7_15

Download citation

Publish with us

Policies and ethics