Skip to main content

The Neurobiological Foundations of Psychotherapy

  • Chapter
  • First Online:
Psychodynamic Psychotherapy Research

Part of the book series: Current Clinical Psychiatry ((CCPSY))

  • 4338 Accesses

Abstract

Psychotherapy is an interactive process that addresses maladaptive behaviors and mental states through the use of structured communication. Although psychotherapeutic systems and techniques have evolved independently of neurobiological science, there has been a tacit understanding, at least since the days of Freud, that psychotherapy produces its effects by acting on the brain. Modern technology has underscored the importance of this concept, as functional imaging reveals the neural activation patterns associated with behavioral dysfunction, and how these patterns can be modified through psychotherapy.

*  Some of the materials in this chapter have been adapted with the author’s (who is copyright holder) permission from Refs. [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuster JM. Cortex and mind. Oxford: Oxford University Press; 2003. p. 49–50.

    Google Scholar 

  2. Viamontes GI, Beitman BD. Neural substrates of psychotherapeutic change. Part II: Beyond default mode. Psychiatr Ann. 2006;36(4):238–46.

    Google Scholar 

  3. Viamontes GI, Beitman BD. Mapping the unconscious in the brain. Psychiatr Ann. 2007;37(4):243–58.

    Google Scholar 

  4. Viamontes GI, Beitman BD. Neural substrates of psychotherapeutic change. Part I: The default brain. Psychiatr Ann. 2006;36(4):225–36.

    Google Scholar 

  5. Rolls ET. Emotion explained. Oxford: Oxford University Press; 2005.

    Book  Google Scholar 

  6. Viamontes GI. The Neurobiology of the Self. New York: WW Norton, Inc., in preparation.

    Google Scholar 

  7. Phillips ML, Drevets WS, Rauch SL, et al. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry. 2003;54:504–14.

    Article  PubMed  Google Scholar 

  8. Milad MR, Rauch SL. The orbitofrontal cortex and anxiety disorders. In: Zald DH, Rauch SL, editors. The orbitofrontal cortex. Oxford: Oxford University Press; 2006. p. 523–43 [Chapter 20].

    Chapter  Google Scholar 

  9. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JDE. Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J Cogn Neurosci. 2002;14(8):1215–29.

    Article  PubMed  Google Scholar 

  10. Kandel ER, Kupfermann I, Iversen S. Learning and memory. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000. p. 1227–46 [Chapter 62].

    Google Scholar 

  11. Rolls ET. Memory, attention, and decision-making. Oxford: Oxford University Press; 2008.

    Google Scholar 

  12. Launius RA, Williamson PC, Densmore M, Boksman K, Neufeld RW, Gati JS, et al. The nature of traumatic memories: a 4-T fMRI functional connectivity analysis. Am J Psychiatry. 2004;161:36–44.

    Article  Google Scholar 

  13. Graybiel AM. The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem. 1998;70:119–36.

    Article  PubMed  CAS  Google Scholar 

  14. Berridge KC, Winkielman P. What is an unconscious emotion? (The case for unconscious “liking”). Cogn Emotion. 2003;17(2):181–211.

    Article  Google Scholar 

  15. Miyashita Y. Cognitive memory: cellular and network machineries and their top-down control. Science. 2004;306(5695):435–40.

    Article  PubMed  CAS  Google Scholar 

  16. Bliss TVP, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate gyrus of the anesthetized rabbit following stimulation of the perforant path. J Physiol (London). 1973;232:331–56.

    CAS  Google Scholar 

  17. Miyashita Y, Kameyama M, Hasegawa I, Fukushima T. Consolidation of visual associative long-term memory in the temporal cortex of primates. Neurobiol Learn Mem. 1998;1:197–211.

    Article  Google Scholar 

  18. Bernstein DM, Laney C, Morris EK, Loftus EF. False memories about food can lead to food avoidance. Cognition. 2005;23(1):11–34.

    Article  Google Scholar 

  19. Treves A, Tashiro A, Witter MP, Moser EI. What is the mammalian dentate gyrus good for? Neuroscience. 2008;154:1155–72.

    Article  PubMed  CAS  Google Scholar 

  20. Dupret D, Revest JM, Koehl M, et al. Spatial relational memory requires hippocampal adult neurogenesis. PLoS One. 2008. doi:10.371/journal.pone.0001959.

  21. Bruel-Jungerman E, Laroche S, Rampon C. New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci. 2005;21:513–21.

    Article  PubMed  Google Scholar 

  22. Gould E, Tanapat P, McEwen B, Flugge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA. 1998;95:3168–71.

    Article  PubMed  CAS  Google Scholar 

  23. Sapolsky RM. Stress, the aging brain, and the mechanisms of neuron death. Cambridge: MIT Press; 2002.

    Google Scholar 

  24. McGuire SE, Davis RL. Presenilin-1 and memories of the forebrain. Neuron. 2001;32:763–5.

    Article  PubMed  CAS  Google Scholar 

  25. Santarelli L, Saxe M, Gross C, et al. Requirements of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301(56534):805–9.

    Article  PubMed  CAS  Google Scholar 

  26. Lipska BK, Weinberger DR. A neurodevelopmental model of schizophrenia: neonatal disconnection of the hippocampus. Neurotox Res. 2002;4(5–6):469–75.

    Article  PubMed  Google Scholar 

  27. Pare D. Role of the basolateral amygdala in memory consolidation. Prog Neurobiol. 2003;70:409–20.

    Article  PubMed  CAS  Google Scholar 

  28. Siegle GJ, Steinhauer SR, Thase ME, Stenger VA, Carter CS. Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry. 2002;51:693–707.

    Article  PubMed  Google Scholar 

  29. Mesulam MM. The human frontal lobes: transcending the default mode through contingent encoding. In: Stuss DT, Knight RT, editors. Principles of frontal lobe function. New York: Oxford University Press; 2000. p. 8–30.

    Google Scholar 

  30. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  PubMed  Google Scholar 

  31. Clower DM, Robert A, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21(16):6283–91.

    PubMed  CAS  Google Scholar 

  32. Mega MS, Cummings JL. Frontal subcortical circuits: anatomy and function. In: Salloway SP, Malloy PF, Cummings JL, editors. The neuropsychiatry of limbic and subcortical disorders. Washington, DC: American Psychiatric Publishing; 2001. p. 15–36.

    Google Scholar 

  33. Burruss JW, Hurley RA, Taber KN, et al. Functional neuroanatomy of the frontal lobe circuits. Radiology. 2000;214(1):227–30.

    PubMed  CAS  Google Scholar 

  34. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4(6):215–22.

    Article  PubMed  Google Scholar 

  35. Critchley HD, Mathias CJ, Josephs O, O’Doherty J, Zanini J, Dewar BK, et al. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain. 2003;126:2139–52.

    Article  PubMed  Google Scholar 

  36. Barbas H, Saha S, Rempel-Clower N, Ghashghaei T. Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci. 2003;4:25–37.

    Article  PubMed  Google Scholar 

  37. Anderson MC, Ochsner KN, Kuhl B, Cooper J, Robertson E, Gabrieli SW, et al. Neural systems underlying the suppression of unwanted memories. Science. 2004;303:232–5.

    Article  PubMed  CAS  Google Scholar 

  38. Palaszynski KM, Nemeroff CB. The medical consequences of child abuse and neglect. Psychiatr Ann. 2009; 39(12):1004–9.

    Article  Google Scholar 

  39. Viamontes GI, Beitman BD. The neurobiology of the unconscious. Psychiatr Ann. 2007;37(4):222–4.

    Google Scholar 

  40. Parvizi J, Damasio A. Consciousness and the brainstem. In: Dehaene S, editor. The cognitive neuroscience of consciousness. Cambridge: MIT Press; 2001. p. 135–59 [Chapter 5].

    Google Scholar 

  41. Bechara A, Noel S, Crone EA. Loss of willpower: abnormal neural mechanisms of impulse control and decision-making in addiction. In: Wiers RW, Stacy AW, editors. Handbook of implicit cognition and addiction. Thousand Oaks: Sage Publications, Inc.; 2006. p. 215–32 [Chapter 15].

    Chapter  Google Scholar 

  42. Damasio AR. The feeling of what happens: body and emotion in the making of consciousness. New York: Harcourt Brace; 1999.

    Google Scholar 

  43. Brothers L. The social brain: a project for integrating primate behavior and neurophysiology in a new domain. Concept Neurosci. 1999;1:27–51.

    Google Scholar 

  44. Adolphs R. Cognitive neuroscience of human social behavior. Nat Rev Neurosci. 2000;4(3):165–78.

    Article  Google Scholar 

  45. Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in the human extrastriate cortex specialized for face perception. J Neurosci. 1997;17:4302–11.

    PubMed  CAS  Google Scholar 

  46. Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol Psychiatry. 2001;6:13–34.

    Article  PubMed  CAS  Google Scholar 

  47. Blair RJ, Morris JS, Frith CD, Perrett DI, Dolan RJ. Dissociable neural responses to facial expressions of sadness and anger. Brain. 1999;122:883–93.

    Article  PubMed  Google Scholar 

  48. Saxe R, Kanwisher N. People thinking about thinking people: the role of the temporoparietal junction in “theory of mind”. Neuroimage. 2002;19:1835–42.

    Article  Google Scholar 

  49. Saxe R, Xiao DK, Kovacs G, Perrett DI, Kanwisher N. A region of right posterior superior temporal sulcus responds to observed intentional actions. Neuropsychologia. 2004;42:1435–46.

    Article  PubMed  CAS  Google Scholar 

  50. Wampold BE. The great psychotherapy debate: models, methods, and findings. Mahwah: Erlbaum; 2001.

    Google Scholar 

  51. Marci CD, Ham J, Moran E, Orr SP. Physiologic correlates of perceived therapist empathy and social-emotional process during psychotherapy. J Nerv Ment Dis. 2007;195(2):103–11.

    Article  PubMed  Google Scholar 

  52. Barrett-Lennard G. Dimensions of the client’s experience of his therapist associated with personality change. Genet Psychol Monogr. 1962;76:43.

    Google Scholar 

  53. Carr L, Iacoboni M, Dubeau M-C, Mazziotta JC, Lenzi GL. Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc Natl Acad Sci USA. 2003;100(9):5497–502.

    Article  PubMed  CAS  Google Scholar 

  54. Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of motor actions. Cogn Brain Res. 1996;3:131–41.

    Article  CAS  Google Scholar 

  55. Domes G, Heinrichs M, Glascher J, Buchel C, Braus DF, Herpertz SC. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry. 2007;62:1187–90.

    Article  PubMed  CAS  Google Scholar 

  56. Guastella AJ, Howard AL, Dadds MR, Mitchell P, Carson DS. A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology. 2009;34:917–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George I. Viamontes M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Viamontes, G.I. (2012). The Neurobiological Foundations of Psychotherapy. In: Levy, R., Ablon, J., Kächele, H. (eds) Psychodynamic Psychotherapy Research. Current Clinical Psychiatry. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-792-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-792-1_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-791-4

  • Online ISBN: 978-1-60761-792-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics