Advertisement

Animal Models of Lung Injury: Role for Mesenchymal Stem Cells

  • Mauricio RojasEmail author
  • Smita Iyer
  • Carter Co
  • Kenneth L. Brigham
Chapter
  • 594 Downloads
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Stem cells are emerging as a therapeutic modality in various inflammatory disease states. A number of ongoing randomized phase I/II clinical trials are evaluating the effects of allogeneic mesenchymal stem cell (MSC) infusion in patients with multiple sclerosis, graft-versus-host disease, Crohn’s disease, and severe chronic myocardial ischemia. MSCs are also being considered as a potential therapy in patients with inflammatory lung diseases. Several studies, including our own, have demonstrated compelling benefits from the administration of MSCs in animal models of lung injury. These studies are leading to growing interest in the therapeutic use of MSCs in inflammatory lung diseases. In this chapter, we describe the use of animal models and how the immunoregulatory effects of MSCs can confer substantial protection in the setting of lung diseases such as acute lung injury, chronic obstructive pulmonary disease, asthma, and pulmonary hypertension. In addition, we identify emerging areas for MSC-based therapies in modulating oxidative stress and in attenuating acute lung injury in the alcoholic host.

Keywords

Mesenchymal stem cells Asthma Acute lung injury Transplant Oxidative stress 

References

  1. 1.
    Dicker A, Le Blanc K, Astrom G et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 2005; 308(2):283–290.PubMedCrossRefGoogle Scholar
  2. 2.
    Young HE, Mancini ML, Wright RP et al. Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 1995; 202(2):137–144.PubMedCrossRefGoogle Scholar
  3. 3.
    Fickert S, Fiedler J, and Brenner RE. Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthritis Cartilage 2003; 11(11):790–800.PubMedCrossRefGoogle Scholar
  4. 4.
    Krampera M, Sartoris S, Liotta F et al. Immune regulation by mesenchymal stem cells derived from adult spleen and thymus. Stem Cells Dev 2007; 16(5):797–810.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, and Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103(5):1669–1675.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsai MS, Hwang SM, Chen KD et al. Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells 2007; 25(10):2511–2523.PubMedCrossRefGoogle Scholar
  7. 7.
    Kemp KC, Hows J, and Donaldson C. Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma 2005; 46(11):1531–1544.Google Scholar
  8. 8.
    Vaananen HK. Mesenchymal stem cells. Ann Med 2005; 37(7):469–479.PubMedCrossRefGoogle Scholar
  9. 9.
    Ware LB, and Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000; 342:1334–1349.PubMedCrossRefGoogle Scholar
  10. 10.
    Doyle RL, Szaflarski N, Modin GW, Wiener-Kronish JP, and Matthay MA. Identification of patients with acute lung injury. Predictors of mortality. Am J Respir Crit Care Med 1995; 152:1818–1824.PubMedGoogle Scholar
  11. 11.
    Levitt JE, Bedi H, Calfee CS, Gould MK, and Matthay MA. Identification of early acute lung injury at initial evaluation in an acute care setting prior to the onset of respiratory failure. Chest 2009; 135:936–943.PubMedCrossRefGoogle Scholar
  12. 12.
    Matthay MA, and Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol 2005; 33:319–327.PubMedCrossRefGoogle Scholar
  13. 13.
    Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, and Brigham KL. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005; 33:145–152.PubMedCrossRefGoogle Scholar
  14. 14.
    Gupta N, Su X, Popov B, Lee JW, Serikov V, and Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179:1855–1863.PubMedGoogle Scholar
  15. 15.
    Welsh DA, Summer WR, Dobard EP, Nelson S, and Mason CM. Keratinocyte growth factor prevents ventilator-induced lung injury in an ex vivo rat model. Am J Respir Crit Care Med 2000; 162(3 Pt 1):1081–1086.PubMedGoogle Scholar
  16. 16.
    Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, and Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 2007; 4:e269.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee JW, Fang X, Gupta N, Serikov V, and Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA 2009; 106(38):16357–16362.PubMedCrossRefGoogle Scholar
  18. 18.
    Tyndall A, and Pistoia V. Mesenchymal stem cells combat sepsis. Nat Med 2009; 15: 18–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Weiss DJ. Stem cells and cell therapies for cystic fibrosis and other lung diseases. Pulm Pharmacol Ther 2008; 21:588–594.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang G, Bunnell BA, Painter RG, Quiniones BC, Tom S, Lanson NA Jr, Spees JL, Bertucci D, Peister A, Weiss DJ, Valentine VG, Prockop DJ, and Kolls JK. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci USA 2005; 102:186–191.PubMedCrossRefGoogle Scholar
  21. 21.
    Taraseviciene-Stewart L, and Voelkel NF. Molecular pathogenesis of emphysema. J Clin Invest 2008; 118:394–402.PubMedCrossRefGoogle Scholar
  22. 22.
    Murray CJ, and Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997; 349:1498–1504.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhen G, Liu H, Gu N, Zhang H, Xu Y, and Zhang Z. Mesenchymal stem cells transplantation protects against rat pulmonary emphysema. Front Biosci 2008; 13:3415–3422.PubMedCrossRefGoogle Scholar
  24. 24.
    Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 2008; 118:2372–2379.PubMedCrossRefGoogle Scholar
  25. 25.
    Rochefort GY, Delorme B, Lopez A, Herault O, Bonnet P, Charbord P, Eder V, and Domenech J. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 2006; 24:2202–2208.PubMedCrossRefGoogle Scholar
  26. 26.
    Haynesworth SE, Baber MA, and Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996; 166:585–592.PubMedCrossRefGoogle Scholar
  27. 27.
    Kanki-Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, Furuya E, and Katsumata T. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 2006; 114:I181–I185.PubMedGoogle Scholar
  28. 28.
    Patel KM, Crisostomo P, Lahm T, Markel T, Herring C, Wang M, Meldrum KK, Lillemoe KD, and Meldrum DR. Mesenchymal stem cells attenuate hypoxic pulmonary vasoconstriction by a paracrine mechanism. J Surg Res 2007; 143:281–285.PubMedCrossRefGoogle Scholar
  29. 29.
    Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, and Stenmark KR. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 2006; 168:659–669.PubMedCrossRefGoogle Scholar
  30. 30.
    Yeh SP, Chang JG, Lo WJ, Liaw YC, Lin CL, Lee CC, and Chiu CF. Induction of CD45 expression on bone marrow-derived mesenchymal stem cells. Leukemia 2006; 20:894–896.PubMedCrossRefGoogle Scholar
  31. 31.
    Masoli M, Fabian D, Holt S, and Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 2004; 59:469–478.PubMedCrossRefGoogle Scholar
  32. 32.
    Weiss DJ, Kolls JK, Ortiz LA, Panoskaltsis-Mortari A, and Prockop DJ. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc 2008; 5:637–667.PubMedCrossRefGoogle Scholar
  33. 33.
    Postma DS, and Timens W. Remodeling in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006; 3:434–439.PubMedCrossRefGoogle Scholar
  34. 34.
    Cho KS, Park HK, Park HY, Jung JS, Jeon SG, Kim YK, and Roh HJ. IFATS collection: immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model. Stem Cells 2009; 27:259–265.PubMedCrossRefGoogle Scholar
  35. 35.
    Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, and Phinney DG. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003; 100:8407–8411.PubMedCrossRefGoogle Scholar
  36. 36.
    Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, and Phinney DG. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 2007; 104:11002–11007.PubMedCrossRefGoogle Scholar
  37. 37.
    Waghray M, Cui Z, Horowitz JC, Subramanian IM, Martinez FJ, Toews GB, and Thannickal VJ. Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J 2005; 19:854–856.PubMedGoogle Scholar
  38. 38.
    Yan X, Liu Y, Han Q, Jia M, Liao L, Qi M, and Zhao RC. Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 2007; 35:1466–1475.PubMedCrossRefGoogle Scholar
  39. 39.
    Iyer SS, Jones DP, Brigham KL, and Rojas M. Oxidation of plasma cysteine/cystine redox state in endotoxin-induced lung injury. Am J Respir Cell Mol Biol 2009; 40:90–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Iyer SS, Ramirez AM, Ritzenthaler JD, Torres-Gonzalez E, Roser-Page S, Mora AL, Brigham KL, Jones DP, Roman J, and Rojas M. Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2009; 296:L37–L45.PubMedCrossRefGoogle Scholar
  41. 41.
    Cantin AM, North SL, Fells GA, Hubbard RC, and Crystal RG. Oxidant-mediated epithelial cell injury in idiopathic pulmonary fibrosis. J Clin Invest 1987; 79:1665–1673.PubMedCrossRefGoogle Scholar
  42. 42.
    Laurent T, Markert M, Feihl F, Schaller MD, and Perret C. Oxidant-antioxidant balance in granulocytes during ARDS. Effect of N-acetylcysteine. Chest 1996; 109:163–166.PubMedCrossRefGoogle Scholar
  43. 43.
    Metnitz PG, Bartens C, Fischer M, Fridrich P, Steltzer H, and Druml W. Antioxidant status in patients with acute respiratory distress syndrome. Intensive Care Med 1999; 25:180–185.PubMedCrossRefGoogle Scholar
  44. 44.
    Rossi F, and Zatti M. Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia 1964; 20:21–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Ashbaugh DG, Bigelow DB, Petty TL, and Levine BE. Acute respiratory distress in adults. Lancet 1967; 2:319–323.PubMedCrossRefGoogle Scholar
  46. 46.
    Quinlan GJ, Lamb NJ, Tilley R, Evans TW, and Gutteridge JM. Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity, and mortality. Am J Respir Crit Care Med 1997; 155:479–484.PubMedGoogle Scholar
  47. 47.
    Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, and Sternberg P. Redox state of glutathione in human plasma. Free Radic Biol Med 2000; 28:625–635.PubMedCrossRefGoogle Scholar
  48. 48.
    Jones DP. Redefining oxidative stress. Antioxid Redox Signal 2006; 8:1865–1879.PubMedCrossRefGoogle Scholar
  49. 49.
    Nathan C. Points of control in inflammation. Nature 2002; 420:846–852.PubMedCrossRefGoogle Scholar
  50. 50.
    Conrad C, Zeindl-Eberhart E, Moosmann S, Nelson PJ, Bruns CJ, and Huss R. Alkaline phosphatase, glutathione-S-transferase-P, and cofilin-1 distinguish multipotent mesenchymal stromal cell lines derived from the bone marrow versus peripheral blood. Stem Cells Dev 2008; 17:23–27.PubMedCrossRefGoogle Scholar
  51. 51.
    Takahata Y, Takarada T, Iemata M, Yamamoto T, Nakamura Y, Kodama A, and Yoneda Y. Functional expression of beta2 adrenergic receptors responsible for protection against oxidative stress through promotion of glutathione synthesis after Nrf2 upregulation in undifferentiated mesenchymal C3H10T1/2 stem cells. J Cell Physiol 2009; 218:268–275.PubMedCrossRefGoogle Scholar
  52. 52.
    Stolzing A, and Scutt A. Effect of reduced culture temperature on antioxidant defences of mesenchymal stem cells. Free Radic Biol Med 2006; 41:326–338.PubMedCrossRefGoogle Scholar
  53. 53.
    Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, and Jakob F. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 2006; 24:1226–1235.PubMedCrossRefGoogle Scholar
  54. 54.
    Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS, Chung SJ, Kim DD, and Sung JH. Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 2008; 49:133–142.PubMedCrossRefGoogle Scholar
  55. 55.
    Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, and Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009; 113:4197–4205.PubMedCrossRefGoogle Scholar
  56. 56.
    Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, and Korthuis RJ. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 2009; 33:206–219.PubMedCrossRefGoogle Scholar
  57. 57.
    Latvala J, Parkkila S, and Niemela O. Excess alcohol consumption is common in patients with cytopenia: studies in blood and bone marrow cells. Alcohol Clin Exp Res 2004; 28:619–624.PubMedCrossRefGoogle Scholar
  58. 58.
    Brown LA, Cook RT, Jerrells TR, Kolls JK, Nagy LE, Szabo G, Wands JR, and Kovacs EJ. Acute and chronic alcohol abuse modulate immunity. Alcohol Clin Exp Res 2006; 30:1624–1631.PubMedCrossRefGoogle Scholar
  59. 59.
    Crews FT, Bechara R, Brown LA, Guidot DM, Mandrekar P, Oak S, Qin L, Szabo G, Wheeler M, and Zou J. Cytokines and alcohol. Alcohol Clin Exp Res 2006; 30:720–730.PubMedCrossRefGoogle Scholar
  60. 60.
    Szabo G, and Mandrekar PA. recent perspective on alcohol, immunity, and host defense. Alcohol Clin Exp Res 2009; 33:220–232.PubMedCrossRefGoogle Scholar
  61. 61.
    Happel KI, and Nelson S. Alcohol, immunosuppression, and the lung. Proc Am Thorac Soc 2005; 2:428–432.PubMedCrossRefGoogle Scholar
  62. 62.
    Moss M, Bucher B, Moore FA, Moore EE, and Parsons PE. The role of chronic alcohol abuse in the development of acute respiratory distress syndrome in adults. J Am Med Assoc 1996; 275:50–54.CrossRefGoogle Scholar
  63. 63.
    Joshi PC, Applewhite L, Mitchell PO, Fernainy K, Roman J, Eaton DC, and Guidot DM. GM-CSF receptor expression and signaling is decreased in lungs of ethanol-fed rats. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1150–L1158.PubMedCrossRefGoogle Scholar
  64. 64.
    Pelaez A, Bechara RI, Joshi PC, Brown LA, and Guidot DM. Granulocyte/macrophage colony-stimulating factor treatment improves alveolar epithelial barrier function in alcoholic rat lung. Am J Physiol Lung Cell Mol Physiol 2004; 286:L106–L111.PubMedCrossRefGoogle Scholar
  65. 65.
    Holguin F, Moss I, Brown LA, and Guidot DM. Chronic ethanol ingestion impairs alveolar type II cell glutathione homeostasis and function and predisposes to endotoxin-mediated acute edematous lung injury in rats. J Clin Invest 1998; 101:761–768.PubMedCrossRefGoogle Scholar
  66. 66.
    Brown LA, Ping XD, Harris FL, and Gauthier TW. Glutathione availability modulates alveolar macrophage function in the chronic ethanol-fed rat. Am J Physiol Lung Cell Mol Physiol 2007; 292:L824–L832.PubMedCrossRefGoogle Scholar
  67. 67.
    Burnham EL, Brown LA, Halls L, and Moss M. Effects of chronic alcohol abuse on alveolar epithelial barrier function and glutathione homeostasis. Alcohol Clin Exp Res 2003; 27:1167–1172.PubMedCrossRefGoogle Scholar
  68. 68.
    Bechara RI, Brown LA, Eaton DC, Roman J, and Guidot DM. Chronic ethanol ingestion increases expression of the angiotensin II type 2 (AT2) receptor and enhances tumor necrosis factor-alpha- and angiotensin II-induced cytotoxicity via AT2 signaling in rat alveolar epithelial cells. Alcohol Clin Exp Res 2003; 27:1006–1014.PubMedGoogle Scholar
  69. 69.
    Pittet JF, Mackersie RC, Martin TR, and Matthay MA. Biological markers of acute lung injury: prognostic and pathogenetic significance. Am J Respir Crit Care Med 1997; 155:1187–1205.PubMedGoogle Scholar
  70. 70.
    Polikandriotis JA, Rupnow HL, Elms SC, Clempus RE, Campbell DJ, Sutliff RL, Brown LA, Guidot DM, and Hart CM. Chronic ethanol ingestion increases superoxide production and NADPH oxidase expression in the lung. Am J Respir Cell Mol Biol 2006; 34:314–319.PubMedCrossRefGoogle Scholar
  71. 71.
    Bechara RI, Brown LA, Roman J, Joshi PC, and Guidot DM. Transforming growth factor beta1 expression and activation is increased in the alcoholic rat lung. Am J Respir Crit Care Med 2004; 170:188–194.PubMedCrossRefGoogle Scholar
  72. 72.
    Brown LA, Ritzenthaler JD, Guidot DM, and Roman J. Alveolar type II cells from ethanol-fed rats produce a fibronectin-enriched extracellular matrix that promotes monocyte activation. Alcohol 2007; 41:317–324.PubMedCrossRefGoogle Scholar
  73. 73.
    Burnham EL, Moss M, Harris F, and Brown LA. Elevated plasma and lung endothelial selectin levels in patients with acute respiratory distress syndrome and a history of chronic alcohol abuse. Crit Care Med 2004; 32:675–679.PubMedCrossRefGoogle Scholar
  74. 74.
    Fernandez AL, Koval M, Fan X, and Guidot DM. Chronic alcohol ingestion alters claudin expression in the alveolar epithelium of rats. Alcohol 2007; 41:371–379.PubMedCrossRefGoogle Scholar
  75. 75.
    Cui Q, Wang Y, Saleh KJ, Wang GJ, and Balian G Alcohol-induced adipogenesis in a cloned bone-marrow stem cell. J Bone Joint Surg Am 2006; 88(Suppl 3):148–154.PubMedCrossRefGoogle Scholar
  76. 76.
    Gong Z, and Wezeman FH. Inhibitory effect of alcohol on osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Alcohol Clin Exp Res 2004; 28:468–479.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mauricio Rojas
    • 1
    Email author
  • Smita Iyer
    • 1
  • Carter Co
    • 1
  • Kenneth L. Brigham
    • 1
  1. 1.Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Center for Translational Research in the Lung, McKelvey Center for Lung TransplantationEmory UniversityAtlantaUSA

Personalised recommendations