Skip to main content

Metabolic and Hormonal Regulation During Sleep

  • Chapter
  • First Online:
Sleep Disordered Breathing in Children

Part of the book series: Respiratory Medicine ((RM))

Abstract

Sleep plays a major role in the regulation of metabolic and endocrine functions. Reproducible changes in the release of pituitary hormones and pituitary-dependent hormones occur during sleep and reflect the interactions between the three sleep regulatory processes, namely the homeostatic, circadian, and ultradian processes. The prevalence of sleep curtailment, obesity, and metabolism-related pathologies is increasing worldwide. Experimental evidence supports an association between sleep shortening and chronic metabolic changes that can lead to obesity and diabetes. Brain circuits regulating both sleep and metabolism may underlie these associations. Sleep curtailment is also suggested to be a chronic stressor that may contribute to increased risk of obesity and metabolic diseases, possibly in part through HPA axis dysregulation. The hypothalamic excitatory neuropeptides, hypocretin/orexin, have potent wake-promoting effects and act to stimulate food intake. These peptides are involved in the interactions between sleep–wake regulation and the neuroendocrine control of appetite. Western lifestyle has major impact on sleep, eating, and activity periods. Growing evidence suggests that this lifestyle, which is accompanied by disrupted biological rhythms, might affect metabolism leading to metabolic morbidities such as obesity and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valdhuis JD, Iranmanesh A, Weltman A. Elements in the pathophysiology of diminished growth hormone secretion in aging humans. Endocrine. 1997; 7(1):41–8.

    Google Scholar 

  2. Muccioli G, Tschöp M, Papotti M, et al. Neuroendocrine and peripheral activities of ghrelin: implications in metabolism and obesity. Eur J Pharmacol. 2002;440:235–54.

    PubMed  CAS  Google Scholar 

  3. Van Cauter E. Endocrine physiology. In: Krieger MH, Dement WC, Roth T, editors. Principles and practice of sleep medicine. 4th ed. Philadelphia: Elsevier Saunders; 2005. p. 266–82.

    Google Scholar 

  4. Sassin JF, Parker DC, Mace JW, et al. Human growth hormone release: relation to slow-wave sleep and sleep-waking cycles. Science. 1969;165:513–5.

    PubMed  CAS  Google Scholar 

  5. Dzaja A, Dalal M, Himmerich H, et al. Sleep enhances nocturnal plasma ghrelin levels in healthy subjects. Am J Physiol Endocrinol Metab. 2004; 286:963–7.

    Google Scholar 

  6. Gronfier C, Luthringer R, Follenius M, et al. A quantitative evaluation of the relationships between growth hormone secretion and delta wave electroencephalographic activity during normal sleep and after enrichment in delta waves. Sleep. 1996;19: 817–24.

    PubMed  CAS  Google Scholar 

  7. Van Cauter E, Caufriez A, Kerkhofs M, et al. Sleep, awakenings and insulin-like growth factor 1 modulate the growth hormone secretory response to growth hormone-releasing hormone. J Clin Endocrinol Metab. 1992;74:1451–9.

    PubMed  Google Scholar 

  8. Weikel JC, Wchniak A, Ising M, et al. Ghrelin promotes sloe-wave sleep in humans. Am J Physiol Endocrinol Metab. 2003;284:e407–15.

    PubMed  CAS  Google Scholar 

  9. Van Cauter E, Plat L, Copinschi G. Interrelations between sleep and the somatotropic axis. Sleep. 1998;21:553–66.

    PubMed  Google Scholar 

  10. Sheldon SH. Physiologic variations during sleep in children. In: Sheldon SH, Ferber R, Kryger MH, editors. Principles and practice of pediatric sleep medicine. 1st ed. Philadelphia: Elsevier Saunders; 2005. p. 73–84.

    Google Scholar 

  11. Gronfier C, Luthringer R, Follenius M, et al. Temporal relationships between pulsatile cortisol secretion and electroencephalographic activity during sleep in men. Electroencephalogr Clin Neurophysiol. 1997;103:405–8.

    PubMed  CAS  Google Scholar 

  12. Bierwolf C, Struve K, Marshall L, et al. Slow wave sleep drives inhibition of pituitary-adrenal secretion in humans. J Neuroendocrinol. 1997;9:479–84.

    PubMed  CAS  Google Scholar 

  13. Spath-Schwalbe E, Gofferje M, Kern W, et al. Sleep disruption alters nocturnal ACTH and cortisol secretory patterns. Biol Psychiatry. 1991;29:575–84.

    PubMed  CAS  Google Scholar 

  14. Prussner JC, Wolf OT, Helhammer DH, et al. Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity. Life Sci. 1997;61:2539–49.

    Google Scholar 

  15. Brabant G, Prank K, Ranft U, et al. Physiological regulation of circadian and pulsatile thyrotropin secretion in normal man and woman. J Clin Endocrinol Metab. 1990;7:403–9.

    Google Scholar 

  16. Parker DC, Rossman LG, Pekary AE, et al. Effect of 64-hour sleep deprivation on the circadian waveform of thyrotropin (TSH): further evidence of sleep-related inhibition of TSH release. J Clin Endocrinol Metab. 1987;64:157–61.

    PubMed  CAS  Google Scholar 

  17. Goichot B, Brandenberger G, Saini J, et al. Nocturnal plasma thyrotropin variations are related to slow-wave sleep. J Sleep Res. 1992;1:186–90.

    PubMed  Google Scholar 

  18. Hirschfeld U, Moreno-Reyes R, Akseki E, et al. Progressive elevation of plasma thyrotropin during adaptation to simulated jet lag: effect of treatment with bright light or zolpidem. J Clin Endocrinol Metab. 1996;81:3270–7.

    PubMed  CAS  Google Scholar 

  19. Orem J, Keeling J. A compendium of physiology in sleep. In: Orem J, Barnes CD, editors. Physiology in sleep. New York: Academic; 1980. p. 315–35.

    Google Scholar 

  20. Spiegel K, Follenius M, Simon C, et al. Prolactin secretion and sleep. Sleep. 1994;17:20–7.

    PubMed  CAS  Google Scholar 

  21. Spiegel K, Luthringer R, Follenius M, et al. Temporal relationship between prolactin secretion and slow-wave electroencephalographic activity during sleep. Sleep. 1995;18:543–8.

    PubMed  CAS  Google Scholar 

  22. Desir D, Van Cauter E, L’Hermite M, et al. Effects of “jet lag” on hormonal patterns. Demonstration of an intrinsic circadian rhythmicity in plasma prolactin. J Clin Endocrinol Metab. 1982;55:849–57.

    PubMed  CAS  Google Scholar 

  23. Roku R, Obal F, Valatx JL, et al. Prolactin and rapid eye movement sleep regulation. Sleep. 1995;18:536–42.

    Google Scholar 

  24. Lejeune-Lenain C, Van Cauter E, Desir D, et al. Control of circadian and episodic variations of adrenal androgens secretion in man. J Endocrinol Invest. 1987;10:267–76.

    PubMed  CAS  Google Scholar 

  25. Luboshitzky R, Herer P, Levi M, et al. Relationship between rapid eye movement sleep and testosterone secretion in normal men. J Androl. 1999;20:731–7.

    PubMed  CAS  Google Scholar 

  26. Luboshitzky R, Zabari Z, Shen-Orr Z, et al. Disruption of nocturnal testosterone rhythm by sleep fragmentation in normal men. J Clin Endocrinol Metab. 2001;86:1134–9.

    PubMed  CAS  Google Scholar 

  27. Reame N, Sauder SE, Kelch RP, et al. Pulsatile gonadotropin secretion during the human menstrual cycle: evidence for altered frequency of gonadotropin-releasing hormone secretion. J Clin Endocrinol Metab. 1984;59:328–37.

    PubMed  CAS  Google Scholar 

  28. Van Cauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev. 1997;18:716–38.

    PubMed  Google Scholar 

  29. Boyle PJ, Scott JC, Krentz AJ, et al. Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans. J Clin Invest. 1994;93:529–35.

    PubMed  CAS  Google Scholar 

  30. Buchsbaum MS, Gillin JC, Wu J, et al. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sci. 1989;45:1349–56.

    PubMed  CAS  Google Scholar 

  31. Maquet P, Dive D, Salmon E, et al. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F] 2-fluoro-2-deoxy-D-glucose method. Brain Res. 1990;513:136–43.

    PubMed  CAS  Google Scholar 

  32. Plat L, Leproult R, L’Hermite-Baleriaux M, et al. Effects of morning cortisol elevation on insulin secretion and glucose regulation in humans. Am J Physiol Endocrinol Metab. 1996;270:e36–42.

    CAS  Google Scholar 

  33. Danguir J, Nicolaidis S. Dependence of sleep on nutrients’ availability. Physiol Behav. 1979;22:735–40.

    PubMed  CAS  Google Scholar 

  34. Rachtschaffen A, Bergmann BM. Sleep deprivation in the rat by the disk-over-water method. Behav Brain Res. 1995;69:55–63.

    Google Scholar 

  35. Saper CB. Staying awake for dinner: hypothalamic integration of sleep, feeding and circadian rhythms. Prog Brain Res. 2006;153:243–52.

    PubMed  CAS  Google Scholar 

  36. Adamantidis A, de Lecea L. Sleep and metabolism: shared circuits, new connections. Trend Endocrinol Metabol. 2008;19(10):362–70.

    CAS  Google Scholar 

  37. Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Rends Neurosci. 2001;24:726–31.

    CAS  Google Scholar 

  38. Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002;3:591–605.

    PubMed  CAS  Google Scholar 

  39. Abizaid A, Horvath TL. Brain circuits regulating energy homeostasis. Regul Pept. 2008;149:3–10.

    PubMed  CAS  Google Scholar 

  40. Knutson KL, VanCauter E. Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci. 2008;1129:287–304.

    PubMed  Google Scholar 

  41. Schoeller DA, Cella LK, Sinha MK, et al. Entrainment of the diurnal rhythm of plasma leptin to meal timing. J Clin Invesr. 1997;100:1882–7.

    CAS  Google Scholar 

  42. Simon C, Gronfier C, Schlienger JL, et al. Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature. J Clin Endoocrinol Metab. 1998;83:1893–9.

    CAS  Google Scholar 

  43. Mullington JM, Chan JL, Van Dongen HP, et al. Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol. 2003;15:851–4.

    PubMed  CAS  Google Scholar 

  44. National Sleep Foundation. “Sleep in America” Poll. Washington, DC: National Sleep Foundation; 2002.

    Google Scholar 

  45. Spiegel K, Knutson K, Leproult R, et al. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol. 2005;99:2008–19.

    PubMed  CAS  Google Scholar 

  46. Reilly JJ, Armstrong J, Dorosty AR, et al. Early life risk factors for obesity in childhood: cohort study. Br Med J. 2005;330(7504):1357.

    Google Scholar 

  47. Sekine M, Yamagami T, Handa K, et al. A dose-response relationship between short sleeping hours and childhood obesity: results of the Toyama Birth Cohort Study. Child Care Health Dev. 2002;28:163–70.

    PubMed  Google Scholar 

  48. Locard E, Mamelle N, Billette A, et al. Risk factors of obesity in a five year old population. Parental versus environmental factors. Int J Obes Relat Metab Disord. 1992;16:721–9.

    PubMed  CAS  Google Scholar 

  49. Gupta NK, Mueller WH, Chan W, et al. Is obesity associated with poor sleep quality in adolescents? Am J Hum Biol. 2002;14:762–8.

    PubMed  Google Scholar 

  50. von Kries R, Toschke AM, Wurmser H, et al. Reduced risk for overweight and obesity in 5- and 6-y-old children by duration of sleep—a cross-­sectional study. Int J Obes Relat Metab Disord. 2002;26(5):710–6.

    Google Scholar 

  51. Taheri S, Lin L, Austin D, et al. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1:e62.

    PubMed  Google Scholar 

  52. Hasler G, Buysse DJ, Klaghofer R, et al. The association between short sleep duration and obesity in young adults: a 13-year prospective study. Sleep. 2004;27:661–6.

    PubMed  Google Scholar 

  53. Spiegel K, Tasali E, Penev P, et al. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141:846–50.

    PubMed  Google Scholar 

  54. Nedeltcheva AV, Kilkus JM, Imperial J, et al. Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 2009;89:126–33.

    PubMed  CAS  Google Scholar 

  55. Chaput JP, Despres JP, Bouchard C, et al. Short sleep duration is associated with reduced leptin levels and increased adiposity: results from the Quebec family study. Obesity. 2007;15:253–61.

    PubMed  CAS  Google Scholar 

  56. Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in human. Science. 1999;283:212–4.

    PubMed  CAS  Google Scholar 

  57. Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having metabolic syndrome? Results from a population based study of 27485 people. Occup Environ Med. 2001;58: 747–52.

    PubMed  CAS  Google Scholar 

  58. Ayas NT, White DP, Al-Delaimy WK, et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care. 2003;26:380–4.

    PubMed  Google Scholar 

  59. Nilsson PM, Roost M, Engstrom G, et al. Incidence of diabetes in middle-aged men is related to sleep disturbances. Diabetes Care. 2004;27:2464–9.

    PubMed  Google Scholar 

  60. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354:1435–9.

    PubMed  CAS  Google Scholar 

  61. Sakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev. 2005;9:231–41.

    PubMed  Google Scholar 

  62. Samson WK, Taylor MM, Ferguson AV. Non-sleep effects of hypocretin/orexin. Sleep Med Rev. 2005;9:243–52.

    PubMed  Google Scholar 

  63. Lubkin M, Stricker-Krongrad A. Independent feeding and metabolic actions of orexins in mice. Biochem Biophys Res Commun. 1998;253:241–5.

    PubMed  CAS  Google Scholar 

  64. Williams RH, Alexopoulos H, Jensen LT, et al. Adaptive sugar sensors in hypothalamic feeding circuits. Proc Natl Acad Sci. 2008;105:11975–80.

    PubMed  CAS  Google Scholar 

  65. Williams RH, Jensen LT, Verkhratsky A. Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci. 2007;104:10685–90.

    PubMed  CAS  Google Scholar 

  66. Arnulf I, Lin L, Zhang J, et al. CSF versus serum leptin in narcolepsy: is there an effect of hypocretin deficiency? Sleep. 2006;29:1017–24.

    PubMed  Google Scholar 

  67. Chabas D, Foulon C, Gonzalez J, et al. Eating disorder and metabolism in narcoleptic patients. Sleep. 2007;30:1267–73.

    PubMed  Google Scholar 

  68. Zhang S, Zeitzer JM, Sakurai T, et al. Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy. J Physiol. 2007;581:649–63.

    PubMed  Google Scholar 

  69. Lopez M, Nogueiras R, Tena-Sempere M, et al. Orexins (hypocretins) actions on the GHRH/somatostatin-GH axis. Acta Physiol. 2010;198:325–34.

    CAS  Google Scholar 

  70. Kukkonen JP, Holmqvist T, Ammoun S, et al. Functions of the orexinergic/hypocretinergic system. Am J Physiol Cell Physiol. 2002;283:C1567–91.

    PubMed  CAS  Google Scholar 

  71. Sutcliffe JG, de Lecea L. The hypocretins: setting the arousal threshold. Nat Rev Neurosci. 2002;3: 339–49.

    PubMed  CAS  Google Scholar 

  72. Bose M, Olivan B, Laferrere B. Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis I metabolic disease. Curr Opin Endocrinol Diabetes Obes. 2009;16(5):340–6.

    PubMed  CAS  Google Scholar 

  73. Peeke PM, Chrousos GP. Hypercortisolism and obesity. Ann NY Acad Sci. 1995;771:665–76.

    PubMed  CAS  Google Scholar 

  74. Kyrou I, Chrousos GP, Tigos C. Stress, visceral obesity, and metabolic complications. AN NY Acad Sci. 2006;1083:77–110.

    CAS  Google Scholar 

  75. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune mediated inflammation. N Engl J Med. 1995;332:1351–62.

    PubMed  CAS  Google Scholar 

  76. Lee SW, Tsou AP, Chan H, et al. Glucocorticoids selectively inhibit the transcription of the interleukin 1 beta gene and decrease the stability of interleukin 1 beta mRNA. Proc Natl Acad Sci. 1988;85: 1204–8.

    PubMed  CAS  Google Scholar 

  77. Cronstein BN, Kimmel SC, Levin RI, et al. A mechanism for the antiinflammmatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci. 1992;89:9991–5.

    PubMed  CAS  Google Scholar 

  78. Pasquali R, Cantobelli S, Cassimirri F, et al. The hypothalamic-pituitary-adrenal axis in obese women with different patterns of body fat distribution. J Clin Endocrinol Metab. 1993;77:341–6.

    PubMed  CAS  Google Scholar 

  79. Rosmond R, Dallman MF, Bjorntorp P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab. 1998;83:1853–9.

    PubMed  CAS  Google Scholar 

  80. Laferrere B, Fried SK, Osborne T, et al. Effect of one morning meal and a bolus of dexamethasone on 24-h variation of serum leptin levels in humans. Obes Res. 2000;8:481–6.

    PubMed  CAS  Google Scholar 

  81. Dubuc PU, Wilden NJ. Adrenalectomy reduces but does not reverse obesity in ob/ob mice. Int J Obes. 1986;10:91–8.

    PubMed  CAS  Google Scholar 

  82. Spiegel K, Leproult R, L’Hermite-Baleriaux M, et al. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89:5762–71.

    PubMed  CAS  Google Scholar 

  83. Espelund U, Hansen TK, Hojlund K, et al. Fasting unmasks a strong inverse association between ghrelin and cortisol in serum: studies in obese and normal-weight subjects. J Clin Endocrinol Metab. 2005;90:741–6.

    PubMed  CAS  Google Scholar 

  84. Panda S, Hogenesch JB, Kay SA. Circadian rhythms from flies to human. Nature. 2002;417:329–35.

    PubMed  CAS  Google Scholar 

  85. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–41.

    PubMed  CAS  Google Scholar 

  86. Davis S, Mirick DK. Circadian disruption, shift work and the risk of cancer: a summary of the evidence and studies in Seattle. Cancer Causes Control. 2006;17:539–45.

    PubMed  Google Scholar 

  87. Kondratov RV, Kondratov AA, Gorbacheva VY, et al. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 2006;20:1868–73.

    PubMed  CAS  Google Scholar 

  88. Hurd MW, Ralph MR. The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms. 1998;13:430–6.

    PubMed  CAS  Google Scholar 

  89. Karasek M. Melatonin, human aging, and age-related diseases. Exp Gerontol. 2004;39:1723–9.

    PubMed  CAS  Google Scholar 

  90. Lee C, Etchegaray JP, Cagampang FR, et al. Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001;107:855–67.

    PubMed  CAS  Google Scholar 

  91. Froy O, Chapnik N. Circadian oscillation of innate immunity components in mouse small intestine. Mol Immunol. 2007;4:1964–70.

    Google Scholar 

  92. Young ME. The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function. Am J Physiol Heart Circ Physiol. 2006;290:H1–16.

    PubMed  CAS  Google Scholar 

  93. Froy O. Metabolism and circadian rhythms-implications for obesity. Endocr Rev. 2010;31(1):1–24.

    PubMed  CAS  Google Scholar 

  94. La Fleur SE, Kalsbeek A, Wortel J, et al. A sup­rachiasmatic nucleus generated rhythm in basal glucose concentrations. J Neuroendocrinol. 1999;11: 643–52.

    PubMed  Google Scholar 

  95. Ruiter M, La Fleur SE, van Heijningen C, et al. The daily rhythm in plasma glucagon concentrations in rat is modulated by the biological clock and by feeding behavior. Diabetes. 2003;52:1709–15.

    PubMed  CAS  Google Scholar 

  96. Ando H, Yanagihara H, Hayashi Y, et al. Rhythmic messenger ribonucleic acid and expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology. 2005;146:5631–6.

    PubMed  CAS  Google Scholar 

  97. De Boer SF, Van der Gugen J. Daily variations in plasma noradrenaline, adrenaline and corticosterone concentrations in rats. Physiol Behav. 1987;40:323–8.

    PubMed  Google Scholar 

  98. Ahima RS, Prabakaran D, Flier JS. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest. 1998;101: 1020–7.

    PubMed  CAS  Google Scholar 

  99. Bodosi B, Gardi J, Haju I, et al. Rhythms of ghrelin, leptin, and sleep in rats: effects of normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol. 2004;287: R1071–9.

    PubMed  CAS  Google Scholar 

  100. Kalra SP, Bagnasco M, Otukonyong EE, et al. Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity. Regul Pept. 2003;111:1–11.

    PubMed  CAS  Google Scholar 

  101. Kalsbeek A, Fliers E, Romijn JA, et al. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology. 2001;142:2677–85.

    PubMed  CAS  Google Scholar 

  102. Froy O. The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol. 2007;28:61–71.

    PubMed  CAS  Google Scholar 

  103. Green CB, Takahashi JS, Bass J. The meter of metabolism. Cell. 2008;134:728–42.

    PubMed  CAS  Google Scholar 

  104. Hirota T, Fukada Y. Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog Sci. 2004;21:359–68.

    PubMed  Google Scholar 

  105. Ramsey KM, Marcheva B, Kohsaka A, et al. The clockwork of metabolism. Annu Rev Nutr. 2007;27:219–40.

    PubMed  CAS  Google Scholar 

  106. La Fleur SE. Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue. J Neuroendocrinol. 2003;15:315–22.

    PubMed  Google Scholar 

  107. Davidson AJ, Casranoon-Cervantes O, Stephan FK. Daily oscillations in liver function: diurnal vs circadian rhythmicity. Liver Int. 2004;24:179–86.

    PubMed  Google Scholar 

  108. Froy O. Cytochrome p450 and the biological clock in mammals. Curr Drug Metab. 2009;10:104–15.

    PubMed  CAS  Google Scholar 

  109. Stephan FK, Davidson AJ. Glucose, but not fat, phase shifts the feeding-entrained circadian clock. Physiol Bahv. 1998;65:277–88.

    CAS  Google Scholar 

  110. Iwanaga H, Yano M, Miki H, et al. Per2 gene expressions in the suprachiasmatic nucleus and liver differentially respond to nutrition factors. JPEN. 2005;29:157–61.

    CAS  Google Scholar 

  111. Mohri T, Emoto N, Nonaka H, et al. Alterations of circadian expression of clock genes in Dahl salt-sensitive rats fed a high-salt diet. Hypertension. 2003;42:189–94.

    PubMed  CAS  Google Scholar 

  112. Antle MC, Steen NM, Mistlberger RE. Adenosine and caffeine modulate circadian rhythms in the Syrian hamster. Neuroport. 2001;12:2901–5.

    CAS  Google Scholar 

  113. Langlais PJ, Hall T. Thiamine deficiency-induced disruptions in diurnal rhythm and regulation of body temperature in the rat. Metab Brain Res. 1998;13:225–39.

    CAS  Google Scholar 

  114. Balsalobre A, Brown SA, Marcacci L, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289:2344–7.

    PubMed  CAS  Google Scholar 

  115. Reddy AB, Maywood ES, Karp NA, et al. Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology. 2007;45: 1478–88.

    PubMed  CAS  Google Scholar 

  116. Fu L, Patel MS, Bradley A, et al. The molecular clock mediates leptin-regulated bone formation. Cell. 2005;122:803–15.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riva Tauman MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tauman, R. (2012). Metabolic and Hormonal Regulation During Sleep. In: Kheirandish-Gozal, L., Gozal, D. (eds) Sleep Disordered Breathing in Children. Respiratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-725-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-725-9_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-724-2

  • Online ISBN: 978-1-60761-725-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics