Autonomic Cardiovascular Regulation During Sleep

  • Anna Vlahandonis
  • Lisa M. Walter
  • Stephanie R. Yiallourou
  • Rosemary S. C. HorneEmail author
Part of the Respiratory Medicine book series (RM)


Regulation of the cardiovascular system is predominately under the ­control of the autonomic nervous system (ANS). During infancy, dramatic changes occur to autonomic cardiovascular control. As newborn infants spend approximately 70% of their time asleep, the majority of developmental studies focusing on autonomic cardiovascular control have been performed during sleep. Both the parasympathetic and sympathetic arms of the ANS act synergistically to maintain heart rate (HR) and blood pressure (BP) homeostasis, both of which are significantly affected by sleep. This chapter provides an overview of the physiology and maturation of the ANS from foetal life through adulthood, with a particular emphasis on childhood, and discusses how sleep state affects ANS regulation of the cardiovascular system in normal infants, children and adults.


Autonomic Nervous System Sleep Stage Slow Wave Sleep Parasympathetic Activity NREM Sleep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Veerman DP, Imholz BP, Wieling W, Wesseling KH, van Montfrans GA. Circadian profile of systemic hemodynamics. Hypertension. 1995;26(1):55–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Zavodna E, Honzikova N, Hrstkova H, et al. Can we detect the development of baroreflex sensitivity in humans between 11 and 20 years of age? Can J Physiol Pharmacol. 2006;84(12):1275–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Task Force on Blood Pressure Control in Children. Report of the second task force on blood pressure control in children—1987. Task Force on Blood Pressure Control in Children. National Heart, Lung, and Blood Institute, Bethesda, Maryland. Pediatrics. 1987;79(1): 1–25.Google Scholar
  4. 4.
    Guyton AC, Coleman TG, Cowley Jr AV, Scheel KW, Manning Jr RD, Norman Jr RA. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52(5):584–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Nazeran H, Pamula Y, Behbehani K. Heart rate variability (HRV): sleep disordered breathing. In: Akay M, editor. Wiley encyclopedia of biomedical engineering. Wiley: New York; 2006.Google Scholar
  6. 6.
    Trinder J, Kleiman J, Carrington M, et al. Autonomic activity during human sleep as a function of time and sleep stage. J Sleep Res. 2001;10(4):253–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Massin M, von Bernuth G. Normal ranges of heart rate variability during infancy and childhood. Pediatr Cardiol. 1997;18(4):297–302.PubMedCrossRefGoogle Scholar
  8. 8.
    Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.CrossRefGoogle Scholar
  9. 9.
    Mendez M, Bianchi AM, Villantieri O, Cerutti S. Time-varying analysis of the heart rate variability during REM and non REM sleep stages. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3576–9.PubMedGoogle Scholar
  10. 10.
    Longin E, Dimitriadis C, Shazi S, Gerstner T, Lenz T, Konig S. Autonomic nervous system function in infants and adolescents: impact of autonomic tests on heart rate variability. Pediatr Cardiol. 2009;30(3):311–24.PubMedCrossRefGoogle Scholar
  11. 11.
    Berntson GG, Bigger Jr JT, Eckberg DL, et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997;34(6):623–48.PubMedCrossRefGoogle Scholar
  12. 12.
    Rosenstock EG, Cassuto Y, Zmora E. Heart rate variability in the neonate and infant: analytical methods, physiological and clinical observations. Acta Paediatr. 1999;88(5):477–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Trinder J. Cardiac activity and sympathovagal balance during sleep. Sleep Med Clin. 2007;2:199–208.CrossRefGoogle Scholar
  14. 14.
    Pagani M, Lombardi F, Guzzeti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59:178–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Taylor JA, Carr DL, Myers CW, Eckberg DL. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation. 1998;98(6):547–55.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhong Y, Wang H, Ju KH, Jan KM, Chon KH. Nonlinear analysis of the separate contributions of autonomic nervous systems to heart rate variability using principal dynamic modes. IEEE Trans Biomed Eng. 2004;51(2):255–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Andriessen P, Koolen AM, Berendsen RC, et al. Cardiovascular fluctuations and transfer function analysis in stable preterm infants. Pediatr Res. 2003;53(1):89–97.PubMedGoogle Scholar
  18. 18.
    De Beer NA, Andriessen P, Berendsen RC, Oei SG, Wijn PF, Oetomo SB. Customized spectral band analysis compared with conventional Fourier analysis of heart rate variability in neonates. Physiol Meas. 2004;25(6):1385–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Parati G, Bilo G, Vettorello M, et al. Assessment of overall blood pressure variability and its different components. Blood Press Monit. 2003;8(4):155–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Penaz J, Voigt A, Teichmann W. Contribution to the continuous indirect blood pressure measurement. Z Gesamte Inn Med. 1976;31(24):1030–3.PubMedGoogle Scholar
  21. 21.
    Schutte AE, Huisman HW, van Rooyen JM, Malan NT, Schutte R. Validation of the Finometer device for measurement of blood pressure in black women. J Hum Hypertens. 2004;18(2):79–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Guelen I, Westerhof BE, van der Sar GL, et al. Validation of brachial artery pressure reconstruction from finger arterial pressure. J Hypertens. 2008;26(7):1321–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Schmidt TF, Wittenhaus J, Steinmetz TF, Piccolo P, Lupsen H. Twenty-four-hour ambulatory noninvasive continuous finger blood pressure measurement with PORTAPRES: a new tool in cardiovascular research. J Cardiovasc Pharmacol. 1992;19 Suppl 6:S117–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Andriessen P, Schoffelen RL, Berendsen RC, et al. Noninvasive assessment of blood pressure variability in preterm infants. Pediatr Res. 2004;55(2):220–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Yiallourou S, Walker A, Horne R. Validation of a new noninvasive method to measure blood pressure and assess baroreflex sensitivity in preterm infants during sleep. Sleep. 2006;29(8):1083–8.PubMedGoogle Scholar
  26. 26.
    Drouin E, Gournay V, Calamel J, Mouzard A, Roze JC. Feasibility of using finger arterial pressure in neonates. Arch Dis Child Fetal Neonatal Ed. 1997;77(2):F139–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol. 1985;249(4 Pt 2):H867–75.PubMedGoogle Scholar
  28. 28.
    Parati G, Valentini M. Prognostic relevance of blood pressure variability. Hypertension. 2006;47(2):137–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Lanfranchi PA, Somers VK. Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regul Integr Comp Physiol. 2002;283:R815–26.PubMedGoogle Scholar
  30. 30.
    Bertinieri G, Di Rienzo M, Cavallazzi A, Ferrari AU, Pedotti A, Mancia G. Evaluation of baroreceptor reflex by blood pressure monitoring in unanesthetized cats. Am J Physiol. 1988;254(2 Pt 2): H377–83.PubMedGoogle Scholar
  31. 31.
    Robbe HW, Mulder LJ, Ruddel H, Langewitz WA, Veldman JB, Mulder G. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension. 1987;10(5):538–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Zoccoli G, Andreoli E, Bojic T, et al. Central and baroreflex control of heart rate during the wake-sleep cycle in rat. Sleep. 2001;24(7):753–8.PubMedGoogle Scholar
  33. 33.
    Gabbett TJ, Weston SB, Barrett RS, Gass GC. Cardiovascular regulation during head-up tilt in healthy 20–30-year-old and 70–75-year-old men. Clin Sci (Lond). 2001;100(2):199–206.CrossRefGoogle Scholar
  34. 34.
    Schnall RP, Shlitner A, Sheffy J, Kedar R, Lavie P. Periodic, profound peripheral vasoconstriction—a new marker of obstructive sleep apnea. Sleep. 1999;22(7):939–46.PubMedGoogle Scholar
  35. 35.
    O’Brien LM, Gozal D. Potential usefulness of noninvasive autonomic monitoring in recognition of arousals in normal healthy children. J Clin Sleep Med. 2007;3(1):41–7.PubMedGoogle Scholar
  36. 36.
    Tauman R, O’Brien LM, Mast BT, Holbrook CR, Gozal D. Peripheral arterial tonometry events and electroencephalographic arousals in children. Sleep. 2004;27(3):502–6.PubMedGoogle Scholar
  37. 37.
    Nitzan M, Babchenko A, Khanokh B, Landau D. The variability of the photoplethysmographic signal—a potential method for the evaluation of the autonomic nervous system. Physiol Meas. 1998;19(1):93–102.PubMedCrossRefGoogle Scholar
  38. 38.
    Guyton A. Textbook of medical physiology. 7th ed. Philadelphia: Saunders; 1982.Google Scholar
  39. 39.
    Pinna GD, Maestri R, Mortara A. Estimation of arterial blood pressure variability by spectral analysis: comparison between Finapres and invasive measurements. Physiol Meas. 1996;17(3):147–69.PubMedCrossRefGoogle Scholar
  40. 40.
    Wesseling KH, Settels JJ, van der Hoeven GM, Nijboer JA, Butijn MW, Dorlas JC. Effects of peripheral vasoconstriction on the measurement of blood pressure in a finger. Cardiovasc Res. 1985;19(3): 139–45.PubMedCrossRefGoogle Scholar
  41. 41.
    Foo JY. Pulse transit time in paediatric respiratory sleep studies. Med Eng Phys. 2007;29(1):17–25.PubMedCrossRefGoogle Scholar
  42. 42.
    Pepin JL, Delavie N, Pin I, et al. Pulse transit time improves detection of sleep respiratory events and microarousals in children. Chest. 2005;127(3): 722–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Gil E, Bailon R, Vergara JM, Laguna P. PTT variability for discrimination of sleep apnea related to decreases in the amplitude fluctuations of PPG signal in children. IEEE Trans Biomed Eng. 2010;57(5): 1079–88.PubMedCrossRefGoogle Scholar
  44. 44.
    Foo JY. Normality of upper and lower peripheral pulse transit time of normotensive and hypertensive children. J Clin Monit Comput. 2007;21(4):243–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Foo JY, Wilson SJ. Normalized peripheral transit time to monitor hypertension in children. J Med Eng Technol. 2008;32(5):343–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Galland BC, Tan E, Taylor BJ. Pulse transit time and blood pressure changes following auditory-evoked subcortical arousal and waking of infants. Sleep. 2007;30(7):891–7.PubMedGoogle Scholar
  47. 47.
    Pagani J, Villa MP, Calcagnini G, et al. Pulse transit time as a measure of inspiratory effort in children. Chest. 2003;124(4):1487–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Foo JY, Lim CS. Difference in pulse transit time between populations: a comparison between Caucasian and Chinese children in Australia. J Med Eng Technol. 2008;32(2):162–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Gagnon R, Campbell K, Hunse C, Patrick J. Patterns of human fetal heart rate accelerations from 26 weeks to term. Am J Obstet Gynecol. 1987;157(3):743–8.PubMedGoogle Scholar
  50. 50.
    Karin J, Hirsch M, Akselrod S. An estimate of fetal autonomic state by spectral analysis of fetal heart rate fluctuations. Pediatr Res. 1993;34(2):134–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Lagercrantz H, Edwards D, Henderson-Smart D, Hertzberg T, Jeffery H. Autonomic reflexes in preterm infants. Acta Paediatr Scand. 1990;79(8–9): 721–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Gournay V, Drouin E, Roze JC. Development of baroreflex control of heart rate in preterm and full term infants. Arch Dis Child Fetal Neonatal Ed. 2002;86(3):F151–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Harper RM, Hoppenbrouwers T, Sterman MB, McGinty DJ, Hodgman J. Polygraphic studies of normal infants during the first six months of life. I. Heart rate and variability as a function of state. Pediatr Res. 1976;10(11):945–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Schechtman VL, Harper RM, Kluge KA. Development of heart rate variation over the first 6 months of life in normal infants. Pediatr Res. 1989;26(4):343–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Yiallourou SR, Walker AM, Horne RS. Effects of sleeping position on development of infant cardiovascular control. Arch Dis Child Fetal Neonatal Ed. 2008;93(10):868–72.Google Scholar
  56. 56.
    Azaz Y, Fleming PJ, Levine M, McCabe R, Stewart A, Johnson P. The relationship between environmental temperature, metabolic rate, sleep state, and evaporative water loss in infants from birth to three months. Pediatr Res. 1992;32(4):417–23.PubMedCrossRefGoogle Scholar
  57. 57.
    Chong A, Murphy N, Matthews T. Effect of prone sleeping on circulatory control in infants. Arch Dis Child. 2000;82(3):253–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Shinebourne EA, Vapaavuori EK, Williams RL, Heymann MA, Rudolph AM. Development of baroreflex activity in unanesthetized fetal and neonatal lambs. Circ Res. 1972;31(5):710–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Drouin E, Gournay V, Calamel J, Mouzard A, Roze JC. Assessment of spontaneous baroreflex sensitivity in neonates. Arch Dis Child Fetal Neonatal Ed. 1997;76(2):F108–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Andriessen P, Oetomo SB, Peters C, Vermeulen B, Wijn PF, Blanco CE. Baroreceptor reflex sensitivity in human neonates: the effect of postmenstrual age. J Physiol. 2005;568(Pt 1):333–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Young M, Cottom D. Arterial and venous blood pressure responses during a reduction in blood volume and hypoxia and hypercapnia in infants during the first two days of life. Pediatrics. 1966;37(5):733–42.PubMedGoogle Scholar
  62. 62.
    Young IM, Holland WW. Some physiological responses of neonatal arterial blood pressure and pulse rate. Br Med J. 1958;2(5091):276–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Picton-Warlow CG, Mayer FE. Cardiovascular responses to postural changes in the neonate. Arch Dis Child. 1970;45(241):354–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Thoresen M, Cowan F, Walloe L. Cardiovascular responses to tilting in healthy newborn babies. Early Hum Dev. 1991;26(3):213–22.PubMedCrossRefGoogle Scholar
  65. 65.
    Yiallourou S, Sands SA, Walker AM, Horne RS. Postnatal development of baroreflex sensitivity in infancy. J Physiol. 2010;588:2193–203.PubMedCrossRefGoogle Scholar
  66. 66.
    Segar JL. Ontogeny of the arterial and cardiopulmonary baroreflex during fetal and postnatal life. Am J Physiol. 1997;273(2 Pt 2):R457–71.PubMedGoogle Scholar
  67. 67.
    Chatow U, Davidson S, Reichman BL, Akselrod S. Development and maturation of the autonomic nervous system in premature and full-term infants using spectral analysis of heart rate fluctuations. Pediatr Res. 1995;37(3):294–302.PubMedCrossRefGoogle Scholar
  68. 68.
    Clairambault J, Curzi-Dascalova L, Kauffmann F, Medigue C, Leffler C. Heart rate variability in normal sleeping full-term and preterm neonates. Early Hum Dev. 1992;28(2):169–83.PubMedCrossRefGoogle Scholar
  69. 69.
    National High Blood Pressure Education Program Working Group on Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report): 555–76.CrossRefGoogle Scholar
  70. 70.
    Whincup PH, Cook DG, Shaper AG. Early influences on blood pressure: a study of children aged 5–7 years. BMJ. 1989;299(6699):587–91.PubMedCrossRefGoogle Scholar
  71. 71.
    De Rogalski Landrot I, Roche F, Pichot V, et al. Autonomic nervous system activity in premature and full-term infants from theoretical term to 7 years. Auton Neurosci. 2007;136(1–2):105–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Finley JP, Nugent ST. Heart rate variability in infants, children and young adults. J Auton Nerv Syst. 1995;51:103–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Goto M, Nagashima M, Baba R, et al. Analysis of heart rate variability demonstrates effects of development on vagal modulation of heart rate in healthy children. J Pediatr. 1997;130(5):725–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Kazuma N, Otsuka K, Wakamatsu K, Shirase E, Matsuoka I. Heart rate variability in normotensive healthy children with aging. Clin Exp Hypertens. 2002;24(1–2):83–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Villa MP, Calcagnini G, Pagani J, Paggi B, Massa F, Ronchetti R. Effects of sleep stage and age on short-term heart rate variability during sleep in healthy infants and children. Chest. 2000;117(2):460–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Lazarova Z, Tonhajzerova I, Trunkvalterova Z, et al. Baroreflex sensitivity is reduced in obese normotensive children and adolescents. Can J Physiol Pharmacol. 2009;87(7):565–71.PubMedCrossRefGoogle Scholar
  77. 77.
    Lenard Z, Studinger P, Mersich B, Kocsis L, Kollai M. Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation. 2004;110(16):2307–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Fukuba Y, Sato H, Sakiyama T, et al. Autonomic nervous activities assessed by heart rate variability in pre- and post-adolescent Japanese. J Physiol Anthropol. 2009;28(6):269–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Agelink MW, Malessa R, Baumann B, et al. Standardised tests of heart rate variability: normal ranges obtained from 309 healthy humans, and effects of age, gender and heart rate. Clin Auton Res. 2001;11:99–108.PubMedCrossRefGoogle Scholar
  80. 80.
    Kuo TB, Lin T, Yang CC, Li CL, Chen CF, Chou P. Effect of aging on gender differences in neural control of heart rate. Am J Physiol. 1999;277:H2233–9.PubMedGoogle Scholar
  81. 81.
    Shannon DC, Carley DW, Benson H. Aging of modulation of heart rate. Am J Physiol. 1987;253:H874–7.PubMedGoogle Scholar
  82. 82.
    Tank J, Baevski RM, Fender A. Reference values of indices of spontaneous baroreceptor reflex sensitivity. Am J Hypertens. 2000;13:268–75.PubMedCrossRefGoogle Scholar
  83. 83.
    Gribbin B, Pickering TG, Sleight P. Effect of age and high blood pressure on baroreflex sensitivity in man. Circ Res. 1971;29:424–31.PubMedCrossRefGoogle Scholar
  84. 84.
    Fukusaki C. Development of autonomic function and aging. Jpn J Sports Sci. 1997;16:61–9.Google Scholar
  85. 85.
    Korkushko OV, Shatilo VB, Plachinda YI, Shatilo TV. Autonomic control of cardiac chronotropic function in man as a function of age: assessment by power spectral analysis of heart rate variability. J Auton Nerv Syst. 1991;32:191–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Sloan RP, Huang MH, McCreath H, et al. Cardiac autonomic control and the effects of age, race, and sex: the CARDIA study. Auton Neurosci. 2008;139:78–85.PubMedCrossRefGoogle Scholar
  87. 87.
    Wang X, Thayer JF, Treiber F, Snieder H. Ethnic differences and heritability of heart rate variability in African- and European American youth. Am J Cardiol. 2005;96:1166–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Berne R, Levy M. Cardiovascular physiology. 8th ed. St Louis: Mosby, Inc; 2001.Google Scholar
  89. 89.
    Sheldon S, Spire J, Levy H. Normal sleep in children and young adults. In: S. Fletcher Ed. Paediatric sleep medicine. Philadelphia: WB Saunders Company; 1992. p. 14–27.Google Scholar
  90. 90.
    Sheldon S. Physiological variations during sleep in children. In: Sheldon S, Ferber R, Kryger M, editors. Principles and practice of pediatric sleep medicine, vol. 1. Philadelphia: Elsevier Saunders; 2005. p. 73–84.CrossRefGoogle Scholar
  91. 91.
    Burgess HJ, Trinder J, Kim Y, Luke D. Sleep and circadian influences on cardiac autonomic nervous system activity. Am J Physiol. 1997;273(4 Pt 2):H1761–8.PubMedGoogle Scholar
  92. 92.
    Kerkhof GA, Van Dongen HP, Bobbert AC. Absence of endogenous circadian rhythmicity in blood pressure? Am J Hypertens. 1998;11(3 Pt 1):373–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Van Dongen HP, Maislin G, Kerkhof GA. Repeated assessment of the endogenous 24-hour profile of blood pressure under constant routine. Chronobiol Int. 2001;18(1):85–98.PubMedCrossRefGoogle Scholar
  94. 94.
    Van de Borne P, Nguyen H, Biston P, Linkowski P, Degaute JP. Effects of wake and sleep stages on the 24-h autonomic control of blood pressure and heart rate in recumbent men. Am J Physiol. 1994;266(2 Pt 2):H548–54.PubMedGoogle Scholar
  95. 95.
    Furlan R, Guzzetti S, Crivellaro W, et al. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation. 1990;81(2):537–47.PubMedCrossRefGoogle Scholar
  96. 96.
    Millar-Craig MW, Bishop CN, Raftery EB. Circadian variation of blood-pressure. Lancet. 1978;1(8068):795–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Mancia G, Ferrari A, Gregorini L, et al. Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res. 1983;53(1):96–104.PubMedCrossRefGoogle Scholar
  98. 98.
    Carrington MJ, Barbieri R, Colrain IM, Crowley KE, Kim Y, Trinder J. Changes in cardiovascular function during the sleep onset period in young adults. J Appl Physiol. 2005;98(2):468–76.PubMedCrossRefGoogle Scholar
  99. 99.
    Degaute JP, van de Borne P, Linkowski P, Van Cauter E. Quantitative analysis of the 24-hour blood pressure and heart rate patterns in young men. Hypertension. 1991;18(2):199–210.PubMedCrossRefGoogle Scholar
  100. 100.
    Lombardi F, Parati G. An update on: cardiovascular and respiratory changes during sleep in normal and hypertensive subjects. Cardiovasc Res. 2000;45(1):200–11.PubMedCrossRefGoogle Scholar
  101. 101.
    Conway J, Boon N, Jones JV, Sleight P. Involvement of the baroreceptor reflexes in the changes in blood pressure with sleep and mental arousal. Hypertension. 1983;5(5):746–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Cowley Jr AW. Long-term control of arterial blood pressure. Physiol Rev. 1992;72(1):231–300.PubMedGoogle Scholar
  103. 103.
    Tank J, Diedrich A, Szczech E, Luft FC, Jordan J. Baroreflex regulation of heart rate and sympathetic vasomotor tone in women and men. Hypertension. 2005;45(6):1159–64.PubMedCrossRefGoogle Scholar
  104. 104.
    Sayk F, Becker C, Teckentrup C, et al. To dip or not to dip: on the physiology of blood pressure decrease during nocturnal sleep in healthy humans. Hypertension. 2007;49(5):1070–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Iellamo F, Placidi F, Marciani MG, et al. Baroreflex buffering of sympathetic activation during sleep: evidence from autonomic assessment of sleep macroarchitecture and microarchitecture. Hypertension. 2004;43(4):814–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Davies RJ, Stradling JR. The efficacy of nasal continuous positive airway pressure in the treatment of obstructive sleep apnea syndrome is proven. Am J Respir Crit Care Med. 2000;161(6):1775–6.PubMedGoogle Scholar
  107. 107.
    Rosansky SJ, Menachery SJ, Whittman D, Rosenberg JC. The relationship between sleep deprivation and the nocturnal decline of blood pressure. Am J Hypertens. 1996;9(11):1136–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ Res. 1969;24(1):109–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Monti A, Medigue C, Nedelcoux H, Escourrou P. Autonomic control of the cardiovascular system during sleep in normal subjects. Eur J Appl Physiol. 2002;87(2):174–81.PubMedCrossRefGoogle Scholar
  110. 110.
    Nakazato T, Shikama T, Toma S, Nakajima Y, Masuda Y. Nocturnal variation in human sympathetic baroreflex sensitivity. J Auton Nerv Syst. 1998;70(1–2):32–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Carrington M, Walsh M, Stambas T, Kleiman J, Trinder J. The influence of sleep onset on the diurnal variation in cardiac activity and cardiac control. J Sleep Res. 2003;12(3):213–21.PubMedCrossRefGoogle Scholar
  112. 112.
    Burgess HJ, Trinder J, Kim Y. Cardiac parasympathetic nervous system activity does not increase in anticipation of sleep. J Sleep Res. 1996;5(2):83–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Vanoli E, Adamson PB, Ba L, Pinna GD, Lazzara R, Orr WC. Heart rate variability during specific sleep stages. A comparison of healthy subjects with patients after myocardial infarction. Circulation. 1995;91(7):1918–22.PubMedCrossRefGoogle Scholar
  114. 114.
    Bonnet MH, Arand DL. Heart rate variability: sleep stage, time of night, and arousal influences. Electroencephalogr Clin Neurophysiol. 1997; 102(5):390–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Bonnemeier H, Richardt G, Potratz J, et al. Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol. 2003;14(8):791–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Mendez M, Bianchi AM, Villantieri O, Cerutti S. Time-varying analysis of the heart rate variability during REM and NonRem sleep stages. Paper presented at proceedings of the 28th IEEE EMBS annual international conference, Aug 30–Sept 3. New York City; 2006.Google Scholar
  117. 117.
    Zemaityte D, Varoneckas G, Sokolov E. Heart rhythm control during sleep. Psychophysiology. 1984;21(3):279–89.PubMedCrossRefGoogle Scholar
  118. 118.
    Medigue C, Girard A, Laude D, Monti A, Wargon M, Elghozi JL. Relationship between pulse interval and respiratory sinus arrhythmia: a time- and frequency-domain analysis of the effects of atropine. Pflugers Arch. 2001;441(5):650–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Hornyak M, Cejnar M, Elam M, Matousek M, Wallin BG. Sympathetic muscle nerve activity during sleep in man. Brain. 1991;114(Pt 3):1281–95.PubMedCrossRefGoogle Scholar
  120. 120.
    Krauchi K, Cajochen C, Werth E, Wirz-Justice A. Functional link between distal vasodilation and sleep-onset latency? Am J Physiol Regul Integr Comp Physiol. 2000;278(3):R741–8.PubMedGoogle Scholar
  121. 121.
    Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med. 1993;328(5):303–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Van Someren EJ. Mechanisms and functions of coupling between sleep and temperature rhythms. Prog Brain Res. 2006;153:309–24.PubMedCrossRefGoogle Scholar
  123. 123.
    Baharav A, Kotagal S, Gibbons V, et al. Fluctuations in autonomic nervous activity during sleep displayed by power spectrum analysis of heart rate variability. Neurology. 1995;45(6):1183–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Penzel T, Kantelhardt JW, Lo CC, Voigt K, Vogelmeier C. Dynamics of heart rate and sleep stages in normals and patients with sleep apnea. Neuropsychopharmacology. 2003;28:S48–53.PubMedCrossRefGoogle Scholar
  125. 125.
    Pivik RT, Busby KA, Gill E, Hunter P, Nevins R. Heart rate variations during sleep in preadolescents. Sleep. 1996;19(2):117–35.PubMedGoogle Scholar
  126. 126.
    Walter LM, Nixon GM, Walker AM, et al. Heart rate variability remains unchanged in children with sleep disordered breathing. Lisbon: European Society of Sleep Research; 2010.Google Scholar
  127. 127.
    Horne RSC, Yang JSC, Walter, LM et al., Elevated blood pressure during sleep and wake in elementary school children with sleep disordered breathing. Pediatrics 128(1): e85-92, 2011.Google Scholar
  128. 128.
    Horne RSC, Yang JSC, Walter LM, et al. Effects of sleep disordered breathing severity on nocturnal dipping in primary school children. 5th annual conference on pediatric sleep medicine. Westminster, CO; 2009.Google Scholar
  129. 129.
    McConnell K, Somers VK, Kimball T, et al. Baroreflex gain in children with obstructive sleep apnea. Am J Respir Crit Care Med. 2009;180:42–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Harper RM, Leake B, Hodgman JE, Hoppenbrouwers T. Developmental patterns of heart rate and heart rate variability during sleep and waking in normal infants and infants at risk for the sudden infant death syndrome. Sleep. 1982;5(1):28–38.PubMedGoogle Scholar
  131. 131.
    Galland BC, Hayman RM, Taylor BJ, Bolton DP, Sayers RM, Williams SM. Factors affecting heart rate variability and heart rate responses to tilting in infants aged 1 and 3 months. Pediatr Res. 2000;48(3):360–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Parmelee A, Stern E. Development of states in infants. In: Clemente C, Purpura D, Mayer F, editors. Sleep and the maturing nervous system. New York: Academic; 1972. p. 199–228.Google Scholar
  133. 133.
    Tuladhar R, Harding R, Michael Adamson T, Horne RS. Comparison of postnatal development of heart rate responses to trigeminal stimulation in sleeping preterm and term infants. J Sleep Res. 2005;14(1): 29–36.PubMedCrossRefGoogle Scholar
  134. 134.
    Harrington C, Kirjavainen T, Teng A, Sullivan CE. Cardiovascular responses to three simple, provocative tests of autonomic activity in sleeping infants. J Appl Physiol. 2001;91(2):561–8.PubMedGoogle Scholar
  135. 135.
    Witcombe NB, Yiallourou SR, Walker AM, Horne RSC. Blood pressure and heart rate patterns during sleep are altered in preterm-born infants: implications for Sudden Infant Death Syndrome. Pediatrics. 2008;122(6):1242–8.CrossRefGoogle Scholar
  136. 136.
    Silvani A, Asti V, Bojic T, et al. Sleep-dependent changes in the coupling between heart period and arterial pressure in newborn lambs. Pediatr Res. 2005;57(1):108–14.PubMedCrossRefGoogle Scholar
  137. 137.
    Finley JP, Hamilton R, MacKenzie MG. Heart rate response to tilting in newborns in quiet and active sleep. Biol Neonate. 1984;45(1):1–10.PubMedCrossRefGoogle Scholar
  138. 138.
    Yiallourou SR, Walker AM, Horne RSC. Prone sleeping impairs circulatory control during sleep in healthy term infants; implications for Sudden Infant Death Syndrome. Sleep. 2008;31(8):1139–46.PubMedGoogle Scholar
  139. 139.
    Witcombe NB, Yiallourou SR, Walker AM, Horne RSC. Delayed blood pressure recovery after head-up tilting during sleep in preterm infants. J Sleep Res. 2010;19:93–102.PubMedCrossRefGoogle Scholar
  140. 140.
    Mindell JA, Owens JA. A clinical guide to pediatric sleep: diagnosis and management of sleep. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2010.Google Scholar
  141. 141.
    Davis KF, Parker KP, Montgomery GL. Sleep in infants and young children: part one: normal sleep. J Pediatr Health Care. 2004;18(2):65–71.PubMedCrossRefGoogle Scholar
  142. 142.
    Walker MP, Stickgold R. Sleep, memory, and plasticity. Annu Rev Psychol. 2006;57:139–66.PubMedCrossRefGoogle Scholar
  143. 143.
    Shapiro CM, Flanigan MJ. Function of sleep. BMJ. 1993;306:383–5.PubMedCrossRefGoogle Scholar
  144. 144.
    Van Cauter E, Plat L, Copinschi G. Interrelations between sleep and the somatotropic axis. Sleep. 1998;21(6):553–66.PubMedGoogle Scholar
  145. 145.
    Coccagna G, Mantovani M, Brignani F, Manzini A, Lugaresi E. Laboratory note. Arterial pressure changes during spontaneous sleep in man. Electroencephalogr Clin Neurophysiol. 1971;31(3):277–81.PubMedCrossRefGoogle Scholar
  146. 146.
    Snyder F, Hobson JA, Morrison DF, Goldfrank F. Changes in respiration, heart rate, and systolic blood pressure in human sleep. J Appl Physiol. 1964;19: 417–22.PubMedGoogle Scholar
  147. 147.
    Van de Borne P, Biston P, Paiva M, Nguyen H, Linkowski P, Degaute JP. Cardiorespiratory transfer during sleep: a study in healthy young men. Am J Physiol. 1995;269(3 Pt 2):H952–8.PubMedGoogle Scholar
  148. 148.
    Marcus CL, Greene MG, Carroll JL. Blood pressure in children with obstructive sleep apnea. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1098–103.PubMedGoogle Scholar
  149. 149.
    Kohyama J, Ohinata JS, Hasegawa T. Blood pressure in sleep disordered breathing. Arch Dis Child. 2003;88(2):139–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Anna Vlahandonis
    • 1
  • Lisa M. Walter
    • 1
  • Stephanie R. Yiallourou
    • 1
  • Rosemary S. C. Horne
    • 1
    Email author
  1. 1.The Ritchie Centre, Monash Institute of Medical ResearchMonash UniversityClayton, MelbourneAustralia

Personalised recommendations