Advertisement

Neural Mechanisms of Sleep and Circadian Rhythms

  • Edgar Garcia-RillEmail author
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

This chapter describes the characteristics of mechanisms mediating sleep and arousal, their neurological substrates, and the cellular, neurochemical, and network properties of those substrates, with special emphasis on development from birth through puberty. Humans have three sleep and arousal states: waking, asleep (resting or slow-wave sleep), and asleep and dreaming (paradoxical, active, or rapid eye movement sleep). These states can be explained according to the firing properties of neurons based on their intrinsic membrane properties, their synaptic and neurochemical connectivity, and their responsiveness to sensory inputs.

Keywords

Basal Forebrain Locus Coeruleus Neuron Wake State Gamma Band Activity Basal Forebrain Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Supported by USPHS awards NS20146 and RR20246.

References

  1. 1.
    Kleitman N. Basic rest-activity cycle—22 years later. Sleep. 1982;5:311–7.PubMedGoogle Scholar
  2. 2.
    Harrington ME, Rusak B, Mistlberger RE. Anatomy and physiology of the mammalian circadian system. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: W.B. Saunders; 1994. p. 286–300.Google Scholar
  3. 3.
    Roffwarg HP, Muzio JN, Dement WC. Ontogenetic development of the human sleep-dream cycle. Science. 1966;152:604–19.PubMedCrossRefGoogle Scholar
  4. 4.
    Boyar R, Finkelstein J, Roffwarg H, Kapen S, Weitzman E, Hellman L. Synchronization of augmented luteinizing hormone secretion with sleep ­during puberty. N Engl J Med. 1972;287:582–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Fehm HL, Clausing J, Kern W, Pietrowsky R, Born J. Sleep-associated augmentation and synchronization of luteinizing hormone pulses in adult men. Neuroendocrinology. 1991;54:192–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Takahashi Y, Kipnis DM, Daughaday WH. Growth hormone secretion during sleep. J Clin Invest. 1968;47:2079–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Kryger MH, Roth T, Carskadon M. Circadian rhythms in humans: an overview. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: W.B. Saunders; 1994. p. 301–8.Google Scholar
  8. 8.
    Heptulla R, Smitten A, Teague B, Tamborlane WV, Ma YZ, Caprio S. Temporal patterns of circulating leptin levels in lean and obese adolescents: relationships to insulin, growth hormone and free fatty acids rhythmicity. J Clin Endocrinol Metab. 2001;86:90–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Pare D, Llinas R. Conscious and pre-conscious processes as seen from the standpoint of sleep-waking cycle neurophysiology. Neuropsychologia. 1995;33:1155–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Steriade M, Amzica F, Contreras D. Synchronization of fast (30 to 40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci. 1996;16:392–417.PubMedGoogle Scholar
  11. 11.
    Desmedt JE, Tomberg C. Transient phase-locking of 40-Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neurosci Lett. 1994;168:126–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Llinas R, Ribary U, Joliot M, Wang XJ. Content and context in temporal thalamocortical binding. In: Buzsaki G, editor. Temporal coding in the brain. Berlin: Springer; 1994. p. 251–72.CrossRefGoogle Scholar
  13. 13.
    Llinas R, Grace AA, Yarom Y. In vitro neurons in mammalian cortical layer 4 exhibit intrinsic activity in the 10 to 50 Hz frequency range. Proc Natl Acad Sci USA. 1991;88:897–901.PubMedCrossRefGoogle Scholar
  14. 14.
    Llinas R, Ribary U. Coherent 40-Hz oscillation characterizes dream state in human. Proc Natl Acad Sci USA. 1993;90:2078–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–73.PubMedGoogle Scholar
  16. 16.
    Siegel JM. Brainstem mechanisms generating REM sleep. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. London: WB Saunders; 1994. p. 125–44.Google Scholar
  17. 17.
    Steriade M, McCarley RW. Brainstem control of wakefulness and sleep. New York: Plenum Press; 1991. p. 499.Google Scholar
  18. 18.
    Williams JT. Synaptic and intrinsic membrane properties regulating noradrenergic and serotonergic neurons during sleep/wake cycles. In: Lydic R, Baghdoyan HA, editors. Handbook of behavioral state control. New York: CRC Press; 1999. p. 257–76.Google Scholar
  19. 19.
    Garcia-Rill E, Heister DS, Ye M, Charlesworth A, Hayar A. Electrical coupling: novel mechanism for sleep-wake control. Sleep. 2007;30:1405–14.PubMedGoogle Scholar
  20. 20.
    Urbano FJ, Leznik E, Llinas R. Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling. Proc Natl Acad Sci. 2007;104:12554–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Simon C, Kezunovic N, Ye M, Hyde J, Hayar A, Williams DK, Garcia-Rill E. Gamma band unit activity and population responses in the pedunculopontine nucleus (PPN). J Neurophysiol. 2010;104(1):463–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Garcia-Rill E, Reese NB, Skinner RD. Arousal and locomotion: from schizophrenia to narcolepsy. In: Holstege G, Saper CB, editors. The emotional motor system. Prog Brain Res. 1996;107: 417–34.Google Scholar
  23. 23.
    Chase MH, Morales FR. The control of motoneurons during sleep. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. London: WB Saunders; 1994. p. 163–76.Google Scholar
  24. 24.
    Reese NB, Garcia-Rill E, Skinner RD. The pedunculopontine nucleus-auditory input, arousal and pathophysiology. Prog Neurobiol. 1995;47:105–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Shiromani PJ, Scammell T, Sherin JE, Saper CB. Hypothalamic regulation of sleep. In: Lydic R, Baghdoyan HA, editors. Handbook of behavioral state control. New York: CRC Press; 1999. p. 311–25.Google Scholar
  26. 26.
    Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjiorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;276:1265–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Kilduff TS, Peyron C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci. 2000;23:359–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Taylor SG, Routledge C, Hemmati P, Munton RP, Ashmeade TE, Shah AS, Hatcher JP, Hatcher PD, Jones DN, Smith MI, Piper DC, Hunter AJ, Porter RA, Upton N. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Nat Acad Sci. 1999;96:10911–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6:991–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Jones BE, Mulethaler M. Cholinergic and gabaergic neurons of the basal forebrain: role in cortical activation. In: Lydic R, Baghdoyan HA, editors. Handbook of behavioral state control. New York: CRC Press; 1999. p. 213–34.Google Scholar
  31. 31.
    Llinas R, Ribary U. Coherent 40-Hz oscillation characterizes dream state in human. Proc Nat Acad Sci. 1993;90:2078–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Pare D, Llinas R. Conscious and pre-conscious processes as seen from the standpoint of sleep-waking cycle ­neurophysiology. Neuropsychol. 1995;33:1155–68.CrossRefGoogle Scholar
  33. 33.
    Maquet P, Delgueldre C, Delfiore G, Aerts J, Péters JM, Luxen A, Franck G. Functional neuroanatomy of human slow wave sleep. J Neurosci. 1997;17:2807–12.PubMedGoogle Scholar
  34. 34.
    Maquet P, Peters JM, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature. 1996;383:163–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Gonzalez-Lima F, Scheich H. Ascending reticular activating system in the rat: a 2-deoxyglucose study. Brain Res. 1985;344:70–88.PubMedCrossRefGoogle Scholar
  36. 36.
    Garcia-Rill E, Charlesworth A, Heister D, Ye M, Hayar A. The developmental decrease in REM sleep: the role of transmitters and electrical coupling. Sleep. 2008;31:673–90.PubMedGoogle Scholar
  37. 37.
    Llinas R, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci. 1999;96:15222–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Jeanmonod D, Magnin M, Morel A, Siegmund M, Cancro A, Lanz M, Llinas R, Ribary U, Kronberg E, Schulman J, Zonenshayn M. Thalamocortical dysrhythmia. II. Clinical and surgical aspects. Thalamus Relat Syst. 2001;1:237–44.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Center for Translational Neuroscience, Department of Neurobiology and Developmental SciencesUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations