Advertisement

Brain Regulatory Mechanisms Underlying Breathing: Insights for Sleep Pathology

  • Ronald M. HarperEmail author
  • Rajesh Kumar
  • Paul M. Macey
  • Jennifer A. Ogren
  • Mary A. Woo
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Processes underlying regulation of breathing during development can be revealed by pathologic respiratory patterns emerging during sleep. Among these pathologies are obstructive sleep apnea (OSA), extreme periodic or Cheyne–Stokes breathing, and sustained hypoventilation of congenital central hypoventilation syndrome (CCHS). These pathologic patterns are primarily sleep waking state specific and are accompanied by brain structural deficits and impaired neural responses to ventilatory and blood pressure challenges, as revealed by magnetic resonance imaging (MRI) procedures; the aberrant structure and function are useful for outlining both normal and pathological breathing regulatory mechanisms.

Functional responses to ventilatory challenges indicate that structures underlying sensory and motor processes to CO2 or O2 are located in multiple brain areas, including more-rostral sites, not usually considered “respiratory” structures. CCHS and OSA patients, as well as heart failure patients who show a high incidence of Cheyne–Stokes breathing, show extensive injury in several brain areas, including cerebellar and limbic sites, which can exacerbate the underlying condition and contribute to a range of ancillary deficits found in the syndromes. CCHS patients show multiple physiologic deficits in addition to hypoventilation, including impaired CO2 and O2 sensitivity, loss of thermoregulation and the perception of urge to breathe, and autonomic dysfunction; these other deficits contribute to the breathing pathology, often use nonclassical respiratory brain areas, and provide an opportunity to partition other not-often-recognized, but significant, influences on breathing drive.

The structural and functional MRI findings from these breathing-related pathologic conditions indicate that forebrain, brainstem, and cerebellar structures all participate in respiratory regulation through different ancillary influences. These influences provide a potential to intervene and enhance breathing when primary drives from CO2 and O2 are lacking.

Keywords

Obstructive Sleep Apnea Obstructive Sleep Apnea Patient Functional Magnetic Resonance Imaging Cerebellar Deep Nucleus Quiet Sleep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Rebecca Harper, Edwin Valladares, and Christiane Abouzeid for their technical assistance. This research was supported by NIH HD-22695 and HL-60296.

References

  1. 1.
    Amiel J, Laudier B, Attie-Bitach T, et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet. 2003;33(4): 459–61.PubMedCrossRefGoogle Scholar
  2. 2.
    Tiveron MC, Hirsch MR, Brunet JF. The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J Neurosci. 1996;16(23):7649–60.PubMedGoogle Scholar
  3. 3.
    Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development. 1997;124(20):4065–75.PubMedGoogle Scholar
  4. 4.
    Stornetta RL, Moreira TS, Takakura AC, et al. Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J Neurosci. 2006;26(40):10305–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Gong S, Zheng C, Doughty ML, et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003;425(6961):917–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Lein ES, Hawrylycz MJ, Ao N, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Marcus CL, Bautista DB, Amihyia A, Ward SL, Keens TG. Hypercapneic arousal responses in children with congenital central hypoventilation syndrome. Pediatrics. 1991;88(5):993–8.PubMedGoogle Scholar
  8. 8.
    Gozal D, Marcus CL, Shoseyov D, Keens TG. Peripheral chemoreceptor function in children with the congenital central hypoventilation syndrome. J Appl Physiol. 1993;74(1):379–87.PubMedGoogle Scholar
  9. 9.
    Shea SA, Andres LP, Shannon DC, Banzett RB. Ventilatory responses to exercise in humans lacking ventilatory chemosensitivity. J Physiol. 1993;468:623–40.PubMedGoogle Scholar
  10. 10.
    Shea SA, Andres LP, Shannon DC, Guz A, Banzett RB. Respiratory sensations in subjects who lack a ventilatory response to CO2. Respir Physiol. 1993;93(2):203–19.PubMedCrossRefGoogle Scholar
  11. 11.
    Gozal D, Marcus CL, Ward SL, Keens TG. Ventilatory responses to passive leg motion in children with congenital central hypoventilation syndrome. Am J Respir Crit Care Med. 1996;153(2):761–8.PubMedGoogle Scholar
  12. 12.
    Macey PM, Woo MA, Macey KE, et al. Hypoxia reveals posterior thalamic, cerebellar, midbrain, and limbic deficits in congenital central hypoventilation syndrome. J Appl Physiol. 2005;98(3):958–69.PubMedCrossRefGoogle Scholar
  13. 13.
    Woo MS, Woo MA, Gozal D, Jansen MT, Keens TG, Harper RM. Heart rate variability in congenital central hypoventilation syndrome. Pediatr Res. 1992;31(3):291–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Haddad GG, Mazza NM, Defendini R, et al. Congenital failure of automatic control of ventilation, gastrointestinal motility and heart rate. Medicine. 1978;57(6):517–26.PubMedCrossRefGoogle Scholar
  15. 15.
    Schlafke ME, Pokorski M, See WR, Prill RK, Loeschcke HH. Chemosensitive neurons on the ventral medullary surface. Bull Physiopathol Respir. 1975;11(2):277–84.Google Scholar
  16. 16.
    Nattie E, Li A. Central chemoreception is a complex system function that involves multiple brain stem sites. J Appl Physiol. 2009;106(4):1464–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Hartzler LK, Dean JB, Putnam RW. The chemosensitive response of neurons from the locus coeruleus (LC) to hypercapnic acidosis with clamped intracellular pH. Adv Exp Med Biol. 2008;605:333–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Teppema LJ, Dahan A. Central chemoreceptors. In: Teppema LJ, Dahan A, Ward DS, editors. Pharmacology and pathophysiology of the control of breathing. New York: Informa Healthcare; 2005.Google Scholar
  19. 19.
    Nichols NL, Hartzler LK, Conrad SC, Dean JB, Putnam RW. Intrinsic chemosensitivity of individual nucleus tractus solitarius (NTS) and locus coeruleus (LC) neurons from neonatal rats. Adv Exp Med Biol. 2008;605:348–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnson SM, Haxhiu MA, Richerson GB. GFP-expressing locus coeruleus neurons from Prp57 transgenic mice exhibit CO2/H  +  responses in primary cell culture. J Appl Physiol. 2008;105(4):1301–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Harper RM, Macey PM, Woo MA, et al. Hypercapnic exposure in congenital central hypoventilation syndrome reveals CNS respiratory control mechanisms. J Neurophysiol. 2005;93(3):1647–58.PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar R, Macey PM, Woo MA, Alger JR, Harper RM. Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome. Pediatr Res. 2008; 64(3):275–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Kumar R, Macey PM, Woo MA, Harper RM. Rostral brain axonal injury in congenital central hypoventilation syndrome. J Neurosci Res. 2010;88(10):2146–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Macey PM, Richard CA, Kumar R, et al. Hippocampal volume reduction in congenital central hypoventilation syndrome. PLoS One. 2009;4(7):e6436.PubMedCrossRefGoogle Scholar
  25. 25.
    Kumar R, Lee K, Macey PM, Woo MA, Harper RM. Mammillary body and fornix injury in congenital central hypoventilation syndrome. Pediatr Res. 2009;66(4):429–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Henderson LA, Macey KE, Macey PM, Woo MA, Yan-Go FL, Harper RM. Regional brain response patterns to Cheyne-Stokes breathing. Respir Physiol Neurobiol. 2006;150(1):87–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Dauger S, Pattyn A, Lofaso F, et al. Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development. 2003; 130(26):6635–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Dubreuil V, Ramanantsoa N, Trochet D, et al. A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci USA. 2008;105(3): 1067–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Onimaru H, Ikeda K, Kawakami K. CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat. J Neurosci. 2008;28(48):12845–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Tomycz ND, Haynes RL, Schmidt EF, Ackerson K, Kinney HC. Novel neuropathologic findings in the Haddad syndrome. Acta Neuropathol. 2010;119(2): 261–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Kubin L, Davies RO, Pack AI. Control of upper airway motoneurons during REM sleep. News Physiol Sci. 1998;13:91–7.PubMedGoogle Scholar
  32. 32.
    Bradley SR, Pieribone VA, Wang W, Severson CA, Jacobs RA, Richerson GB. Chemosensitive serotonergic neurons are closely associated with large medullary arteries. Nat Neurosci. 2002;5(5):401–2.PubMedCrossRefGoogle Scholar
  33. 33.
    Ni H, Schechtman VL, Zhang J, Glotzbach SF, Harper RM. Respiratory responses to preoptic/anterior hypothalamic warming during sleep in kittens. Reprod Fertil Dev. 1996;8(1):79–86.PubMedCrossRefGoogle Scholar
  34. 34.
    Vanderlaan M, Holbrook CR, Wang M, Tuell A, Gozal D. Epidemiologic survey of 196 patients with congenital central hypoventilation syndrome. Pediatr Pulmonol. 2004;37(3):217–29.PubMedCrossRefGoogle Scholar
  35. 35.
    Kumar R, Macey PM, Woo MA, Alger JR, Harper RM. Elevated mean diffusivity in widespread brain regions in congenital central hypoventilation ­syndrome. J Magn Reson Imaging. 2006;24(6): 1252–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Kumar R, Macey PM, Woo MA, Alger JR, Keens TG, Harper RM. Neuroanatomic deficits in congenital central hypoventilation syndrome. J Comp Neurol. 2005;487(4):361–71.PubMedCrossRefGoogle Scholar
  37. 37.
    Ogren JA, Macey PM, Kumar R, Woo MA, Harper RM. Central autonomic regulation in congenital central hypoventilation syndrome. Neuroscience. 2010;167(4):1249–56.PubMedCrossRefGoogle Scholar
  38. 38.
    Evans KC, Banzett RB, Adams L, McKay L, Frackowiak RS, Corfield DR. BOLD fMRI identifies limbic, paralimbic, and cerebellar activation during air hunger. J Neurophysiol. 2002;88(3):1500–11.PubMedGoogle Scholar
  39. 39.
    Peiffer C, Poline JB, Thivard L, Aubier M, Samson Y. Neural substrates for the perception of acutely induced dyspnea. Am J Respir Crit Care Med. 2001;163(4):951–7.PubMedGoogle Scholar
  40. 40.
    Fleming PJ, Cade D, Bryan MH, Bryan AC. Congenital central hypoventilation and sleep state. Pediatrics. 1980;66(3):425–8.PubMedGoogle Scholar
  41. 41.
    Marks JD, Frysinger RC, Harper RM. State-dependent respiratory depression elicited by stimulation of the orbital frontal cortex. Exp Neurol. 1987;95(3):714–29.PubMedCrossRefGoogle Scholar
  42. 42.
    Richard CA, Rector DM, Macey PM, Ali N, Harper RM. Late-developing rostral ventrolateral medullary surface responses to cardiovascular challenges during sleep. Brain Res. 2003;985(1):65–77.PubMedCrossRefGoogle Scholar
  43. 43.
    Paton JY, Swaminathan S, Sargent CW, Hawksworth A, Keens TG. Ventilatory response to exercise in children with congenital central hypoventilation syndrome. Am Rev Respir Dis. 1993;147(5):1185–91.PubMedGoogle Scholar
  44. 44.
    Gozal D, Simakajornboon N. Passive motion of the extremities modifies alveolar ventilation during sleep in patients with congenital central hypoventilation syndrome. Am J Respir Crit Care Med. 2000;162(5): 1747–51.PubMedGoogle Scholar
  45. 45.
    Macey PM, Kumar R, Woo MA, Harper RK, Harper RM. Functional magnetic resonance imaging during passive foot movement in congenital central hypoventilation syndrome patients. Society for Neuroscience Abstracts. 2005;635.13.Google Scholar
  46. 46.
    Trelease RB, Sieck GC, Marks JD, Harper RM. Respiratory inhibition induced by transient hypertension during sleep in unrestrained cats. Exp Neurol. 1985;90(1):173–86.PubMedCrossRefGoogle Scholar
  47. 47.
    Marks JD, Harper RM. Differential inhibition of the diaphragm and posterior cricoarytenoid muscles induced by transient hypertension across sleep states in intact cats. Exp Neurol. 1987;95(3):730–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Chokroverty S, Sachdeo R, Masdeu J. Autonomic dysfunction and sleep apnea in olivopontocerebellar degeneration. Arch Neurol. 1984;41(9):926–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen ML, Witmans MB, Tablizo MA, et al. Disordered respiratory control in children with partial cerebellar resections. Pediatr Pulmonol. 2005;40(1):88–91.PubMedCrossRefGoogle Scholar
  50. 50.
    Welsh JP, Yuen G, Placantonakis DG, et al. Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol. 2002;89:331–59.PubMedGoogle Scholar
  51. 51.
    Harper RM, Macey PM, Henderson LA, et al. fMRI responses to cold pressor challenges in control and obstructive sleep apnea subjects. J Appl Physiol. 2003;94(4):1583–95.PubMedGoogle Scholar
  52. 52.
    Macey PM, Macey KE, Henderson LA, et al. Functional magnetic resonance imaging responses to expiratory loading in obstructive sleep apnea. Respir Physiol Neurobiol. 2003;138(2–3):275–90.PubMedCrossRefGoogle Scholar
  53. 53.
    Henderson LA, Woo MA, Macey PM, et al. Neural responses during Valsalva maneuvers in obstructive sleep apnea syndrome. J Appl Physiol. 2003;94(3): 1063–74.PubMedGoogle Scholar
  54. 54.
    Macey KE, Macey PM, Woo MA, et al. Inspiratory loading elicits aberrant fMRI signal changes in obstructive sleep apnea. Respir Physiol Neurobiol. 2006;151(1):44–60.PubMedCrossRefGoogle Scholar
  55. 55.
    Korner AF, Guilleminault C, Van den Hoed J, Baldwin RB. Reduction of sleep apnea and bradycardia in preterm infants on oscillating water beds: a controlled polygraphic study. Pediatrics. 1978;61(4): 528–33.PubMedGoogle Scholar
  56. 56.
    Straus C, Trang H, Becquemin MH, Touraine P, Similowski T. Chemosensitivity recovery in Ondine’s curse syndrome under treatment with desogestrel. Respir Physiol Neurobiol. 2010;171(2):171–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Bayliss DA, Millhorn DE. Central neural mechanisms of progesterone action: application to the respiratory system. J Appl Physiol. 1992;73(2):393–404.PubMedGoogle Scholar
  58. 58.
    Sritippayawan S, Hamutcu R, Kun SS, Ner Z, Ponce M, Keens TG. Mother-daughter transmission of congenital central hypoventilation syndrome. Am J Respir Crit Care Med. 2002;166(3):367–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ronald M. Harper
    • 1
    Email author
  • Rajesh Kumar
    • 1
  • Paul M. Macey
    • 2
  • Jennifer A. Ogren
    • 2
  • Mary A. Woo
    • 2
  1. 1.Department of Neurobiology, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  2. 2.UCLA School of NursingUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations