Advertisement

The “Omics” Future: Genomics, Transcriptomics, and Proteomics

  • Sina A. GharibEmail author
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Rapid advancements in biotechnology and computing power have revolutionized the study of DNA, RNA, and protein at unprecedented resolution, depth, and thoroughness. These breakthroughs have led to the creation of the fields of genomics, transcriptomics, and proteomics. This chapter explains the concepts of genomics, transcriptomics, and proteomics and their potential for analyzing the genetic components of sleep disorders. Sleep and its associated disorders represent prime targets for systems-based analyses using these new approaches.

Keywords

Obstructive Sleep Apnea Sleep Disorder Shotgun Proteomics Obstructive Sleep Apnea Group Adenotonsillar Hypertrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.PubMedCrossRefGoogle Scholar
  3. 3.
    International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.CrossRefGoogle Scholar
  4. 4.
    Sulem P, Gudbjartsson DF, Stacey SN, et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat Genet. 2007;39(12):1443–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Lango Allen H, Estrada K, Lettre G, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467(7317):832–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42(1):45–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Sotoodehnia N, Isaacs A, de Bakker PI, et al. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet. 2010;42(12):1068–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Kathiresan S, Voight BF, Purcell S, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41(3):334–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–89.PubMedCrossRefGoogle Scholar
  10. 10.
    Ikram MA, Seshadri S, Bis JC, et al. Genomewide association studies of stroke. N Engl J Med. 2009;360(17):1718–28.PubMedCrossRefGoogle Scholar
  11. 11.
    Hindorff LA, Junkins HA, Hall PN, Mehta JP, Manolio TA. A catalog of published genome-wide association studies. www.genome.gov/gwastudies (2011). Accessed Jun 2011.
  12. 12.
    Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet. 2010;11(12):843–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature. 1999;402(6761 Suppl):C47–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature. 2009;461(7261):218–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Winkelmann J, Schormair B, Lichtner P, et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat Genet. 2007;39(8):1000–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Stefansson H, Rye DB, Hicks A, et al. A genetic risk factor for periodic limb movements in sleep. N Engl J Med. 2007;357(7):639–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Miyagawa T, Kawashima M, Nishida N, et al. Variant between CPT1B and CHKB associated with susceptibility to narcolepsy. Nat Genet. 2008;40(11): 1324–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Hallmayer J, Faraco J, Lin L, et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet. 2009;41(6):708–11.PubMedCrossRefGoogle Scholar
  19. 19.
    Kornum BR, Kawashima M, Faraco J, et al. Common variants in P2RY11 are associated with narcolepsy. Nat Genet. 2011;43(1):66–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Larkin EK, Patel SR, Goodloe RJ, et al. A candidate gene study of obstructive sleep apnea in European Americans and African Americans. Am J Respir Crit Care Med. 2010;182(7):947–53.PubMedCrossRefGoogle Scholar
  21. 21.
    Lander ES. Array of hope. Nat Genet. 1999;21(1 Suppl):3–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science. 1995;270(5235):484–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Cirelli C, Gutierrez CM, Tononi G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron. 2004;41(1):35–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Mackiewicz M, Shockley KR, Romer MA, et al. Macromolecule biosynthesis: a key function of sleep. Physiol Genomics. 2007;31(3):441–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Li J, Grigoryev DN, Ye SQ, et al. Chronic intermittent hypoxia upregulates genes of lipid biosynthesis in obese mice. J Appl Physiol. 2005;99(5):1643–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Fan C, Iacobas DA, Zhou D, et al. Gene expression and phenotypic characterization of mouse heart after chronic constant or intermittent hypoxia. Physiol Genomics. 2005;22(3):292–307.PubMedCrossRefGoogle Scholar
  28. 28.
    Gharib SA, Dayyat E, Khalyfa A, et al. Intermittent hypoxia mobilizes bone marrow-derived very small embryonic-like stem cells and activates developmental transcriptional programs in mice. Sleep. 2010;33(11):1439–46.PubMedGoogle Scholar
  29. 29.
    Khalyfa A, Capdevila OS, Buazza MO, Serpero LD, Kheirandish-Gozal L, Gozal D. Genome-wide gene expression profiling in children with non-obese obstructive sleep apnea. Sleep Med. 2009;10(1):75–86.PubMedCrossRefGoogle Scholar
  30. 30.
    Khalyfa A, Gharib SA, Kim J, et al. Peripheral blood leukocyte gene expression patterns and metabolic parameters in habitually snoring and non-snoring children with normal polysomnographic findings. Sleep. 2010;34(2):153–60.Google Scholar
  31. 31.
    Khalyfa A, Gharib SA, Kim J, et al. Transcriptomic analysis identifies phosphatases as novel targets for adenotonsillar hypertrophy of pediatric obstructive sleep apnea. Am J Respir Crit Care Med. 2010;181(10):1114–20.PubMedCrossRefGoogle Scholar
  32. 32.
    Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49–79.PubMedCrossRefGoogle Scholar
  33. 33.
    Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA. 2000;97(17):9390–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Washburn MP, Wolters D, Yates 3 JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19(3):242–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Kelleher NL. Top-down proteomics. Anal Chem. 2004;76(11):197A–203.PubMedCrossRefGoogle Scholar
  36. 36.
    Fu X, Gharib SA, Green PS, et al. Spectral index for assessment of differential protein expression in shotgun proteomics. J Proteome Res. 2008;7(3):845–54.PubMedCrossRefGoogle Scholar
  37. 37.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex ­protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17(10):994–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Gozal D, Jortani S, Snow AB, et al. Two-dimensional differential in-gel electrophoresis proteomic approaches reveal urine candidate biomarkers in pediatric obstructive sleep apnea. Am J Respir Crit Care Med. 2009;180(12):1253–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Division of Pulmonary and Critical Care Medicine, Department of MedicineUniversity of WashingtonSeattleUSA
  2. 2.UW Medicine Sleep Institute and Center for Lung Biology, Department of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations