Advertisement

Chemoreceptors, Breathing, and Sleep

  • John L. CarrollEmail author
  • Supriya K. Jambhekar
  • David F. Donnelly
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Oxygen (O2) and carbon dioxide (CO2) chemoreception is highly relevant to multiple areas of sleep medicine. Patients with sleep-disordered breathing (SDB) may experience hypoxia during sleep, often nightly in an episodic pattern called “chronic intermittent hypoxia” (CIH), which in turn may lead to major cardiovascular complications. Some patients with SDB hypoventilate during sleep and develop hypercapnia. Hypoxemia and hypercapnia mediate, in part, arousal responses to abnormal breathing during sleep. In this chapter, we review the role of O2 and CO2 chemoreceptors in breathing control, the basic physiology of O2 and CO2 sensing, and the role of chemoreceptors in sleep-related breathing disorders, all in a developmental context. This chapter also discusses a variety of disorders associated with sleep problems, from congenital central hypoventilation syndrome (CCHS) to Prader–Willi syndrome (PWS), which are associated with abnormal chemoreceptor function.

Keywords

Obstructive Sleep Apnea Obstructive Sleep Apnea Syndrome Carotid Body Ventilatory Response Nucleus Tractus Solitarius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McArdle WD, Katch FI, Katch VL. Measuring and evaluating human energy-generating capacities during exercise. In: Essentials of exercise physiology. 3 rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2006. p. 223–59.Google Scholar
  2. 2.
    Semenza GL. Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol. 2010;30(4):648–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009;24:97–106.CrossRefGoogle Scholar
  4. 4.
    Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL. Acute oxygen-sensing mechanisms. N Engl J Med. 2005;353(19):2042–55.PubMedCrossRefGoogle Scholar
  5. 5.
    Neubauer JA, Sunderram J. Oxygen-sensing neurons in the central nervous system. J Appl Physiol. 2004;96(1):367–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Powell FL, Kim BC, Johnson SR, Fu Z. Oxygen sensing in the brain—invited article. Adv Exp Med Biol. 2009;648:369–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Blain GM, Smith CA, Henderson KS, Dempsey JA. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2). J Physiol. 2010;588(Pt 13):2455–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Smith CA, Forster HV, Blain GM, Dempsey JA. An interdependent model of central/peripheral chemoreception: evidence and implications for ventilatory control. Respir Physiol Neurobiol. 2010;173(3):288–97.PubMedCrossRefGoogle Scholar
  9. 9.
    Blain GM, Smith CA, Henderson KS, Dempsey JA. Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol. 2009;106(5):1564–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Dauger S, Pattyn A, Lofaso F, et al. Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development. 2003; 130(26):6635–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Carroll JL, Donnelly DF. Postnatal development of carotid chemoreceptor function. In: Marcus CL, Carroll JL, Donnelly DF, Loughlin GM, editors. Sleep and breathing in children: developmental changes in breathing during sleep. New York: Informa Healthcare; 2008. p. 47–82.Google Scholar
  12. 12.
    Donnelly DF, Bavis RW, Kim I, Dbouk HA, Carroll JL. Time course of alterations in pre- and post-­synaptic chemoreceptor function during developmental hyperoxia. Respir Physiol Neurobiol. 2009;168(3): 189–97.PubMedCrossRefGoogle Scholar
  13. 13.
    Sterni LM, Bamford OS, Wasicko MJ, Carroll JL. Chronic hypoxia abolished the postnatal increase in carotid body type I cell sensitivity to hypoxia. Am J Physiol. 1999;277(3 Pt 1):L645–52.PubMedGoogle Scholar
  14. 14.
    Carroll JL. Developmental plasticity in respiratory control. J Appl Physiol. 2003;94(1):375–89.PubMedCrossRefGoogle Scholar
  15. 15.
    Forster HV, Smith CA. Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. J Appl Physiol. 2010;108(4):989–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Nattie E, Li A. Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. J Appl Physiol. 2010; 108(5):1417–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Feldman JL, Mitchell GS, Nattie EE. Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci. 2003;26:239–66.PubMedCrossRefGoogle Scholar
  18. 18.
    Bianchi AL, Gestreau C. The brainstem respiratory network: an overview of a half century of research. Respir Physiol Neurobiol. 2009;168(1–2):4–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Carroll JL, Agarwal A. Development of ventilatory control in infants. Paediatr Respir Rev. 2010;11(4): 199–207. doi: 10.1016/j.prrv.2010.06.002. Ref Type: Generic.PubMedCrossRefGoogle Scholar
  20. 20.
    Guyenet PG, Mulkey DK. Retrotrapezoid nucleus and parafacial respiratory group. Respir Physiol Neurobiol. 2010;173(3):244–55.PubMedCrossRefGoogle Scholar
  21. 21.
    Gauda EB, Carroll JL, Donnelly DF. Developmental maturation of chemosensitivity to hypoxia of peripheral arterial chemoreceptors—invited article. Adv Exp Med Biol. 2009;648:243–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Gauda EB, Cristofalo E, Nunez J. Peripheral arterial chemoreceptors and sudden infant death syndrome. Respir Physiol Neurobiol. 2007;157(1):162–70.PubMedCrossRefGoogle Scholar
  23. 23.
    Bavis RW, Mitchell GS. Long-term effects of the perinatal environment on respiratory control. J Appl Physiol. 2008;104(4):1220–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Dumont FS, Kinkead R. Neonatal stress and attenuation of the hypercapnic ventilatory response in adult male rats: the role of carotid chemo and baroreceptors. Am J Physiol Regul Integr Comp Physiol. 2010;299(5):R1279–89.PubMedCrossRefGoogle Scholar
  25. 25.
    Kinkead R, Gulemetova R, Bairam A. Neonatal maternal separation enhances phrenic responses to hypoxia and carotid sinus nerve stimulation in the adult anesthetized rat. J Appl Physiol. 2005;99(1):189–96.PubMedCrossRefGoogle Scholar
  26. 26.
    Berthon-Jones M, Sullivan CE. Ventilation and arousal responses to hypercapnia in normal sleeping humans. J Appl Physiol. 1984;57(1):59–67.PubMedGoogle Scholar
  27. 27.
    Rist KE, Daubenspeck JA, McGovern JF. Effects of non-REM sleep upon respiratory drive and the respiratory pump in humans. Respir Physiol. 1986;63(2): 241–56.PubMedCrossRefGoogle Scholar
  28. 28.
    Bowes G, Townsend ER, Kozar LF, Bromley SM, Phillipson EA. Effect of carotid body denervation on arousal response to hypoxia in sleeping dogs. J Appl Physiol. 1981;51(1):40–5.PubMedGoogle Scholar
  29. 29.
    Lovering AT, Dunin-Barkowski WL, Vidruk EH, Orem JM. Ventilatory response of the cat to hypoxia in sleep and wakefulness. J Appl Physiol. 2003;95(2):545–54.PubMedGoogle Scholar
  30. 30.
    Berthon-Jones M, Sullivan CE. Ventilatory and arousal responses to hypoxia in sleeping humans. Am Rev Respir Dis. 1982;125(6):632–9.PubMedGoogle Scholar
  31. 31.
    Hedemark LL, Kronenberg RS. Ventilatory and heart rate responses to hypoxia and hypercapnia during sleep in adults. J Appl Physiol. 1982;53(2):307–12.PubMedGoogle Scholar
  32. 32.
    Smith CA, Chenuel BJ, Henderson KS, Dempsey JA. The apneic threshold during non-REM sleep in dogs: sensitivity of carotid body vs. central chemoreceptors. J Appl Physiol. 2007;103(2):578–86.PubMedCrossRefGoogle Scholar
  33. 33.
    Davidson TL, Fewell JE. Arousal response from sleep to tracheal obstruction in lambs during postnatal maturation. Pediatr Res. 1994;36(4):501–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Baker SB, Fewell JE. Effects of hyperoxia on the arousal response to upper airway obstruction in lambs. Pediatr Res. 1987;21(2):116–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Fewell JE, Taylor BJ, Kondo CS, Dascalu V, Filyk SC. Influence of carotid denervation on the arousal and cardiopulmonary responses to upper airway obstruction in lambs. Pediatr Res. 1990;28(4):374–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Fewell JE, Kondo CS, Dascalu V, Filyk SC. Influence of carotid denervation on the arousal and cardiopulmonary response to rapidly developing hypoxemia in lambs. Pediatr Res. 1989;25(5):473–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Ward SL, Bautista DB, Keens TG. Hypoxic arousal responses in normal infants. Pediatrics. 1992;89(5 Pt 1):860–4.PubMedGoogle Scholar
  38. 38.
    Milerad J, Hertzberg T, Wennergren G, Lagercrantz H. Respiratory and arousal responses to hypoxia in apnoeic infants reinvestigated. Eur J Pediatr. 1989; 148(6):565–70.PubMedCrossRefGoogle Scholar
  39. 39.
    van der Hal AL, Rodriguez AM, Sargent CW, Platzker AC, Keens TG. Hypoxic and hypercapneic arousal responses and prediction of subsequent apnea in apnea of infancy. Pediatrics. 1985;75(5): 848–54.PubMedGoogle Scholar
  40. 40.
    Ariagno R, Nagel L, Guilleminault C. Waking and ventilatory responses during sleep in infants near-miss for sudden infant death syndrome. Sleep. 1980;3(3–4):351–9.PubMedGoogle Scholar
  41. 41.
    Hunt CE. Abnormal hypercarbic and hypoxic sleep arousal responses in near-miss SIDS infants. Pediatr Res. 1981;15(11):1462–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Parslow PM, Harding R, Adamson TM, Horne RS. Of sleep state and postnatal age on arousal responses induced by mild hypoxia in infants. Sleep. 2004;27(1):105–9.PubMedGoogle Scholar
  43. 43.
    Fewell JE, Kondo CS, Dascalu V, Filyk SC. Influence of carotid-denervation on the arousal and cardiopulmonary responses to alveolar hypercapnia in lambs. J Dev Physiol. 1989;12(4):193–9.PubMedGoogle Scholar
  44. 44.
    Bowes G. Arousal responses to chemical stimuli during sleep. J Dev Physiol. 1984;6(3):207–13.PubMedGoogle Scholar
  45. 45.
    Fewell JE, Konduri GG. Influence of repeated exposure to rapidly developing hypoxaemia on the arousal and cardiopulmonary response to rapidly developing hypoxaemia in lambs. J Dev Physiol. 1989;11(2): 77–82.PubMedGoogle Scholar
  46. 46.
    Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science. 1991;254(5032):726–9.PubMedCrossRefGoogle Scholar
  47. 47.
    McLean HA, Remmers JE. Respiratory motor output of the sectioned medulla of the neonatal rat. Respir Physiol. 1994;96(1):49–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Guyenet PG, Bayliss DA, Stornetta RL, Fortuna MG, Abbott SB, Depuy SD. Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respir Physiol Neurobiol. 2009;168(1–2):59–68.PubMedCrossRefGoogle Scholar
  49. 49.
    Guyenet PG, Bayliss DA, Mulkey DK, Stornetta RL, Moreira TS, Takakura AT. The retrotrapezoid nucleus and central chemoreception. Adv Exp Med Biol. 2008;605:327–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Dubreuil V, Thoby-Brisson M, Rallu M, et al. Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci. 2009;29(47):14836–46.PubMedCrossRefGoogle Scholar
  51. 51.
    Dubreuil V, Ramanantsoa N, Trochet D, et al. A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci USA. 2008;105(3):1067–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Nattie E, Li A. Central chemoreception is a complex system function that involves multiple brain stem sites. J Appl Physiol. 2009;106(4):1464–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Nattie E, Li A. Central chemoreception 2005: a brief review. Auton Neurosci. 2006;126–127:332–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Joseph V, Pequignot JM, Van RO. Neurochemical perspectives on the control of breathing during sleep. Respir Physiol Neurobiol. 2002;130(3):253–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Gervasoni D, Peyron C, Rampon C, et al. Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci. 2000;20(11): 4217–25.PubMedGoogle Scholar
  56. 56.
    Li A, Randall M, Nattie EE. CO(2) microdialysis in retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep. J Appl Physiol. 1999;87(3):910–9.PubMedGoogle Scholar
  57. 57.
    Nattie EE, Li A. CO2 dialysis in the medullary raphe of the rat increases ventilation in sleep. J Appl Physiol. 2001;90(4):1247–57.PubMedGoogle Scholar
  58. 58.
    Nattie EE, Li A. CO2 dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness. J Appl Physiol. 2002;92(5):2119–30.PubMedGoogle Scholar
  59. 59.
    Manning HL, Leiter JC. Respiratory control and respiratory sensation in a patient with a ganglioglioma within the dorsocaudal brain stem. Am J Respir Crit Care Med. 2000;161(6):2100–6.PubMedGoogle Scholar
  60. 60.
    Li A, Nattie E. Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability. J Physiol. 2006;570(Pt 2): 385–96.PubMedGoogle Scholar
  61. 61.
    Hodges MR, Tattersall GJ, Harris MB, et al. Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci. 2008;28(10):2495–505.PubMedCrossRefGoogle Scholar
  62. 62.
    Kuwaki T, Li A, Nattie E. State-dependent central chemoreception: a role of orexin. Respir Physiol Neurobiol. 2010;173(3):223–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Li A, Nattie EE. Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle. J Physiol. 2010;588:2935–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Dean JB, Nattie EE. Central CO2 chemoreception in cardio-respiratory control. J Appl Physiol. 2010;108(4):976–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Younes M. Role of respiratory control mechanisms in the pathogenesis of obstructive sleep disorders. J Appl Physiol. 2008;105(5):1389–405.PubMedCrossRefGoogle Scholar
  66. 66.
    Younes M. Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med. 2004;169(5):623–33.PubMedCrossRefGoogle Scholar
  67. 67.
    Eckert DJ, Malhotra A, Jordan AS. Mechanisms of apnea. Prog Cardiovasc Dis. 2009;51(4):313–23.PubMedCrossRefGoogle Scholar
  68. 68.
    Kimoff RJ, Cheong TH, Olha AE, et al. Mechanisms of apnea termination in obstructive sleep apnea. Role of chemoreceptor and mechanoreceptor stimuli. Am J Respir Crit Care Med. 1994;149(3 Pt 1):707–14.PubMedGoogle Scholar
  69. 69.
    Gleeson K, Zwillich CW, White DP. The influence of increasing ventilatory effort on arousal from sleep. Am Rev Respir Dis. 1990;142(2):295–300.PubMedGoogle Scholar
  70. 70.
    Berry RB, Gleeson K. Respiratory arousal from sleep: mechanisms and significance. Sleep. 1997; 20(8):654–75.PubMedGoogle Scholar
  71. 71.
    Younes M, Ostrowski M, Atkar R, Laprairie J, Siemens A, Hanly P. Mechanisms of breathing instability in patients with obstructive sleep apnea. J Appl Physiol. 2007;103(6):1929–41.PubMedCrossRefGoogle Scholar
  72. 72.
    Younes M. Contributions of upper airway mechanics and control mechanisms to severity of obstructive apnea. Am J Respir Crit Care Med. 2003;168(6): 645–58.PubMedCrossRefGoogle Scholar
  73. 73.
    Younes M, Ostrowski M, Thompson W, Leslie C, Shewchuk W. Chemical control stability in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2001;163(5):1181–90.PubMedGoogle Scholar
  74. 74.
    Kara T, Narkiewicz K, Somers VK. Chemoreflexes—physiology and clinical implications. Acta Physiol Scand. 2003;177(3):377–84.PubMedCrossRefGoogle Scholar
  75. 75.
    McNamara F, Issa FG, Sullivan CE. Arousal pattern following central and obstructive breathing abnormalities in infants and children. J Appl Physiol. 1996;81(6):2651–7.PubMedGoogle Scholar
  76. 76.
    Marcus CL, Gozal D, Arens R, et al. Ventilatory responses during wakefulness in children with obstructive sleep apnea. Am J Respir Crit Care Med. 1994;149(3 Pt 1):715–21.PubMedGoogle Scholar
  77. 77.
    Gozal D, Arens R, Omlin KJ, Marcus CL, Keens TG. Maturational differences in step vs. ramp hypoxic and hypercapnic ventilatory responses. J Appl Physiol. 1994;76(5):1968–75.PubMedGoogle Scholar
  78. 78.
    Marcus CL, Glomb WB, Basinski DJ, Davidson SL, Keens TG. Developmental pattern of hypercapnic and hypoxic ventilatory responses from childhood to adulthood. J Appl Physiol. 1994;76(1):314–20.PubMedGoogle Scholar
  79. 79.
    Kato M, Adachi T, Koshino Y, Somers VK. Obstructive sleep apnea and cardiovascular disease. Circ J. 2009;73(8):1363–70.PubMedCrossRefGoogle Scholar
  80. 80.
    Fletcher EC. Sympathetic over activity in the etiology of hypertension of obstructive sleep apnea. Sleep. 2003;26(1):15–9.PubMedGoogle Scholar
  81. 81.
    Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90(1):47–112.PubMedCrossRefGoogle Scholar
  82. 82.
    Prabhakar NR, Peng YJ, Kumar GK, Pawar A. Altered carotid body function by intermittent hypoxia in neonates and adults: relevance to recurrent apneas. Respir Physiol Neurobiol. 2007;157(1):148–53.PubMedCrossRefGoogle Scholar
  83. 83.
    Prabhakar NR, Kumar GK. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol. 2010;174:156–61.PubMedCrossRefGoogle Scholar
  84. 84.
    Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–904.PubMedCrossRefGoogle Scholar
  85. 85.
    Serratto M, Harris VJ, Carr I. Upper airways obstruction. Presentation with systemic hypertension. Arch Dis Child. 1981;56(2):153–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Kwok KL, Ng DK, Chan CH. Cardiovascular changes in children with snoring and obstructive sleep apnoea. Ann Acad Med Singapore. 2008;37(8):715–21.PubMedGoogle Scholar
  87. 87.
    Kwok KL, Ng DK, Cheung YF. BP and arterial distensibility in children with primary snoring. Chest. 2003;123(5):1561–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Amin RS, Kimball TR, Kalra M, et al. Left ventricular function in children with sleep-disordered breathing. Am J Cardiol. 2005;95(6):801–4.PubMedCrossRefGoogle Scholar
  89. 89.
    Amin RS, Carroll JL, Jeffries JL, et al. Twenty-four-hour ambulatory blood pressure in children with sleep-disordered breathing. Am J Respir Crit Care Med. 2004;169(8):950–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Amin RS, Kimball TR, Bean JA, et al. Left ventricular hypertrophy and abnormal ventricular geometry in children and adolescents with obstructive sleep apnea. Am J Respir Crit Care Med. 2002;165(10): 1395–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Liao D, Li X, Rodriguez-Colon SM, et al. Sleep-disordered breathing and cardiac autonomic modulation in children. Sleep Med. 2010;11(5):484–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Liao D, Li X, Vgontzas AN, et al. Sleep-disordered breathing in children is associated with impairment of sleep stage-specific shift of cardiac autonomic modulation. J Sleep Res. 2010;19(2):358–65.PubMedCrossRefGoogle Scholar
  93. 93.
    Cheng L, Ivanova O, Fan HH, Khoo MC. An integrative model of respiratory and cardiovascular control in sleep-disordered breathing. Respir Physiol Neurobiol. 2010;174:4–28.PubMedCrossRefGoogle Scholar
  94. 94.
    Chaicharn J, Lin Z, Chen ML, Ward SL, Keens T, Khoo MC. Model-based assessment of cardiovascular autonomic control in children with obstructive sleep apnea. Sleep. 2009;32(7):927–38.PubMedGoogle Scholar
  95. 95.
    Baharav A, Kotagal S, Rubin BK, Pratt J, Akselrod S. Autonomic cardiovascular control in children with obstructive sleep apnea. Clin Auton Res. 1999;9(6):345–51.PubMedCrossRefGoogle Scholar
  96. 96.
    O’Brien LM, Gozal D. Autonomic dysfunction in children with sleep-disordered breathing. Sleep. 2005;28(6):747–52.PubMedGoogle Scholar
  97. 97.
    Pawar A, Peng YJ, Jacono FJ, Prabhakar NR. Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. J Appl Physiol. 2008;104(5):1287–94.PubMedCrossRefGoogle Scholar
  98. 98.
    Soukhova-O’Hare GK, Roberts AM, Gozal D. Impaired control of renal sympathetic nerve activity following neonatal intermittent hypoxia in rats. Neurosci Lett. 2006;399(3):181–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Reeves SR, Gozal D. Developmental plasticity of respiratory control following intermittent hypoxia. Respir Physiol Neurobiol. 2005;149(1–3):301–11.PubMedCrossRefGoogle Scholar
  100. 100.
    Amiel J, Dubreuil V, Ramanantsoa N, et al. PHOX2B in respiratory control: lessons from congenital central hypoventilation syndrome and its mouse models. Respir Physiol Neurobiol. 2009;168(1–2):125–32.PubMedCrossRefGoogle Scholar
  101. 101.
    Cutz E, Ma TK, Perrin DG, Moore AM, Becker LE. Peripheral chemoreceptors in congenital central hypoventilation syndrome. Am J Respir Crit Care Med. 1997;155(1):358–63.PubMedGoogle Scholar
  102. 102.
    Gozal D, Marcus CL, Shoseyov D, Keens TG. Peripheral chemoreceptor function in children with the congenital central hypoventilation syndrome. J Appl Physiol. 1993;74(1):379–87.PubMedGoogle Scholar
  103. 103.
    Paton JY, Swaminathan S, Sargent CW, Keens TG. Hypoxic and hypercapnic ventilatory responses in awake children with congenital central hypoventilation syndrome. Am Rev Respir Dis. 1989;140(2):368–72.PubMedCrossRefGoogle Scholar
  104. 104.
    Oren J, Newth CJ, Hunt CE, Brouillette RT, Bachand RT, Shannon DC. Ventilatory effects of almitrine bismesylate in congenital central hypoventilation syndrome. Am Rev Respir Dis. 1986;134(5):917–9.PubMedGoogle Scholar
  105. 105.
    Hunt CE, Inwood RJ, Shannon DC. Respiratory and nonrespiratory effects of doxapram in congenital central hypoventilation syndrome. Am Rev Respir Dis. 1979;119(2):263–9.PubMedGoogle Scholar
  106. 106.
    Ward SL, Jacobs RA, Gates EP, Hart LD, Keens TG. Abnormal ventilatory patterns during sleep in infants with myelomeningocele. J Pediatr. 1986;109(4): 631–4.PubMedCrossRefGoogle Scholar
  107. 107.
    Ward SL, Nickerson BG, van der Hal A, Rodriguez AM, Jacobs RA, Keens TG. Absent hypoxic and hypercapneic arousal responses in children with myelomeningocele and apnea. Pediatrics. 1986; 78(1):44–50.PubMedGoogle Scholar
  108. 108.
    Swaminathan S, Paton JY, Ward SL, Jacobs RA, Sargent CW, Keens TG. Abnormal control of ventilation in adolescents with myelodysplasia. J Pediatr. 1989;115(6):898–903.PubMedCrossRefGoogle Scholar
  109. 109.
    Gozal D, Arens R, Omlin KJ, Jacobs RA, Keens TG. Peripheral chemoreceptor function in children with myelomeningocele and Arnold-Chiari malformation type 2. Chest. 1995;108(2):425–31.PubMedCrossRefGoogle Scholar
  110. 110.
    Arens R, Gozal D, Omlin KJ, et al. Hypoxic and hypercapnic ventilatory responses in Prader-Willi syndrome. J Appl Physiol. 1994;77(5):2224–30.PubMedGoogle Scholar
  111. 111.
    Arens R, Gozal D, Burrell BC, et al. Arousal and cardiorespiratory responses to hypoxia in Prader-Willi syndrome. Am J Respir Crit Care Med. 1996;153(1):283–7.PubMedGoogle Scholar
  112. 112.
    Gozal D, Arens R, Omlin KJ, Ward SL, Keens TG. Absent peripheral chemosensitivity in Prader-Willi syndrome. J Appl Physiol. 1994;77(5):2231–6.PubMedGoogle Scholar
  113. 113.
    Pagliardini S, Ren J, Wevrick R, Greer JJ. Developmental abnormalities of neuronal structure and function in prenatal mice lacking the Prader-Willi syndrome gene necdin. Am J Pathol. 2005; 167(1):175–91.PubMedCrossRefGoogle Scholar
  114. 114.
    Zanella S, Tauber M, Muscatelli F. Breathing deficits of the Prader-Willi syndrome. Respir Physiol Neurobiol. 2009;168(1–2):119–24.PubMedCrossRefGoogle Scholar
  115. 115.
    Delacourt C, Canet E, Bureau MA. Predominant role of peripheral chemoreceptors in the termination of apnea in maturing newborn lambs. J Appl Physiol. 1996;80(3):892–8.PubMedGoogle Scholar
  116. 116.
    Al-Matary A, Kutbi I, Qurashi M, et al. Increased peripheral chemoreceptor activity may be critical in destabilizing breathing in neonates. Semin Perinatol. 2004;28(4):264–72.PubMedCrossRefGoogle Scholar
  117. 117.
    Gauda EB, McLemore GL, Tolosa J, Marston-Nelson J, Kwak D. Maturation of peripheral arterial chemoreceptors in relation to neonatal apnoea. Semin Neonatol. 2004;9(3):181–94.PubMedCrossRefGoogle Scholar
  118. 118.
    Garg M, Kurzner SI, Bautista D, Keens TG. Hypoxic arousal responses in infants with bronchopulmonary dysplasia. Pediatrics. 1988;82(1):59–63.PubMedGoogle Scholar
  119. 119.
    Thach BT. Some aspects of clinical relevance in the maturation of respiratory control in infants. J Appl Physiol. 2008;104(6):1828–34.PubMedCrossRefGoogle Scholar
  120. 120.
    Thach BT. The role of respiratory control disorders in SIDS. Respir Physiol Neurobiol. 2005;149(1–3): 343–53.PubMedCrossRefGoogle Scholar
  121. 121.
    Darnall RA. The role of CO(2) and central chemoreception in the control of breathing in the fetus and the neonate. Respir Physiol Neurobiol. 2010;173(3): 201–12.PubMedCrossRefGoogle Scholar
  122. 122.
    Fewell JE. Protective responses of the newborn to hypoxia. Respir Physiol Neurobiol. 2005;149: 243–55.PubMedCrossRefGoogle Scholar
  123. 123.
    Stephan-Blanchard E, Telliez F, Leke A, et al. The influence of in utero exposure to smoking on sleep patterns in preterm neonates. Sleep. 2008;31(12): 1683–9.PubMedGoogle Scholar
  124. 124.
    Stephan-Blanchard E, Chardon K, Leke A, et al. In utero exposure to smoking and peripheral chemoreceptor function in preterm neonates. Pediatrics. 2010;125(3):e592–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Sawnani H, Jackson T, Murphy T, Beckerman R, Simakajornboon N. The effect of maternal smoking on respiratory and arousal patterns in preterm infants during sleep. Am J Respir Crit Care Med. 2004; 169(6):733–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Richardson HL, Walker AM, Horne RS. Maternal smoking impairs arousal patterns in sleeping infants. Sleep. 2009;32(4):515–21.PubMedGoogle Scholar
  127. 127.
    Campos M, Bravo E, Eugenin J. Respiratory dysfunctions induced by prenatal nicotine exposure. Clin Exp Pharmacol Physiol. 2009;36(12):1205–17.PubMedCrossRefGoogle Scholar
  128. 128.
    Hafstrom O, Milerad J, Sundell HW. Prenatal nicotine exposure blunts the cardiorespiratory response to hypoxia in lambs. Am J Respir Crit Care Med. 2002;166(12 Pt 1):1544–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Hafstrom O, Milerad J, Asokan N, Poole SD, Sundell HW. Nicotine delays arousal during hypoxemia in lambs. Pediatr Res. 2000;47(5):646–52.PubMedCrossRefGoogle Scholar
  130. 130.
    Fleming P, Blair PS. Sudden infant death syndrome and parental smoking. Early Hum Dev. 2007;83(11): 721–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • John L. Carroll
    • 1
    Email author
  • Supriya K. Jambhekar
    • 2
  • David F. Donnelly
    • 3
  1. 1.Division of Pediatric Pulmonary Medicine, Departments of Pediatrics and Physiology and BiophysicsArkansas Children’s HospitalLittle RockUSA
  2. 2.Division of Pediatric Pulmonary Medicine,Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockUSA
  3. 3.Division of Pediatric Pulmonary Medicine, Department of PediatricsYale University School of MedicineNew HavenUSA

Personalised recommendations