Skip to main content

Development of Gut Motility

  • Chapter
  • First Online:

Part of the book series: Clinical Gastroenterology ((CG))

Abstract

Coordinated movements of the gastrointestinal tract are regulated by multiple mechanisms including intrinsic and extrinsic neurons, interstitial cells of Cajal (ICC), and myogenic mechanisms. Studies using laboratory animals have shown that although enteric neurons develop early, the first gastrointestinal motility patterns are myogenic, and not neurally mediated. However, neurally mediated contractile activity is prominent by birth, and is essential for propulsive activity as shown by the bowel obstruction that occurs proximal to the aganglionic region in infants with Hirschsprung’s disease. The development of ICC requires signaling via the tyrosine kinase receptor, Kit. Genetic alterations of Kit, and reduced ICC density, have recently been linked to a severe case of idiopathic constipation and megacolon in a child. Studies in preterm and term humans have shown that esophageal peristalsis and sphincter function mature during the late fetal and early postnatal stages. Little is known about the development of motility in the small and large bowel of human infants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the field of gastrointestinal motility, the term “myogenic” has been used to describe contractile activity generated by ICC as well as muscle cells, but here we use the term myogenic to refer to contractions specifically originating from the muscle cells themselves.

References

  1. Sanders KM. Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil. 2008;20 Suppl 1:39–53.

    PubMed  CAS  Google Scholar 

  2. Huizinga JD, Lammers WJ. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol. 2009;296(1):G1–8.

    PubMed  CAS  Google Scholar 

  3. Hasler WL. Motility of the small intestine and colon. In: Yamada T, editor. Textbook of gastroenterology, vol. 1. 5th ed. Philadelphia: Wiley-Blackwell; 2009. p. 231–63.

    Google Scholar 

  4. Roberts RR, Ellis M, Gwynne RM, et al. The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal. J Physiol. 2010;588(Pt 7):1153–69.

    PubMed  CAS  Google Scholar 

  5. Gwynne RM, Thomas EA, Goh SM, Sjovall H, Bornstein JC. Segmentation induced by intraluminal fatty acid in isolated guinea-pig duodenum and jejunum. J Physiol. 2004;556(Pt 2):557–69.

    PubMed  CAS  Google Scholar 

  6. Lentle RG, Janssen PW, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y. High-definition spatiotemporal mapping of contractile activity in the isolated proximal colon of the rabbit. J Comp Physiol B. 2008;178(3):257–68.

    PubMed  Google Scholar 

  7. Wood JD. Enteric nervous system: sensory physiology, diarrhea and constipation. Curr Opin Gastroenterol. 2010;26(2):102–8.

    PubMed  Google Scholar 

  8. Holmberg A, Schwerte T, Fritsche R, Pelster B, Holmgren S. Ontogeny of intestinal motility in correlation to neuronal development in zebrafish embryos and larvae. J Fish Biol. 2003;63:318–31.

    Google Scholar 

  9. Holmberg A, Schwerte T, Pelster B, Holmgren S. Ontogeny of the gut motility control system in zebrafish Danio rerio embryos and larvae. J Exp Biol. 2004;207(Pt 23):4085–94.

    PubMed  Google Scholar 

  10. Holmberg A, Olsson C, Holmgren S. The effects of endogenous and exogenous nitric oxide on gut motility in zebrafish Danio rerio embryos and larvae. J Exp Biol. 2006;209(Pt 13):2472–9.

    PubMed  CAS  Google Scholar 

  11. Holmberg A, Olsson C, Hennig GW. TTX-sensitive and TTX-insensitive control of spontaneous gut motility in the developing zebrafish (Danio rerio) larvae. J Exp Biol. 2007;210(Pt 6):1084–91.

    PubMed  CAS  Google Scholar 

  12. Kuhlman J, Eisen JS. Genetic screen for mutations affecting development and function of the enteric nervous system. Dev Dyn. 2007;236(1):118–27.

    PubMed  Google Scholar 

  13. Field HA, Kelley KA, Martell L, Goldstein AM, Serluca FC. Analysis of gastrointestinal phys-iology using a novel intestinal transit assayin zebrafish. Neurogastroenterol Motil. 2009;21(3):304–12.

    PubMed  CAS  Google Scholar 

  14. Rasch S, Sangild PT, Gregersen H, Schmidt M, Omari T, Lau C. The preterm piglet—a model in the study of oesophageal development in preterm neonates. Acta Paediatr. 2010;99(2):201–8.

    PubMed  CAS  Google Scholar 

  15. McLain Jr CR. Amniography studies of the gastrointestinal motility of the human fetus. Am J Obstet Gynecol. 1963;86:1079–87.

    PubMed  Google Scholar 

  16. Sase M, Lee JJ, Park JY, Thakur A, Ross MG, Buchmiller-Crair TL. Ontogeny of fetal rabbit upper gastrointestinal motility. J Surg Res. 2001;101(1):68–72.

    PubMed  CAS  Google Scholar 

  17. Sase M, Lee JJ, Ross MG, Buchmiller-Crair TL. Effect of hypoxia on fetal rabbit gastrointestinal motility. J Surg Res. 2001;99(2):347–51.

    PubMed  CAS  Google Scholar 

  18. Anderson RB, Enomoto H, Bornstein JC, Young HM. The enteric nervous system is not essential for the propulsion of gut contents in fetal mice. Gut. 2004;53(10):1546–7.

    PubMed  CAS  Google Scholar 

  19. Yntema CL, Hammond WS. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol. 1954;101:515–41.

    PubMed  CAS  Google Scholar 

  20. Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973;30(1):31–48.

    PubMed  Google Scholar 

  21. Burns AJ, Le Douarin NM. The sacral neural crest contributes neurons and glia to the post- umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development. 1998;125(21):4335–47.

    PubMed  CAS  Google Scholar 

  22. Kapur RP. Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev Biol. 2000;227(1):146–55.

    PubMed  CAS  Google Scholar 

  23. Baetge G, Pintar JE, Gershon MD. Transiently catecholaminergic (TC) cells in the bowel of the fetal rat: precursors of noncatecholaminergic enteric neurons. Dev Biol. 1990;141(2):353–80.

    PubMed  CAS  Google Scholar 

  24. Baetge G, Schneider KA, Gershon MD. Development and persistence of catecholaminergic neurons in cultured explants of fetal murine vagus nerves and bowel. Development. 1990;110(3):689–701.

    PubMed  CAS  Google Scholar 

  25. Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81(1–3):87–96.

    PubMed  CAS  Google Scholar 

  26. Hao MM, Moore RE, Roberts RR, et al. The role of neural activity in the migration and differentiation of enteric neuron precursors. Neurogastroenterol Motil. 2010;22(5):e127–37.

    PubMed  CAS  Google Scholar 

  27. Hao MM, Young HM. Development of enteric neuron diversity. J Cell Mol Med. 2009;13(7):1193–210.

    PubMed  CAS  Google Scholar 

  28. Brookes SJ. Neuronal nitric oxide in the gut. J Gastroenterol Hepatol. 1993;8(6):590–603.

    PubMed  CAS  Google Scholar 

  29. Brookes SJ. Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec. 2001;262(1):58–70.

    PubMed  CAS  Google Scholar 

  30. Branchek TA, Gershon MD. Time course of expression of neuropeptide Y, calcitonin gene-related peptide, and NADPH diaphorase activity in neurons of the developing murine bowel and the appearance of 5-hydroxytryptamine in mucosal enterochromaffin cells. J Comp Neurol. 1989;285(2):262–73.

    PubMed  CAS  Google Scholar 

  31. Uyttebroek L, Shepherd IT, Harrisson F, et al. Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol. 2010;518(21):4419–38.

    PubMed  CAS  Google Scholar 

  32. Patel BA, Dai X, Burda JE, et al. Inhibitory neuromuscular transmission to ileal longitudinal muscle predominates in neonatal guinea pigs. Neurogastroenterol Motil. 2010;22(8):909–18. e236–907.

    PubMed  CAS  Google Scholar 

  33. de Vries P, Soret R, Suply E, Heloury Y, Neunlist M. Postnatal development of myenteric neurochemical phenotype and impact on neuromuscular transmission in the rat colon. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G539–47.

    PubMed  Google Scholar 

  34. Hao MM, Boesmans W, Van den Abbeel C, Bornstein JC, Young HM, Vanden Berghe P. Neuronal activity in developing enteric neurons. Australian Neuroscience Society Abstracts. 2010

    Google Scholar 

  35. Rothman TP, Gershon MD. Phenotypic expression in the developing murine enteric nervous system. J Neurosci. 1982;2(3):381–93.

    PubMed  CAS  Google Scholar 

  36. Vannucchi MG, Faussone-Pellegrini MS. Differentiation of cholinergic cells in the rat gut during pre- and postnatal life. Neurosci Lett. 1996;206(2–3):105–8.

    PubMed  CAS  Google Scholar 

  37. Matini P, Mayer B, Faussone-Pellegrini MS. Neurochemical differentiation of rat enteric neurons during pre- and postnatal life. Cell Tissue Res. 1997;288(1):11–23.

    PubMed  CAS  Google Scholar 

  38. Abalo R, Vera G, Rivera AJ, Moro-Rodriguez E, Martin-Fontelles MI. Postnatal maturation of the gastrointestinal tract: a functional and immunohistochemical study in the guinea-pig ileum at weaning. Neurosci Lett. 2009;467(2):105–10.

    PubMed  CAS  Google Scholar 

  39. Daniel EE, Wang YF. Control systems of gastrointestinal motility are immature at birth in dogs. Neurogastroenterol Motil. 1999;11(5):375–92.

    PubMed  CAS  Google Scholar 

  40. Roberts RR, Murphy JF, Young HM, Bornstein JC. Development of colonic motility in the neonatal mouse-studies using spatiotemporal maps. Am J Physiol Gastrointest Liver Physiol. 2007;292(3):G930–8.

    PubMed  CAS  Google Scholar 

  41. Bornstein JC, Costa M, Grider JR. Enteric motor and interneuronal circuits controlling motility. Neurogastroenterol Motil. 2004;16 Suppl 1:34–8.

    PubMed  Google Scholar 

  42. Ward SM, Harney SC, Bayguinov JR, McLaren GJ, Sanders KM. Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in the tunica muscularis. J Physiol (Lond). 1997;505(Pt 1):241–58.

    CAS  Google Scholar 

  43. Zagorodnyuk VP, Hoyle CH, Burnstock G. An electrophysiological study of developmental changes in the innervation of the guinea-pig taenia coli. Pflugers Arch. 1993;423(5–6):427–33.

    PubMed  CAS  Google Scholar 

  44. Sundqvist M, Holmgren S. Ontogeny of excitatory and inhibitory control of gastrointestinal motility in the African clawed frog, Xenopus laevis. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1138–44.

    PubMed  CAS  Google Scholar 

  45. Wittmeyer V, Merrot T, Mazet B. Tonic inhibition of human small intestinal motility by nitric oxide in children but not in adults. Neurogastroenterol Motil. 2010;22:e1078–282.

    Google Scholar 

  46. Burns AJ, Herbert TM, Ward SM, Sanders KM. Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry. Cell Tissue Res. 1997;290(1):11–20.

    PubMed  CAS  Google Scholar 

  47. Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 1994;480(Pt 1):91–7.

    PubMed  CAS  Google Scholar 

  48. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995;373(6512):347–9.

    PubMed  CAS  Google Scholar 

  49. Ward SM, Burns AJ, Torihashi S, Harney SC, Sanders KM. Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. Am J Physiol. 1995;269(6 Pt 1):C1577–85.

    PubMed  CAS  Google Scholar 

  50. Hirst GD, Edwards FR. Generation of slow waves in the antral region of guinea-pig stomach–a stochastic process. J Physiol. 2001;535(Pt 1):165–80.

    PubMed  CAS  Google Scholar 

  51. Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci U S A. 1996;93(21):12008–13.

    PubMed  CAS  Google Scholar 

  52. Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci. 2000;20(4):1393–403.

    PubMed  CAS  Google Scholar 

  53. Lecoin L, Gabella G, Le Douarin N. Origin of the c-kit-positive interstitial cells in the avian bowel. Development. 1996;122(3):725–33.

    PubMed  CAS  Google Scholar 

  54. Young HM, Ciampoli D, Southwell BR, Newgreen DF. Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol. 1996;180(1):97–107.

    PubMed  CAS  Google Scholar 

  55. Ward SM, Ordog T, Bayguinov JR, et al. Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves. Gastroenterology. 1999;117(3):584–94.

    PubMed  CAS  Google Scholar 

  56. Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res. 2000;59(3):384–401.

    PubMed  CAS  Google Scholar 

  57. Huizinga JD, Berezin I, Sircar K, et al. Development of interstitial cells of Cajal in a full-term infant without an enteric nervous system. Gastroenterology. 2001;120(2):561–7.

    PubMed  CAS  Google Scholar 

  58. Kluppel M, Huizinga JD, Malysz J, Bernstein A. Developmental origin and Kit-dependent development of the interstitial cells of cajal in the mammalian small intestine. Dev Dyn. 1998;211(1):60–71.

    PubMed  CAS  Google Scholar 

  59. Torihashi S, Ward SM, Sanders KM. Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology. 1997;112(1):144–55.

    PubMed  CAS  Google Scholar 

  60. Beckett EA, Ro S, Bayguinov Y, Sanders KM, Ward SM. Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract. Dev Dyn. 2007;236(1):60–72.

    PubMed  CAS  Google Scholar 

  61. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116(2):369–75.

    PubMed  CAS  Google Scholar 

  62. Young HM, Torihashi S, Ciampoli D, Sanders KM. Identification of neurons that express stem cell factor in the mouse small intestine. Gastroenterology. 1998;115(4):898–908.

    PubMed  CAS  Google Scholar 

  63. Spencer NJ, Sanders KM, Smith TK. Migrating motor complexes do not require electrical slow waves in the mouse small intestine. J Physiol. 2003;553(Pt 3):881–93.

    PubMed  CAS  Google Scholar 

  64. Hennig GW, Spencer NJ, Jokela-Willis S, et al. ICC-MY coordinate smooth muscle electrical and mechanical activity in the murine small intestine. Neurogastroenterol Motil. 2010;22(5):e138–51.

    PubMed  CAS  Google Scholar 

  65. Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280(1):97–111.

    PubMed  CAS  Google Scholar 

  66. Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol. 2001;281(3):G602–11.

    PubMed  CAS  Google Scholar 

  67. Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL. C-Kit mutant mice have a selective loss of vagal intramuscular mechanoreceptors in the forestomach. Anat Embryol (Berl). 2001;204(1):11–26.

    CAS  Google Scholar 

  68. Fox EA, Phillips RJ, Byerly MS, Baronowsky EA, Chi MM, Powley TL. Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand. Anat Embryol (Berl). 2002;205(4):325–42.

    Google Scholar 

  69. Faussone-Pellegrini MS. Cytodifferentiation of the interstitial cells of Cajal related to the myenteric plexus of mouse intestinal muscle coat. An E.M. study from foetal to adult life. Anat Embryol (Berl). 1985;171(2):163–9.

    CAS  Google Scholar 

  70. Faussone-Pellegrini MS, Matini P, Stach W. Differentiation of enteric plexuses and interstitial cells of Cajal in the rat gut during pre- and postnatal life. Acta Anat (Basel). 1996;155(2):113–25.

    CAS  Google Scholar 

  71. Ward SM, McLaren GJ, Sanders KM. Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine. J Physiol. 2006;573(Pt 1):147–59.

    PubMed  CAS  Google Scholar 

  72. Roberts RR, Bornstein JC, Bergner AJ, Young HM. Disturbances of colonic motility in mouse models of Hirschsprung’s disease. Am J Physiol Gastrointest Liver Physiol. 2008;294(4):G996–1008.

    PubMed  CAS  Google Scholar 

  73. Hennig GW, Gregory S, Brookes SJ, Costa M. Non-peristaltic patterns of motor activity in the guinea-pig proximal colon. Neurogastroenterol Motil. 2010;22(6):e207–17.

    PubMed  CAS  Google Scholar 

  74. Lang RJ, Takano H, Davidson ME, Suzuki H, Klemm MF. Characterization of the spontaneous electrical and contractile activity of smooth muscle cells in the rat upper urinary tract. J Urol. 2001;166(1):329–34.

    PubMed  CAS  Google Scholar 

  75. Lesniewska V, Laerke HN, Hedemann MS, Hojsgaard S, Pierzynowski SG, Jensen BB. The effect of change of the diet and feeding regimen at weaning on duodenal myoelectrical activity in piglets. Animal Sci. 2000;71:443–51.

    Google Scholar 

  76. Soret R, Chevalier J, De Coppet P, et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology. 2010;138(5):1772–82.

    PubMed  CAS  Google Scholar 

  77. di Giancamillo A, Vitari F, Bosi G, Savoini G, Domeneghini C. The chemical code of porcine enteric neurons and the number of enteric glial cells are altered by dietary probiotics. Neurogastroenterol Motil. 2010;22(9):e271–8.

    PubMed  Google Scholar 

  78. Fu M, Tam PK, Sham MH, Lui VC. Embryonic development of the ganglion plexuses and the concentric layer structure of human gut: a topographical study. Anat Embryol. 2004;208(1):33–41.

    PubMed  CAS  Google Scholar 

  79. Wallace AS, Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res. 2005;319(3):367–82.

    PubMed  Google Scholar 

  80. Radenkovic G, Ilic I, Zivanovic D, Vlajkovic S, Petrovic V, Mitrovic O. C-kit-immunopositive interstitial cells of Cajal in human embryonal and fetal oesophagus. Cell Tissue Res. 2010;340(3):427–36.

    PubMed  CAS  Google Scholar 

  81. Ross MG, Nijland MJ. Development of ingestive behavior. Am J Physiol. 1998;274(4 Pt 2):R879–93.

    PubMed  CAS  Google Scholar 

  82. Shi L, Mao C, Zeng F, Zhu L, Xu Z. Central cholinergic mechanisms mediate swallowing, renal excretion, and c-fos expression in the ovine fetus near term. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R318–25.

    PubMed  CAS  Google Scholar 

  83. Omari TI, Miki K, Fraser R, et al. Esophageal body and lower esophageal sphincter function in healthy premature infants. Gastroenterology. 1995;109(6):1757–64.

    PubMed  CAS  Google Scholar 

  84. Jadcherla SR, Duong HQ, Hofmann C, Hoffmann R, Shaker R. Characteristics of upper oesophageal sphincter and oesophageal body during maturation in healthy human neonates compared with adults. Neurogastroenterol Motil. 2005;17(5):663–70.

    PubMed  CAS  Google Scholar 

  85. Staiano A, Boccia G, Salvia G, Zappulli D, Clouse RE. Development of esophageal peristalsis in preterm and term neonates. Gastroenterology. 2007;132(5):1718–25.

    PubMed  Google Scholar 

  86. Omari TI, Miki K, Davidson G, et al. Characterisation of relaxation of the lower oesophageal sphincter in healthy premature infants. Gut. 1997;40(3):370–5.

    PubMed  CAS  Google Scholar 

  87. Jadcherla SR. Manometric evaluation of esophageal-protective reflexes in infants and children. Am J Med. 2003;115(Suppl 3A):157S–60.

    PubMed  Google Scholar 

  88. Jadcherla SR. Upstream effect of esophageal distention: effect on airway. Curr Gastroenterol Rep. 2006;8(3):190–4.

    PubMed  Google Scholar 

  89. Gupta A, Gulati P, Kim W, Fernandez S, Shaker R, Jadcherla SR. Effect of postnatal maturation on the mechanisms of esophageal propulsion in preterm human neonates: primary and secondary peristalsis. Am J Gastroenterol. 2009;104(2):411–9.

    PubMed  Google Scholar 

  90. Jadcherla SR, Duong HQ, Hoffmann RG, Shaker R. Esophageal body and upper esophageal sphincter motor responses to esophageal provocation during maturation in preterm newborns. J Pediatr. 2003;143(1):31–8.

    PubMed  Google Scholar 

  91. Sase M, Miwa I, Sumie M, Nakata M, Sugino N, Ross MG. Ontogeny of gastric emptying patterns in the human fetus. J Matern Fetal Neonatal Med. 2005;17(3):213–7.

    PubMed  Google Scholar 

  92. Sase M, Miwa I, Sumie M, et al. Gastric emptying cycles in the human fetus. Am J Obstet Gynecol. 2005;193(3 Pt 2):1000–4.

    PubMed  Google Scholar 

  93. Berseth CL. Motor function in the stomach and small intestine in the neonate. NeoReviews. 2006;7:e28–33.

    Google Scholar 

  94. Berseth CL. Gestational evolution of small intestine motility in preterm and term infants. J Pediatr. 1989;115(4):646–51.

    PubMed  CAS  Google Scholar 

  95. Bisset WM, Watt JB, Rivers RP, Milla PJ. Ontogeny of fasting small intestinal motor activity in the human infant. Gut. 1988;29(4):483–8.

    PubMed  CAS  Google Scholar 

  96. Jadcherla SR, Klee G, Berseth CL. Regulation of migrating motor complexes by motilin and pancreatic polypeptide in human infants. Pediatr Res. 1997;42(3):365–9.

    PubMed  CAS  Google Scholar 

  97. Janssens J, Peeters TL, Vantrappen G, et al. Improvement of gastric emptying in diabetic gastroparesis by erythromycin. Preliminary studies. N Engl J Med. 1990;322(15):1028–31.

    PubMed  CAS  Google Scholar 

  98. Jadcherla SR, Berseth CL. Effect of erythromycin on gastroduodenal contractile activity in developing neonates. J Pediatr Gastroenterol Nutr. 2002;34(1):16–22.

    PubMed  CAS  Google Scholar 

  99. Breuer C, Oh J, Molderings GJ, et al. Therapy-refractory gastrointestinal motility disorder in a child with c-kit mutations. World J Gastroenterol. 2010;16(34):4363–6.

    PubMed  CAS  Google Scholar 

  100. Isozaki K, Hirota S, Miyagawa J, Taniguchi M, Shinomura Y, Matsuzawa Y. Deficiency of c-kit+ cells in patients with a myopathic form of chronic idiopathic intestinal pseudo-obstruction. Am J Gastroenterol. 1997;92(2):332–4.

    PubMed  CAS  Google Scholar 

  101. Kenny SE, Connell MG, Rintala RJ, Vaillant C, Edgar DH, Lloyd DA. Abnormal colonic interstitial cells of Cajal in children with anorectal malformations. J Pediatr Surg. 1998;33(1):130–2.

    PubMed  CAS  Google Scholar 

  102. Yamataka A, Ohshiro K, Kobayashi H, et al. Abnormal distribution of intestinal pacemaker (C-KIT-positive) cells in an infant with chronic idiopathic intestinal pseudoobstruction. J Pediatr Surg. 1998;33(6):859–62.

    PubMed  CAS  Google Scholar 

  103. Wedel T, Spiegler J, Soellner S, et al. Enteric nerves and interstitial cells of Cajal are altered in patients with slow-transit constipation and megacolon. Gastroenterology. 2002;123(5):1459–67.

    PubMed  Google Scholar 

  104. Taguchi T, Suita S, Masumoto K, Nagasaki A. An abnormal distribution of C-kit positive cells in the normoganglionic segment can predict a poor clinical outcome in patients with Hirschsprung’s disease. Eur J Pediatr Surg. 2005;15(3):153–8.

    PubMed  CAS  Google Scholar 

  105. Burns AJ. Disorders of interstitial cells of Cajal. J Pediatr Gastroenterol Nutr. 2007;45 Suppl 2:S103–6.

    PubMed  Google Scholar 

  106. Bettolli M, De Carli C, Jolin-Dahel K, et al. Colonic dysmotility in postsurgical patients with Hirschsprung’s disease. Potential significance of abnormalities in the interstitial cells of Cajal and the enteric nervous system. J Pediatr Surg. 2008;43(8):1433–8.

    PubMed  Google Scholar 

  107. Angstenberger M, Wegener JW, Pichler BJ, et al. Severe intestinal obstruction on induced smooth muscle-specific ablation of the transcription factor SRF in adult mice. Gastroenterology. 2007;133(6):1948–59.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather M. Young Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Young, H.M., Beckett, E.A., Bornstein, J.C., Jadcherla, S.R. (2013). Development of Gut Motility. In: Faure, C., Di Lorenzo, C., Thapar, N. (eds) Pediatric Neurogastroenterology. Clinical Gastroenterology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-709-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-709-9_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-708-2

  • Online ISBN: 978-1-60761-709-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics