Advertisement

Skeletal Muscle Dysfunction

  • Marc-André Caron
  • Marie-Eve Thériault
  • Richard Debigaré
  • François Maltais
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Chronic obstructive pulmonary disease (COPD) is highly prevalent and the burden of this disease is only expected to increase in the coming 15–20 years. Once viewed as a disease limited to the lung, COPD is now recognized as a multisystemic disease with various organ dysfunctions. Skeletal muscle dysfunction is one of the most devastating systemic manifestations of COPD. Skeletal muscle dysfunction is such a reality in COPD that, depending on the clinical situations, 20–35% of the patients refer to leg fatigue as the main cause of exercise cessation, whereas 41% consider it to be at least a major contributor to exercise limitation.

Keywords

COPD Multisystem disease Skeletal muscle Systemic manifestations Leg fatigue Exercise Limitation Respiratory muscles Mechanisms Muscle dysfunction 

References

  1. 1.
    Agusti AG. Systemic effects of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2:367–70 [discussion 371–2].PubMedCrossRefGoogle Scholar
  2. 2.
    Maltais F, Hamilton A, Marciniuk D, Hernandez P, Sciurba FC, Richter K, et al. Improvements in symptom-limited exercise performance over 8 h with once-daily tiotropium in patients with COPD. Chest. 2005;128:1168–78.PubMedCrossRefGoogle Scholar
  3. 3.
    Pepin V, Saey D, Whittom F, LeBlanc P, Maltais F. Walking versus cycling: sensitivity to bronchodilation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172:1517–22.PubMedCrossRefGoogle Scholar
  4. 4.
    O’Donnell DE, Laveneziana P. Dyspnea and activity limitation in COPD: mechanical factors. COPD. 2007;4:225–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Bernard S, LeBlanc P, Whittom F, Carrier G, Jobin J, Belleau R, et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158:629–34.PubMedGoogle Scholar
  6. 6.
    Saey D, Debigaré R, LeBlanc P, Mador MJ, Côté CH, Jobin J, et al. Contractile leg fatigue after cycle exercise: a factor limiting exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168:425–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Mador MJ, Deniz O, Aggarwal A, Kufel TJ. Quadriceps fatigability after single muscle exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168:102–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Saey D, Lemire BB, Gagnon P, Bombardier E, Tupling AR, Debigaré R, et al. Quadriceps metabolism during constant workrate cycling exercise in chronic obstructive pulmonary ­disease. J Appl Physiol. 2011;110:116–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Marquis K, Debigaré R, Lacasse Y, LeBlanc P, Jobin J, Carrier G, et al. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166:809–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Schols AM, Broekhuizen R, Weling-Scheepers CA, Wouters EF. Body composition and ­mortality in chronic obstructive pulmonary disease. Am J Clin Nutr. 2005;82:53–9.PubMedGoogle Scholar
  11. 11.
    Swallow EB, Reyes D, Hopkinson NS, Man WD, Porcher R, Cetti EJ, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62:115–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Vestbo J, Prescott E, Almdal T, Dahl M, Nordestgaard BG, Andersen T, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. 2006;173:79–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Mostert R, Goris A, Weling-Scheepers C, Wouters EF, Schols AM. Tissue depletion and health related quality of life in patients with chronic obstructive pulmonary disease. Respir Med. 2000;94:859–67.PubMedCrossRefGoogle Scholar
  14. 14.
    Decramer M, Gosselink R, Troosters T, Verschueren M, Evers G. Muscle weakness is related to utilization of health care resources in COPD patients. Eur Respir J. 1997;10:417–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Schols AM, Soeters PB, Dingemans AM, Mostert R, Frantzen PJ, Wouters EF. Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation. Am Rev Respir Dis. 1993;147:1151–6.PubMedGoogle Scholar
  16. 16.
    Mathur S, Takai KP, Macintyre DL, Reid D. Estimation of thigh muscle mass with magnetic resonance imaging in older adults and people with chronic obstructive pulmonary disease. Phys Ther. 2008;88:219–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Whittom F, Jobin J, Simard PM, Leblanc P, Simard C, Bernard S, et al. Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc. 1998;30:1467–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Gosker HR, Engelen MP, van Mameren H, van Dijk PJ, van der Vusse GJ, Wouters EF, et al. Muscle fiber type IIX atrophy is involved in the loss of fat-free mass in chronic obstructive pulmonary disease. Am J Clin Nutr. 2002;76:113–9.PubMedGoogle Scholar
  19. 19.
    Gea JG, Pasto M, Carmona MA, Orozco-Levi M, Palomeque J, Broquetas J. Metabolic ­characteristics of the deltoid muscle in patients with chronic obstructive pulmonary disease. Eur Respir J. 2001;17:939–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Orozco-Levi M. Structure and function of the respiratory muscles in patients with COPD: impairment or adaptation? Eur Respir J Suppl. 2003;46:41s–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Levine S, Kaiser L, Leferovich J, Tikunov B. Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med. 1997;337:1799–806.PubMedCrossRefGoogle Scholar
  22. 22.
    Ottenheijm CA, Heunks LM, Sieck GC, Zhan WZ, Jansen SM, Degens H, et al. Diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172:200–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Caron MA, Debigaré R, Dekhuijzen PN, Maltais F. Comparative assessment of the quadriceps and the diaphragm in patients with COPD. J Appl Physiol. 2009;107:952–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Larsson L. Histochemical characteristics of human skeletal muscle during aging. Acta Physiol Scand. 1983;117:469–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Maltais F, Sullivan MJ, LeBlanc P, Duscha BD, Schachat FH, Simard C, et al. Altered expression of myosin heavy chain in the vastus lateralis muscle in patients with COPD. Eur Respir J. 1999;13:850–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Gosker HR, Zeegers MP, Wouters EF, Schols AM. Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis. Thorax. 2007;62:944–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Gagnon P, Saey D, Vivodtzev I, Laviolette L, Mainguy V, Milot J, et al. Impact of preinduced quadriceps fatigue on exercise response in chronic obstructive pulmonary disease and healthy subjects. J Appl Physiol. 2009;107:832–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Amann M, Regan MS, Kobitary M, Eldridge MW, Boutellier U, Pegelow DF, et al. Impact of pulmonary system limitations on locomotor muscle fatigue in patients with COPD. Am J Physiol Regul Integr Comp Physiol. 2010;299:R314–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Maltais F, Jobin J, Sullivan MJ, Bernard S, Whittom F, Killian KJ, et al. Metabolic and hemodynamic responses of lower limb during exercise in patients with COPD. J Appl Physiol. 1998;84:1573–80.PubMedGoogle Scholar
  30. 30.
    Hamilton AL, Killian KJ, Summers E, Jones NL. Muscle strength, symptom intensity, and exercise capacity in patients with cardiorespiratory disorders. Am J Respir Crit Care Med. 1995;152:2021–31.PubMedGoogle Scholar
  31. 31.
    Stubbings AK, Moore AJ, Dusmet M, Goldstraw P, West TG, Polkey MI, et al. Physiological properties of human diaphragm muscle fibres and the effect of chronic obstructive pulmonary disease. J Physiol. 2008;586:2637–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R. Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch. 1985;403:369–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Debigaré R, Côté CH, Hould FS, LeBlanc P, Maltais F. In vitro and in vivo contractile properties of the vastus lateralis muscle in males with COPD. Eur Respir J. 2003;21:273–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Decramer M, Lacquet LM, Fagard R, Rogiers P. Corticosteroids contribute to muscle weakness in chronic airflow obstruction. Am J Respir Crit Care Med. 1994;150:11–6.PubMedGoogle Scholar
  35. 35.
    Similowski T, Yan S, Gauthier AP, Macklem PT, Bellemare F. Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med. 1991;325:917–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Ottenheijm CA, Heunks LM, Hafmans T, van der Ven PF, Benoist C, Zhou H, et al. Titin and diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173:527–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Maltais F, LeBlanc P, Whittom F, Simard C, Marquis K, Bélanger M, et al. Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax. 2000;55:848–53.PubMedCrossRefGoogle Scholar
  38. 38.
    Green HJ, Bombardier E, Burnett M, Iqbal S, D’Arsigny CL, O’Donnell DE, et al. Organization of metabolic pathways in vastus lateralis of patients with chronic obstructive pulmonary disease. Am J Physiol Regul Integr Comp Physiol. 2008;295:R935–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Jakobsson P, Jorfeldt L, Henriksson J. Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1995;151:374–7.PubMedGoogle Scholar
  40. 40.
    Levine S, Gregory C, Nguyen T, Shrager J, Kaiser L, Rubinstein N, et al. Bioenergetic adaptation of individual human diaphragmatic myofibers to severe COPD. J Appl Physiol. 2002;92:1205–13.PubMedGoogle Scholar
  41. 41.
    Doucet M, Debigare R, Joanisse DR, Cote C, Leblanc P, Gregoire J, et al. Adaptation of the diaphragm and the vastus lateralis in mild-to-moderate COPD. Eur Respir J. 2004;24:971–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Saey D, Michaud A, Couillard A, Cote CH, Mador MJ, LeBlanc P, et al. Contractile fatigue, muscle morphometry, and blood lactate in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171:1109–15.PubMedCrossRefGoogle Scholar
  43. 43.
    Rasmussen UF, Rasmussen HN, Krustrup P, Quistorff B, Saltin B, Bangsbo J. Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria. Am J Physiol Endocrinol Metab. 2001;280:E301–7.PubMedGoogle Scholar
  44. 44.
    Picard M, Godin R, Sinnreich M, Baril J, Bourbeau J, Perrault H, et al. The mitochondrial phenotype of peripheral muscle in chronic obstructive pulmonary disease: disuse or dysfunction? Am J Respir Crit Care Med. 2008;178:1040–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Gosker HR, Hesselink MK, Duimel H, Ward KA, Schols AM. Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD. Eur Respir J. 2007;30:73–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44.PubMedCrossRefGoogle Scholar
  47. 47.
    Puente-Maestu L, Perez-Parra J, Godoy R, Moreno N, Tejedor A, Gonzalez-Aragoneses F, et al. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur Respir J. 2009;33:1045–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Couillard A, Maltais F, Saey D, Debigaré R, Michaud A, Koechlin C, et al. Exercise-induced quadriceps oxidative stress and peripheral muscle dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167:1664–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Barreiro E, Peinado VI, Galdiz JB, Ferrer E, Marin-Corral J, Sanchez F, et al. Cigarette smoke-induced oxidative stress: a role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am J Respir Crit Care Med. 2010;182:477–88.PubMedCrossRefGoogle Scholar
  50. 50.
    Rabinovich RA, Ardite E, Mayer AM, Polo MF, Vilaro J, Argiles JM, et al. Training depletes muscle glutathione in patients with chronic obstructive pulmonary disease and low body mass index. Respiration. 2006;73:757–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Wijnhoven JH, Janssen AJ, van Kuppevelt TH, Rodenburg RJ, Dekhuijzen PN. Metabolic capacity of the diaphragm in patients with COPD. Respir Med. 2006;100:1064–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Ribera F, N’Guessan B, Zoll J, Fortin D, Serrurier B, Mettauer B, et al. Mitochondrial electron transport chain function is enhanced in inspiratory muscles of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167:873–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Orozco-Levi M, Gea J, Lloreta JL, Felez M, Minguella J, Serrano S, et al. Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease. Eur Respir J. 1999;13: 371–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Barreiro E, de la Puente B, Minguella J, Corominas JM, Serrano S, Hussain SN, et al. Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171:1116–24.PubMedCrossRefGoogle Scholar
  55. 55.
    Marin-Corral J, Minguella J, Ramirez-Sarmiento AL, Hussain SN, Gea J, Barreiro E. Oxidized proteins and superoxide anion production in the diaphragm of severe COPD patients. Eur Respir J. 2009;33:1309–19.PubMedCrossRefGoogle Scholar
  56. 56.
    Wijnhoven HJ, Heunks LM, Geraedts MC, Hafmans T, Vina JR, Dekhuijzen PN. Oxidative and nitrosative stress in the diaphragm of patients with COPD. Int J Chron Obstruct Pulmon Dis. 2006;1:173–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Schols AM. Nutritional and metabolic modulation in chronic obstructive pulmonary disease management. Eur Respir J Suppl. 2003;46:81s–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Schols AM, Soeters PB, Mostert R, Saris WH, Wouters EF. Energy balance in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1991;143:1248–52.PubMedGoogle Scholar
  59. 59.
    Pichard C, Jeejeebhoy KN. Muscle dysfunction in malnourished patients. Q J Med. 1988;69:1021–45.PubMedGoogle Scholar
  60. 60.
    Engelen MP, Schols AM, Baken WC, Wesseling GJ, Wouters EF. Nutritional depletion in relation to respiratory and peripheral skeletal muscle function in out-patients with COPD. Eur Respir J. 1994;7:1793–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Lopes J, Russell DM, Whitwell J, Jeejeebhoy KN. Skeletal muscle function in malnutrition. Am J Clin Nutr. 1982;36:602–10.PubMedGoogle Scholar
  62. 62.
    Ferreira IM, Brooks D, Lacasse Y, Goldstein RS, White J. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2005;CD000998.Google Scholar
  63. 63.
    Nishimura Y, Tsutsumi M, Nakata H, Tsunenari T, Maeda H, Yokoyama M. Relationship between respiratory muscle strength and lean body mass in men with COPD. Chest. 1995;107:1232–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Franssen FM, Wouters EF, Schols AM. The contribution of starvation, deconditioning and ageing to the observed alterations in peripheral skeletal muscle in chronic organ diseases. Clin Nutr. 2002;21:1–14.PubMedCrossRefGoogle Scholar
  65. 65.
    Lawler JM, Song W, Demaree SR. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med. 2003;35:9–16.PubMedCrossRefGoogle Scholar
  66. 66.
    Remels AH, Schrauwen P, Broekhuizen R, Willems J, Kersten S, Gosker HR, et al. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J. 2007;30:245–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Serres I, Gautier V, Varray A, Prefaut C. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest. 1998;113:900–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Pitta F, Troosters T, Spruit MA, Decramer M, Gosselink R. Activity monitoring for assessment of physical activities in daily life in patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil. 2005;86:1979–85.PubMedCrossRefGoogle Scholar
  69. 69.
    Walker PP, Burnett A, Flavahan PW, Calverley PM. Lower limb activity and its determinants in COPD. Thorax. 2008;63:683–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171:972–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Troosters T, Sciurba F, Battaglia S, Langer D, Valluri SR, Martino L, et al. Physical inactivity in patients with COPD, a controlled multi-center pilot-study. Respir Med. 2010;104:1005–11.PubMedCrossRefGoogle Scholar
  72. 72.
    Casaburi R. Activity monitoring in assessing activities of daily living. COPD. 2007;4:251–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Coronell C, Orozco-Levi M, Gea J. COPD and body weight in a Mediterranean population. Clin Nutr. 2002;21:437 [author reply 437–437; author reply 438].PubMedCrossRefGoogle Scholar
  74. 74.
    Mattson JP, Poole DC. Pulmonary emphysema decreases hamster skeletal muscle oxidative enzyme capacity. J Appl Physiol. 1998;85:210–4.PubMedGoogle Scholar
  75. 75.
    Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, et al. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med. 1990;11 Suppl 1:S3–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Ferretti G, Hauser H, di Prampero PE. Maximal muscular power before and after exposure to chronic hypoxia. Int J Sports Med. 1990;11 Suppl 1:S31–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Westerterp KR, Kayser B. Body mass regulation at altitude. Eur J Gastroenterol Hepatol. 2006;18:1–3.PubMedCrossRefGoogle Scholar
  78. 78.
    Plywaczewski R, Sliwinski P, Nowinski A, Kaminski D, Zielinski J. Incidence of nocturnal desaturation while breathing oxygen in COPD patients undergoing long-term oxygen therapy. Chest. 2000;117:679–83.PubMedCrossRefGoogle Scholar
  79. 79.
    Poulain M, Durand F, Palomba B, Ceugniet F, Desplan J, Varray A, et al. 6-Minute walk testing is more sensitive than maximal incremental cycle testing for detecting oxygen desaturation in patients with COPD. Chest. 2003;123:1401–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Gosker HR, van Mameren H, van Dijk PJ, Engelen MP, van der Vusse GJ, Wouters EF, et al. Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J. 2002;19:617–25.PubMedCrossRefGoogle Scholar
  81. 81.
    Hoppeler H, Vogt M, Weibel ER, Fluck M. Response of skeletal muscle mitochondria to hypoxia. Exp Physiol. 2003;88:109–19.PubMedCrossRefGoogle Scholar
  82. 82.
    Jatta K, Eliason G, Portela-Gomes GM, Grimelius L, Caro O, Nilholm L, et al. Overexpression of von Hippel-Lindau protein in skeletal muscles of patients with chronic obstructive pulmonary disease. J Clin Pathol. 2009;62:70–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006;91:807–19.PubMedCrossRefGoogle Scholar
  84. 84.
    Demasi M, Cleland LG, Cook-Johnson RJ, Caughey GE, James MJ. Effects of hypoxia on monocyte inflammatory mediator production: Dissociation between changes in cyclooxygenase-2 expression and eicosanoid synthesis. J Biol Chem. 2003;278:38607–16.PubMedCrossRefGoogle Scholar
  85. 85.
    Koechlin C, Maltais F, Saey D, Michaud A, LeBlanc P, Hayot M, et al. Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease. Thorax. 2005;60:834–41.PubMedCrossRefGoogle Scholar
  86. 86.
    Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. 2001;91:534–51.PubMedGoogle Scholar
  87. 87.
    Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84:209–38.PubMedCrossRefGoogle Scholar
  88. 88.
    Di Carlo A, De Mori R, Martelli F, Pompilio G, Capogrossi MC, Germani A. Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. J Biol Chem. 2004;279:16332–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Caron MA, Thériault ME, Paré ME, Maltais F, Debigaré R. Hypoxia alters contractile protein homeostasis in L6 myotubes. FEBS Lett. 2009;583:1528–34.PubMedCrossRefGoogle Scholar
  90. 90.
    Reid MB. Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand. 1998;162:401–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Koechlin C, Couillard A, Simar D, Cristol JP, Bellet H, Hayot M, et al. Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? Am J Respir Crit Care Med. 2004;169:1022–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Comellas AP, Dada LA, Lecuona E, Pesce LM, Chandel NS, Quesada N, et al. Hypoxia-mediated degradation of Na, K-ATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system. Circ Res. 2006;98:1314–22.PubMedCrossRefGoogle Scholar
  93. 93.
    Barreiro E, Sanchez D, Galdiz JB, Hussain SN, Gea J. N-acetylcysteine increases manganese superoxide dismutase activity in septic rat diaphragms. Eur Respir J. 2005;26:1032–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29:222–30.PubMedCrossRefGoogle Scholar
  95. 95.
    Heunks LM, Dekhuijzen PN. Respiratory muscle function and free radicals: from cell to COPD. Thorax. 2000;55:704–16.PubMedCrossRefGoogle Scholar
  96. 96.
    Khawli FA, Reid MB. N-acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro. J Appl Physiol. 1994;77:317–24.PubMedGoogle Scholar
  97. 97.
    Reid MB. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc. 2001;33:371–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Couillard A, Koechlin C, Cristol JP, Varray A, Préfaut C. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patients. Eur Respir J. 2002;20:1123–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Van Helvoort HA, Heijdra YF, Thijs HM, Vina J, Wanten GJ, Dekhuijzen PN. Exercise-induced systemic effects in muscle-wasted patients with COPD. Med Sci Sports Exerc. 2006;38:1543–52.PubMedCrossRefGoogle Scholar
  100. 100.
    Rahman I, Skwarska E, MacNee W. Attenuation of oxidant/antioxidant imbalance during treatment of exacerbations of chronic obstructive pulmonary disease. Thorax. 1997;52:565–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Rabinovich RA, Ardite E, Troosters T, Carbo N, Alonso J, Gonzalez de Suso JM, et al. Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1114–8.PubMedGoogle Scholar
  102. 102.
    Engelen MP, Schols AM, Does JD, Deutz NE, Wouters EF. Altered glutamate metabolism is associated with reduced muscle glutathione levels in patients with emphysema. Am J Respir Crit Care Med. 2000;161:98–103.PubMedGoogle Scholar
  103. 103.
    Mercken EM, Hageman GJ, Schols AM, Akkermans MA, Bast A, Wouters EF. Rehabilitation decreases exercise-induced oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172:994–1001.PubMedCrossRefGoogle Scholar
  104. 104.
    Wouters EF, Creutzberg EC, Schols AM. Systemic effects in COPD. Chest. 2002;121: 127S–30.PubMedCrossRefGoogle Scholar
  105. 105.
    Li YP, Chen Y, Li AS, Reid MB. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol. 2003;285:C806–12.PubMedGoogle Scholar
  106. 106.
    Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59:574–80.PubMedCrossRefGoogle Scholar
  107. 107.
    Schols AM, Buurman WA, Staal van den Brekel AJ, Dentener MA, Wouters EF. Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in a subgroup of patients with chronic obstructive pulmonary disease. Thorax. 1996;51:819–24.PubMedCrossRefGoogle Scholar
  108. 108.
    Dentener MA, Creutzberg EC, Schols AM, Mantovani A, Van’t Veer C, Buurman WA, et al. Systemic anti-inflammatory mediators in COPD: increase in soluble interleukin 1 receptor II during treatment of exacerbations. Thorax. 2001;56:721–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Degens H, Alway SE. Control of muscle size during disuse, disease, and aging. Int J Sports Med. 2006;27:94–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Spruit MA, Gosselink R, Troosters T, Kasran A, Gayan-Ramirez G, Bogaerts P, et al. Muscle force during an acute exacerbation in hospitalised patients with COPD and its relationship with CXCL8 and IGF-I. Thorax. 2003;58:752–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Anker SD, Swan JW, Volterrani M, Chua TP, Clark AL, Poole-Wilson PA, et al. The influence of muscle mass, strength, fatigability and blood flow on exercise capacity in cachectic and non-cachectic patients with chronic heart failure. Eur Heart J. 1997;18:259–69.PubMedGoogle Scholar
  112. 112.
    Kopple JD. Pathophysiology of protein-energy wasting in chronic renal failure. J Nutr. 1999;129:247S–51.PubMedGoogle Scholar
  113. 113.
    Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89:381–410.PubMedCrossRefGoogle Scholar
  114. 114.
    Debigaré R, Côté CH, Maltais F. Peripheral muscle wasting in chronic obstructive pulmonary disease. Clinical relevance and mechanisms. Am J Respir Crit Care Med. 2001;164:1712–7.PubMedGoogle Scholar
  115. 115.
    Broekhuizen R, Wouters EF, Creutzberg EC, Schols AM. Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax. 2006;61:17–22.PubMedCrossRefGoogle Scholar
  116. 116.
    Pinto-Plata VM, Mullerova H, Toso JF, Feudjo-Tepie M, Soriano JB, Vessey RS, et al. C-reactive protein in patients with COPD, control smokers and non-smokers. Thorax. 2006;61:23–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Yende S, Waterer GW, Tolley EA, Newman AB, Bauer DC, Taaffe DR, et al. Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung disease in well functioning elderly subjects. Thorax. 2006;61:10–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Agusti AG, Noguera A, Sauleda J, Sala E, Pons J, Busquets X. Systemic effects of chronic obstructive pulmonary disease. Eur Respir J. 2003;21:347–60.PubMedCrossRefGoogle Scholar
  119. 119.
    Sin DD, Man SF. Skeletal muscle weakness, reduced exercise tolerance, and COPD: is systemic inflammation the missing link? Thorax. 2006;61:1–3.PubMedCrossRefGoogle Scholar
  120. 120.
    De Benedetti F, Alonzi T, Moretta A, Lazzaro D, Costa P, Poli V, et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J Clin Invest. 1997;99: 643–50.PubMedCrossRefGoogle Scholar
  121. 121.
    Ladner KJ, Caligiuri MA, Guttridge DC. Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem. 2003;278:2294–303.PubMedCrossRefGoogle Scholar
  122. 122.
    Reid MB, Durham WJ. Generation of reactive oxygen and nitrogen species in contracting skeletal muscle: potential impact on aging. Ann N Y Acad Sci. 2002;959:108–16.PubMedCrossRefGoogle Scholar
  123. 123.
    Wilcox P, Milliken C, Bressler B. High-dose tumor necrosis factor alpha produces an impairment of hamster diaphragm contractility. Attenuation with a prostaglandin inhibitor. Am J Respir Crit Care Med. 1996;153:1611–5.PubMedGoogle Scholar
  124. 124.
    de Godoy I, Donahoe M, Calhoun WJ, Mancino J, Rogers RM. Elevated TNF-alpha production by peripheral blood monocytes of weight-losing COPD patients. Am J Respir Crit Care Med. 1996;153:633–7.PubMedGoogle Scholar
  125. 125.
    Wouters EF. Chronic obstructive pulmonary disease. 5: systemic effects of COPD. Thorax. 2002;57:1067–70.PubMedCrossRefGoogle Scholar
  126. 126.
    Langen RC, Van Der Velden JL, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM. Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. FASEB J. 2004;18:227–37.PubMedCrossRefGoogle Scholar
  127. 127.
    Vassilakopoulos T, Katsaounou P, Karatza MH, Kollintza A, Zakynthinos S, Roussos C. Strenuous resistive breathing induces plasma cytokines: role of antioxidants and monocytes. Am J Respir Crit Care Med. 2002;166:1572–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Broekhuizen R, Grimble RF, Howell WM, Shale DJ, Creutzberg EC, Wouters EF, et al. Pulmonary cachexia, systemic inflammatory profile, and the interleukin 1beta −511 single nucleotide polymorphism. Am J Clin Nutr. 2005;82:1059–64.PubMedGoogle Scholar
  129. 129.
    Vassilakopoulos T, Roussos C, Zakynthinos S. The immune response to resistive breathing. Eur Respir J. 2004;24:1033–43.PubMedCrossRefGoogle Scholar
  130. 130.
    Poulain M, Doucet M, Drapeau V, Fournier G, Tremblay A, Poirier P, et al. Metabolic and inflammatory profile in obese patients with chronic obstructive pulmonary disease. Chron Respir Dis. 2008;5:35–41.PubMedCrossRefGoogle Scholar
  131. 131.
    Casaburi R. Skeletal muscle function in COPD. Chest. 2000;117:267S–71.PubMedCrossRefGoogle Scholar
  132. 132.
    Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23:932–46.PubMedCrossRefGoogle Scholar
  133. 133.
    Mador MJ, Bozkanat E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res. 2001;2:216–24.PubMedCrossRefGoogle Scholar
  134. 134.
    Gosker HR, Wouters EF, van der Vusse GJ, Schols AM. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr. 2000;71:1033–47.PubMedGoogle Scholar
  135. 135.
    Man WD, Kemp P, Moxham J, Polkey MI. Skeletal muscle dysfunction in COPD: clinical and laboratory observations. Clin Sci (Lond). 2009;117:251–64.CrossRefGoogle Scholar
  136. 136.
    Decramer M, Rennard S, Troosters T, Mapel DW, Giardino N, Mannino D, et al. COPD as a lung disease with systemic consequences – clinical impact, mechanisms, and potential for early intervention. COPD. 2008;5:235–56.PubMedCrossRefGoogle Scholar
  137. 137.
    Wagner PD. Skeletal muscles in chronic obstructive pulmonary disease: deconditioning, or myopathy? Respirology. 2006;11:681–6.PubMedCrossRefGoogle Scholar
  138. 138.
    Hansen MJ, Gualano RC, Bozinovski S, Vlahos R, Anderson GP. Therapeutic prospects to treat skeletal muscle wasting in COPD (chronic obstructive lung disease). Pharmacol Ther. 2006;109:162–72.PubMedCrossRefGoogle Scholar
  139. 139.
    Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol. 1984;56:831–8.PubMedGoogle Scholar
  140. 140.
    Casaburi R, Patessio A, Ioli F, Zanaboni S, Donner CF, Wasserman K. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis. 1991;143:9–18.PubMedGoogle Scholar
  141. 141.
    Maltais F, LeBlanc P, Simard C, Jobin J, Berubé C, Bruneau J, et al. Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154:442–7.PubMedGoogle Scholar
  142. 142.
    Troosters T, Gosselink R, Decramer M. Short- and long-term effects of outpatient rehabilitation in patients with chronic obstructive pulmonary disease: a randomized trial. Am J Med. 2000;109:207–12.PubMedCrossRefGoogle Scholar
  143. 143.
    Casaburi R, Bhasin S, Cosentino L, Porszasz J, Somfay A, Lewis MI, et al. Effects of testosterone and resistance training in men with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170:870–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Mador MJ, Kufel TJ, Pineda LA, Steinwald A, Aggarwal A, Upadhyay AM, et al. Effect of pulmonary rehabilitation on quadriceps fatiguability during exercise. Am J Respir Crit Care Med. 2001;163:930–5.PubMedGoogle Scholar
  145. 145.
    Bernard S, Whittom F, Leblanc P, Jobin J, Belleau R, Berubé C, et al. Aerobic and strength training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159:896–901.PubMedGoogle Scholar
  146. 146.
    Richardson RS, Sheldon J, Poole DC, Hopkins SR, Ries AL, Wagner PD. Evidence of skeletal muscle metabolic reserve during whole body exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159:881–5.PubMedGoogle Scholar
  147. 147.
    Siu PM, Donley DA, Bryner RW, Alway SE. Myogenin and oxidative enzyme gene expression levels are elevated in rat soleus muscles after endurance training. J Appl Physiol. 2004;97:277–85.PubMedGoogle Scholar
  148. 148.
    Vogiatzis I, Stratakos G, Simoes DC, Terzis G, Georgiadou O, Roussos C, et al. Effects of rehabilitative exercise on peripheral muscle TNFalpha, IL-6, IGF-I and MyoD expression in patients with COPD. Thorax. 2007;62:950–6.PubMedCrossRefGoogle Scholar
  149. 149.
    Siu PM, Bryner RW, Martyn JK, Alway SE. Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J. 2004;18:1150–2.PubMedGoogle Scholar
  150. 150.
    Léger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006;576:923–33.PubMedCrossRefGoogle Scholar
  151. 151.
    Troosters T, Probst VS, Crul T, Pitta F, Gayan-Ramirez G, Decramer M, et al. Resistance training prevents deterioration in quadriceps muscle function during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;181:1072–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Brooks D, Sottana R, Bell B, Hanna M, Laframboise L, Selvanayagarajah S, et al. Characterization of pulmonary rehabilitation programs in Canada in 2005. Can Respir J. 2007;14:87–92.PubMedGoogle Scholar
  153. 153.
    Maltais F, Bourbeau J, Shapiro S, Lacasse Y, Perrault H, Baltzan M, et al. Effects of home-based pulmonary rehabilitation in patients with chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med. 2008;149:869–78.PubMedGoogle Scholar
  154. 154.
    Vieira DS, Maltais F, Bourbeau J. Home-based pulmonary rehabilitation in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med. 2010;16:134–43.PubMedCrossRefGoogle Scholar
  155. 155.
    Prescott E, Almdal T, Mikkelsen KL, Tofteng CL, Vestbo J, Lange P. Prognostic value of weight change in chronic obstructive pulmonary disease: results from the Copenhagen City Heart Study. Eur Respir J. 2002;20:539–44.PubMedCrossRefGoogle Scholar
  156. 156.
    Whittaker JS, Ryan CF, Buckley PA, Road JD. The effects of refeeding on peripheral and respiratory muscle function in malnourished chronic obstructive pulmonary disease patients. Am Rev Respir Dis. 1990;142:283–8.PubMedGoogle Scholar
  157. 157.
    Schols AM. Nutritional modulation as part of the integrated management of chronic obstructive pulmonary disease. Proc Nutr Soc. 2003;62:783–91.PubMedCrossRefGoogle Scholar
  158. 158.
    Broekhuizen R, Creutzberg EC, Weling-Scheepers CA, Wouters EF, Schols AM. Optimizing oral nutritional drink supplementation in patients with chronic obstructive pulmonary disease. Br J Nutr. 2005;93:965–71.PubMedCrossRefGoogle Scholar
  159. 159.
    Schols AM, Soeters PB, Mostert R, Pluymers RJ, Wouters EF. Physiologic effects of nutritional support and anabolic steroids in patients with chronic obstructive pulmonary disease. A placebo-controlled randomized trial. Am J Respir Crit Care Med. 1995;152:1268–74.PubMedGoogle Scholar
  160. 160.
    Fiaccadori E, Borghetti A. Pathophysiology of respiratory muscles in course of undernutrition. Ann Ital Med Int. 1991;6:402–7.PubMedGoogle Scholar
  161. 161.
    Di Francia M, Barbier D, Mege JL, Orehek J. Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;150:1453–5.PubMedGoogle Scholar
  162. 162.
    Fuld JP, Kilduff LP, Neder JA, Pitsiladis Y, Lean ME, Ward SA, et al. Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease. Thorax. 2005;60:531–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Matsuyama W, Mitsuyama H, Watanabe M, Oonakahara K, Higashimoto I, Osame M, et al. Effects of omega-3 polyunsaturated fatty acids on inflammatory markers in COPD. Chest. 2005;128:3817–27.PubMedCrossRefGoogle Scholar
  164. 164.
    Weisberg J, Wanger J, Olson J, Streit B, Fogarty C, Martin T, et al. Megestrol acetate stimulates weight gain and ventilation in underweight COPD patients. Chest. 2002;121:1070–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Isgaard J, Nilsson A, Vikman K, Isaksson OG. Growth hormone regulates the level of insulin-like growth factor-I mRNA in rat skeletal muscle. J Endocrinol. 1989;120:107–12.PubMedCrossRefGoogle Scholar
  166. 166.
    Cuneo RC, Salomon F, Wiles CM, Hesp R, Sonksen PH. Growth hormone treatment in growth hormone-deficient adults. I. Effects on muscle mass and strength. J Appl Physiol. 1991;70:688–94.PubMedGoogle Scholar
  167. 167.
    Cuneo RC, Salomon F, Wiles CM, Hesp R, Sonksen PH. Growth hormone treatment in growth hormone-deficient adults. II. Effects on exercise performance. J Appl Physiol. 1991;70:695–700.PubMedGoogle Scholar
  168. 168.
    Burdet L, de Muralt B, Schutz Y, Pichard C, Fitting JW. Administration of growth hormone to underweight patients with chronic obstructive pulmonary disease. A prospective, randomized, controlled study. Am J Respir Crit Care Med. 1997;156:1800–6.PubMedGoogle Scholar
  169. 169.
    Bhasin S, Calof OM, Storer TW, Lee ML, Mazer NA, Jasuja R, et al. Drug insight: testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat Clin Pract Endocrinol Metab. 2006;2:146–59.PubMedCrossRefGoogle Scholar
  170. 170.
    Allan G, Sbriscia T, Linton O, Lai MT, Haynes-Johnson D, Bhattacharjee S, et al. A selective androgen receptor modulator with minimal prostate hypertrophic activity restores lean body mass in aged orchidectomized male rats. J Steroid Biochem Mol Biol. 2008;110:207–13.PubMedCrossRefGoogle Scholar
  171. 171.
    Tisdale MJ. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting. J Support Oncol. 2005;3:209–17.PubMedGoogle Scholar
  172. 172.
    Decramer M, de Bock V, Dom R. Functional and histologic picture of steroid-induced myopathy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;153: 1958–64.PubMedGoogle Scholar
  173. 173.
    Dentener MA, Creutzberg EC, Pennings HJ, Rijkers GT, Mercken E, Wouters EF. Effect of infliximab on local and systemic inflammation in chronic obstructive pulmonary disease: a pilot study. Respiration. 2008;76:275–82.PubMedCrossRefGoogle Scholar
  174. 174.
    Rennard SI, Fogarty C, Kelsen S, Long W, Ramsdell J, Allison J, et al. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175:926–34.PubMedCrossRefGoogle Scholar
  175. 175.
    van Hees HW, Dekhuijzen PN, Heunks LM. Levosimendan enhances force generation of diaphragm muscle from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;179:41–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Marc-André Caron
    • 1
  • Marie-Eve Thériault
    • 1
  • Richard Debigaré
    • 1
  • François Maltais
    • 1
  1. 1.Department of RespirologyInstitut Universitaire de Cardiologie et de Pneumologie de QuébecQuebecCanada

Personalised recommendations