Skip to main content

Mechanisms of Action of Isoflavones in Cancer Prevention

  • Chapter
Bioactive Compounds and Cancer

Part of the book series: Nutrition and Health ((NH))

Key Points

1. Isoflavones are plant polyphenols and form part of the diet in regions of the world where the incidence of and death from some, but not all, cancers are much lower than in the United States and other Western countries. Isoflavones also have structural similarities to physiologic estrogens.

2. The amounts of isoflavones consumed in the diet vary considerably. Okinawans consuming traditional diets have intakes as much as 100 mg of the isoflavones genistein and daidzein per day. In contrast, at most Americans isoflavone intake is only 1–3 mg/day.

3. The soy isoflavone genistein in cellular and pre-clinical animal models has been shown to have estrogen-like effects, causing some concern about its safety. However, genistein and other common isoflavones have many other demonstrable mechanisms that may offset the estrogen-like effects, albeit that most occur at higher concentrations/doses.

4. The mechanisms of action of isoflavones over the past 40 years have been found to be as antioxidants, estrogen agonists, topoisomerase inhibitors, metastasis, and inhibitors of tyrosine kinases. Many of these mechanisms focus on targets that are relevant to anti-cancer therapy and may not be important for prevention.

5. Isoflavones have been used as chemopreventive agents in animal models of breast, endometrial, lung, and prostate cancer. In the case of breast cancer, preventive effects of soy (containing isoflavones) were observed in radiation and chemical carcinogen-induced mammary carcinogenesis in rats. Lamartiniere’s group then showed that rats exposed briefly to genistein (500 μg daily by injection) in the perinatal and pre-pubertal periods had a 50% reduction in the number of mammary tumors compared to animals on a control (soy-free) diet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes, S., Kim, H., Darley-Usmar, V., Patel, R., Xu, J., Boersma, B., and Luo, M. (2000) Beyond ER alpha and ER beta: Estrogen receptor binding is only part of the isoflavone story. J Nutr 130, 656–7S.

    Google Scholar 

  2. Barnes, S., Prasain, J., D’Alessandro, T., Wang, C.C., Zhang, H.G., and Kim, H. (2006) In: Heber D., Blackburn G.L., Go V.L.W., and Milner J., eds. Nutritional Oncology. 559–71, San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  3. Steele, C.L., Gijzen, M., Qutob, D., and Dixon, R.A. (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys 367, 146–50.

    Article  PubMed  CAS  Google Scholar 

  4. Barnes, S., Kirk, M., and Coward, L. (1994) Isoflavones and their conjugates in soy foods: Extraction conditions and analysis by HPLC-mass spectrometry. J Agric Food Chem 42, 2466–74.

    Article  CAS  Google Scholar 

  5. Prasain, J.K., Jones, K., Brissie, N., Moore, D.R., II, Wyss, J.M., and Barnes, S. (2004) Identification of puerarin and its metabolites in rats by liquid chromatography-tandem mass spectrometry. J Agric Food Chem 52, 3708–12.

    Article  PubMed  CAS  Google Scholar 

  6. Talla, E., Njamen, D., Mbafor, J.T., Fomum, Z.T., Kamanyi, A., Mbanya, J.C., Giner, R.M., Recio, M.C., Máñez, S., and Ríos, J.L. (2003) Warangalone, the isoflavonoid anti-inflammatory principle of Erythrina addisoniae stem bark. J Nat Prod 66, 891–93.

    Article  PubMed  CAS  Google Scholar 

  7. Milligan, S.R., Kalita, J.C., Pocock, V., Van De Kauter, V., Stevens, J.F., Deinzer, M.L., Rong, H., and De Keukeleire, D. (2000) The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J Clin Endocrinol Metab 85, 4912–15.

    Article  PubMed  CAS  Google Scholar 

  8. Walter, E.D. (1941) Genistin (an isoflavone glucoside) and its aglucone, genistein from soybean. J Am Oil Chem Soc 63, 3273–76.

    Article  CAS  Google Scholar 

  9. Adlercreutz, H., and Mazur, W. (1997) Phyto-oestrogens and Western diseases. Ann Med 29, 95–120.

    PubMed  CAS  Google Scholar 

  10. Horn-Ross, P.L., Barnes, S., Lee, M., Coward, L., Mandel, E., Koo, J., John, E.M., and Smith, M. (2000) Assessing phytoestrogen exposure in epidemiologic studies: Development of a database (United States). Cancer Causes Contr 11, 289–98.

    Article  CAS  Google Scholar 

  11. Price, K.R., and Fenwick, G.R. (1985) Naturally occurring oestrogens in foods—a review. Food Addit Contam 2, 73–106.

    Article  PubMed  CAS  Google Scholar 

  12. Keung, W.M., and Vallee, B.L. (1998) Kudzu root: An ancient chinese source of modern antidipsotropic agents. Phytochem 47, 499–506.

    Article  CAS  Google Scholar 

  13. Reynolds, B.D., Blackmon, W.J., Wickremesinhe, E., Wells, M.H., and Constantin, R.J. (1990) Domestication of Apios americana. In: J. Janick, and J.E. Simon eds. Advances in new crops. 436–42, Portland, OR: Timber Press.

    Google Scholar 

  14. Barnes, S., Wang, C.C., Kirk, M., Smith-Johnson, M., Coward, L., Barnes, N.C., Vance, G., and Boersma, B. (2002) HPLC-mass spectrometry of isoflavonoids in soy and the American groundnut, Apios americana. Adv Exp Med Biol 505, 77–88.

    Article  PubMed  CAS  Google Scholar 

  15. Nagata, C., Takatsuka, N., and Shimizu, H. (2002) Soy and Fish Oil Intake and Mortality in a Japanese Community. Am J Epidemiol 156, 824–31.

    Article  PubMed  Google Scholar 

  16. Frankenfeld, C.L., Patterson, R.E., Kalhorn, T.F., Skor, H.E., Howald, W.N., and Lampe, J.W. (2002) Validation of a soy food frequency questionnaire with plasma concentrations of isoflavones in US adults. J Am Diet Assoc 102, 1407–13.

    Article  PubMed  Google Scholar 

  17. Otero-Raviña, F., Grigorian-Shamagian, L., Blanco Rodríguez, R., Gómez Vázquez, J.L., Fernández Villaverde, J.M., and González-Juanatey, J.R. and Grupo Barbanza (2007) Changes in lipid profile after regular intake of canned fish. The influence of addition of isoflavones, omega-3 fatty acids and fitosterols. Med Clin (Barc 129, 81–85.

    Article  Google Scholar 

  18. Coward, L., Barnes, N.C., Setchell, K.D.R., and Barnes, S. (1993) The antitumor isoflavones, genistein and daidzein, in soybean foods of American and Asian diets. J Agric Food Chem 41, 1961–67.

    Article  CAS  Google Scholar 

  19. Day, A.J., Cañada, F.J., Díaz, J.C., Kroon, P.A., Mclauchlan, R., Faulds, C.B., Plumb, G.W., Morgan, M.R., and Williamson, G. (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468, 166–70.

    Article  PubMed  CAS  Google Scholar 

  20. Sfakianos, J., Coward, L., Kirk, M., and Barnes, S. (1997) Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J Nutr 127, 1260–68.

    PubMed  CAS  Google Scholar 

  21. Coldham, N.G., Howells, L.C., Santi, A., Montesissa, C., Langlais, C., King, L.J., Macpherson, D.D., and Sauer, M.J. (1999) Biotransformation of genistein in the rat: Elucidation of metabolite structure by product ion mass fragmentology. J Steroid Biochem Mol Biol 70, 169–84.

    Article  PubMed  CAS  Google Scholar 

  22. Loo, G. (2003) Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation. J Nutr Biochem 14, 64–73.

    Article  PubMed  CAS  Google Scholar 

  23. Surh, Y.J. (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3, 768–80.

    Article  PubMed  CAS  Google Scholar 

  24. Tsuda, H., Ohshima, Y., Nomoto, H., Fujita, K., Matsuda, E., Iigo, M., Takasuka, N., and Moore, M.A. (2004) Cancer prevention by natural compounds. Drug Metab Pharmacokinet 19, 245–63.

    Article  PubMed  CAS  Google Scholar 

  25. Surh, Y.J., Na, H.K., and Lee, S.S. (2004) Transcription factors and mitogen-activated protein kinases as molecular targets for chemoprevention with anti-inflammatory phytochemicals. Biofactors 21, 103–08.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, R.H. (2004) Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J Nutr 134, 3479S–3485S.

    PubMed  CAS  Google Scholar 

  27. Surh, Y.J., Kundu, J.K., Na, H.K., and Lee, J.S. (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135, 2993S–3001S.

    PubMed  CAS  Google Scholar 

  28. Ferguson, L.R., and Philpott, M. (2007) Cancer prevention by dietary bioactive components that target the immune response. Curr Cancer Drug Targets 7, 459–64.

    Article  PubMed  CAS  Google Scholar 

  29. Nishino, H., Satomi, Y., Tokuda, H., and Masuda, M. (2007) Cancer control by phytochemicals. Curr Pharm Des 13, 3394–99.

    Article  PubMed  CAS  Google Scholar 

  30. Kundu, J.K., and Surh, Y.J. (2008) Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Lett 269, 243–61.

    Article  PubMed  CAS  Google Scholar 

  31. Aggarwal, B.B., Kunnumakkara, A.B., Harikumar, K.B., Tharakan, S.T., Sung, B., and Anand, P. (2008) Potential of spice-derived phytochemicals for cancer prevention. Planta Med 74, 1560–69.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, H., Peterson, T.G., and Barnes, S. (1998) Mechanisms of action of the soy isoflavone genistein: Emerging role for its effects via transforming growth factor beta signaling pathways. Am J Clin Nutr 68, 1418S–1425S.

    PubMed  CAS  Google Scholar 

  33. Polkowski, K., and Mazurek, A.P. (2000) Biological properties of genistein. A review of in vitro and in vivo data. Acta Pol Pharm 57, 135–55.

    PubMed  CAS  Google Scholar 

  34. Lamartiniere, C.A., Cotroneo, M.S., Fritz, W.A., Wang, J., Mentor-Marcel, R., and Elgavish, A. (2002) Genistein chemoprevention: Timing and mechanisms of action in murine mammary and prostate. J Nutr 132, 552S–558S.

    PubMed  Google Scholar 

  35. Magee, P.J., and Rowland, I.R. (2004) Phyto-oestrogens, their mechanism of action: Current evidence for a role in breast and prostate cancer. Br J Nutr 91, 513–31.

    Article  PubMed  CAS  Google Scholar 

  36. Cross, H.S., Kállay, E., Lechner, D., Gerdenitsch, W., Adlercreutz, H., and Armbrecht, H.J. (2004) Phytoestrogens and vitamin D metabolism: A new concept for the prevention and therapy of colorectal, prostate, and mammary carcinomas. J Nutr 134, 1207S–1212S.

    PubMed  Google Scholar 

  37. Ravindranath, M.H., Muthugounder, S., Presser, N., and Viswanathan, S. (2004) Anticancer therapeutic potential of soy isoflavone, genistein. Adv Exp Med Biol 546, 121–65.

    PubMed  Google Scholar 

  38. Holzbeierlein, J.M., McIntosh, J., and Thrasher, J.B. (2005) The role of soy phytoestrogens in prostate cancer. Curr Opin Urol 15, 17–22.

    Article  PubMed  Google Scholar 

  39. Bektic, J., Guggenberger, R., Eder, I.E., Pelzer, A.E., Berger, A.P., Bartsch, G., and Klocker, H. (2005) Molecular effects of the isoflavonoid genistein in prostate cancer. Clin Prostate Cancer 4, 124–29.

    Article  PubMed  CAS  Google Scholar 

  40. Messina, M., Kucuk, O., and Lampe, J.W. (2006) An overview of the health effects of isoflavones with an emphasis on prostate cancer risk and prostate-specific antigen levels. J AOAC Int 89, 1121–34.

    PubMed  CAS  Google Scholar 

  41. Xiao, C.W., Wood, C., and Gilani, G.S. (2006) Nuclear receptors: Potential biomarkers for assessing physiological functions of soy proteins and phytoestrogens. J AOAC Int 89, 1207–14.

    PubMed  CAS  Google Scholar 

  42. Goetzl, M.A., Van Veldhuizen, P.J., and Thrasher, J.B. (2007) Effects of soy phytoestrogens on the prostate. Prostate Cancer Prostatic Dis 10, 216–23.

    Article  PubMed  CAS  Google Scholar 

  43. Power, K.A., and Thompson, L.U. (2007) Can the combination of flaxseed and its lignans with soy and its isoflavones reduce the growth stimulatory effect of soy and its isoflavones on established breast cancer? Mol Nutr Food Res 51, 845–56.

    Article  PubMed  CAS  Google Scholar 

  44. Rahman, I., Biswas, S.K., and Kirkham, P.A. (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72, 1439–52.

    Article  PubMed  CAS  Google Scholar 

  45. Krishnan, V., Heath, H., and Bryant, H.U. (2000) Mechanism of action of estrogens and selective estrogen receptor modulators. Vitam Horm 60, 123–47.

    Article  PubMed  CAS  Google Scholar 

  46. Moutsatsou, P. (2007) The spectrum of phytoestrogens in nature: Our knowledge is expanding. Hormones (Athens 6, 173–93.

    Google Scholar 

  47. Okura, A., Arakawa, H., Oka, H., Yoshinari, T., and Monden, Y. (1988) Effect of genistein on topoisomerase activity and on the growth of [Val 12]Ha-ras-transformed NIH 3T3 cells. Biochem Biophys Res Commun 157, 183–89.

    Article  PubMed  CAS  Google Scholar 

  48. Scholar, E.M., and Toews, M.L. (1994) Inhibition of invasion of murine mammary carcinoma cells by the tyrosine kinase inhibitor genistein. Cancer Lett 87, 159–62.

    Article  PubMed  CAS  Google Scholar 

  49. Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., and Fukami, Y. (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262, 5592–95.

    PubMed  CAS  Google Scholar 

  50. Shelnutt, S.R., Cimino, C.O., Wiggins, P.A., Ronis, M.J., and Badger, T.M. (2002) Pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein in men and women after consumption of a soy beverage. Am J Clin Nutr 76, 588–94.

    PubMed  CAS  Google Scholar 

  51. Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., van der Saag, P.T., van der Burg, B., and Gustafsson, J.A. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139, 4252–63.

    Article  PubMed  CAS  Google Scholar 

  52. Banerjee, S., Li, Y., Wang, Z., and Sarkar, F.H. (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269, 226–42.

    Article  PubMed  CAS  Google Scholar 

  53. Katanoda, K., and Qiu, D. (2007) Comparison of Time Trends in Female Breast Cancer Incidence (1973–1997) in East Asia, Europe and USA, from Cancer Incidence in Five Continents, Vols IV–VIII. Jpn J Clin Oncol 37, 638–639.

    Article  PubMed  Google Scholar 

  54. Hsing, A.W., Tsao, L., and Devesa, S.S. (2000) International trends and patterns of prostate cancer incidence and mortality. Int J Cancer 85, 60–67.

    Article  PubMed  CAS  Google Scholar 

  55. Qiu, D., and Tanaka, S. (2006) International comparisons of cumulative risk of stomach cancer, from cancer incidence in five continents Vol. VIII. Jpn J Clin Oncol 36, 123–4.

    Google Scholar 

  56. Howson, C.P., Hiyama, T., and Wynder, E.L. (1986) The decline in gastric cancer: Epidemiology of an unplanned triumph. Epidemiol Rev 8, 1–26.

    PubMed  CAS  Google Scholar 

  57. Shimizu, H., Ross, R.K., Bernstein, L., Yatani, R., Henderson, B.E., and Mack, T.M. (1991) Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer 63, 963–66.

    Article  PubMed  CAS  Google Scholar 

  58. Brawer, M.K. (2005) Prostatic intraepithelial neoplasia: An overview. Rev Urol 7(Suppl 3), S11–S18.

    PubMed  Google Scholar 

  59. Stemmermann, G.N. (1991) The pathology of breast cancer in Japanese women compared to other ethnic groups: A review. Breast Cancer Res Treat 18, S67–S72.

    Article  PubMed  Google Scholar 

  60. Chia, K.S., Reilly, M., Tan, C.S., Lee, J., Pawitan, Y., Adami, H.O., Hall, P., and Mow, B. (2005) Profound changes in breast cancer incidence may reflect changes into a Westernized lifestyle: A comparative population-based study in Singapore and Sweden. Int J Cancer 113, 302–06.

    Article  PubMed  CAS  Google Scholar 

  61. Qin, L.Q., Xu, J.Y., Wang, P.Y., and Hoshi, K. (2006) Soyfood intake in the prevention of breast cancer risk in women: A meta-analysis of observational epidemiological studies. J Nutr Sci Vitaminol (Tokyo 52, 428–36.

    Article  CAS  Google Scholar 

  62. Wu, A.H., Yu, M.C., Tseng, C.C., and Pike, M.C. (2008) Epidemiology of soy exposures and breast cancer risk. Br J Cancer 98, 9–14.

    Article  PubMed  CAS  Google Scholar 

  63. Shu, X.O., Jin, F., Dai, Q., Wen, W., Potter, J.D., Kushi, L.H., Ruan, Z., Gao, Y.T., and Zheng, W. (2001) Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev 10, 483–88.

    PubMed  CAS  Google Scholar 

  64. Messina, M., and Wood, C.E. (2008) Soy isoflavones, estrogen therapy, and breast cancer risk: Analysis and commentary. Nutrition J 17, 7.

    Google Scholar 

  65. Troll, W., Wiesner, R., Shellabarger, C.J., Holtzman, S., and Stone, J.P. (1980) Soybean diet lowers breast tumor incidence in irradiated rats. Carcinogenesis 1, 469–72.

    Article  PubMed  CAS  Google Scholar 

  66. Barnes, S., Grubbs, C., Setchell, K.D.R., and Carlson, J. (1990) Soybeans inhibit mammary tumors in models of breast cancer. Prog Clin Biol Res 347, 239–53.

    PubMed  CAS  Google Scholar 

  67. Simmen, R.C., Eason, R.R., Till, S.R., Chatman, L., Jr, Velarde, M.C., Geng, Y., Korourian, S., and Badger, T.M. (2005) Inhibition of NMU-induced mammary tumorigenesis by dietary soy. Cancer Lett 224, 45–52.

    Article  PubMed  CAS  Google Scholar 

  68. Lamartiniere, C.A., Moore, J., Holland, M., and Barnes, S. (1995) Genistein and chemoprevention of breast cancer. Proc Soc Exp Biol Med 208, 120–23.

    PubMed  CAS  Google Scholar 

  69. Murrill, W.B., Brown, N.M., Zhang, J.-X., Manzolillo, P.A., Barnes, S., and Lamartiniere, C.A. (1996) Prepubertal genistein exposure suppresses mammary cancer and enhances gland differentiation in rats. Carcinogenesis 17, 1451–57.

    Article  PubMed  CAS  Google Scholar 

  70. Fritz, W.A., Coward, L., Wang, J., and Lamartiniere, C.A. (1998) Dietary genistein: Perinatal mammary cancer prevention, bioavailability and toxicity testing in the rat. Carcinogenesis 19, 2151–58.

    Article  PubMed  CAS  Google Scholar 

  71. Hilakivi-Clarke, L., Onojafe, I., Raygada, M., Cho, E., Skaar, T., Russo, I., and Clarke, R. (1999) Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis. Br J Cancer 80, 1682–88.

    Article  PubMed  CAS  Google Scholar 

  72. Mishra, P., Kale, R.K., and Kar, A. (2008) Chemoprevention of mammary tumorigenesis and chemomodulation of the antioxidative enzymes and peroxidative damage in prepubertal Sprague Dawley rats by Biochanin A. Mol Cell Biochem 312, 1–9.

    Article  PubMed  CAS  Google Scholar 

  73. Lamartiniere, C.A., Cotroneo, M.S., Fritz, W.A., Wang, J., Mentor-Marcel, R., and Elgavish, A. (2002) Genistein chemoprevention: Timing and mechanisms of action in murine mammary and prostate. J Nutr 132, 552S–558S.

    PubMed  Google Scholar 

  74. Kim, H., Hall, P., Smith, M., Kirk, M., Prasain, J.K., Barnes, S., and Grubbs, C. (2004) Chemoprevention by grape seed extract and genistein in carcinogen-induced mammary cancer in rats is diet-dependent. J Nutr 134, 3445S–52S.

    PubMed  CAS  Google Scholar 

  75. Constantinou, A.I., Lantvit, D., Hawthorne, M., Xu, X., van Breemen, R.B., and Pezzuto, J.M. (2001) Chemopreventive effects of soy protein and purified soy isoflavones on DMBA-induced mammary tumors in female Sprague-Dawley rats. Nutr Cancer 41, 75–81.

    PubMed  CAS  Google Scholar 

  76. Hsieh, C.Y., Santell, R.C., Haslam, S.Z., and Helferich, W.G. (1998) Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res 58, 3833–38.

    PubMed  CAS  Google Scholar 

  77. Allred, C.D., Allred, K.F., Ju, Y.H., Goeppinger, T.S., Doerge, D.R., and Helferich, W.G. (2004) Soy processing influences growth of estrogen-dependent breast cancer tumors. Carcinogenesis 25, 1649–57.

    Article  PubMed  CAS  Google Scholar 

  78. Messina, M., and Barnes, S. (1991) Workshop report from the Division of Cancer Etiology, National Cancer Institute, National Institutes of Health. The role of soy products in reducing risks of certain cancers. J Natil Cancer Inst 83, 541–46.

    Article  CAS  Google Scholar 

  79. Ju, Y.H., Fultz, J., Allred, K.F., Doerge, D.R., and Helferich, W.G. (2006) Effects of dietary daidzein and its metabolite, equol, at physiological concentrations on the growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in ovariectomized athymic mice. Carcinogenesis 27, 856–63.

    Article  PubMed  CAS  Google Scholar 

  80. Ju, Y.H., Allred, K.F., Allred, C.D., and Helferich, W.G. (2006) Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations. Carcinogenesis 27, 1292–99.

    Article  PubMed  CAS  Google Scholar 

  81. Ju, Y.H., Doerge, D.R., Allred, K.F., Allred, C.D., and Helferich, W.G. (2002) Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res 62, 2474–77.

    PubMed  CAS  Google Scholar 

  82. Ju, Y.H., Doerge, D.R., Woodling, K.A., Hartman, J.A., Kwak, J., and Helferich, W.G. (2008) Dietary Genistein Negates the Inhibitory Effect of Letrozole On The Growth Of Aromatase-expressing Estrogen-Dependent Human Breast Cancer Cells (MCF-7Ca) In Vivo. Carcinogenesis 29, 2162–68.

    Article  PubMed  CAS  Google Scholar 

  83. Shao, Z.M., Wu, J., Shen, Z.Z., and Barsky, S.H. (1998) Genistein exerts multiple suppressive effects on human breast carcinoma cells. Cancer Res 58, 4851–57.

    PubMed  CAS  Google Scholar 

  84. Constantinou, A.I., Krygier, A.E., and Mehta, R.R. (1998) Genistein induces maturation of cultured human breast cancer cells and prevents tumor growth in nude mice. Am J Clin Nutr 68, 1426S–1430S.

    PubMed  CAS  Google Scholar 

  85. Moon, Y.J., Shin, B.S., An, G., and Morris, M.E. (2008) Biochanin A inhibits breast cancer tumor growth in a murine xenograft model. Pharm Res 25, 2158–63.

    Article  PubMed  CAS  Google Scholar 

  86. Santell, R.C., Kieu, N., and Helferich, W.G. (2000) Genistein inhibits growth of estrogen-independent human breast cancer cells in culture but not in athymic mice. J Nutr 130, 1665–69.

    PubMed  CAS  Google Scholar 

  87. Hillman, G.G., Wang, Y., Che, M., Raffoul, J.J., Yudelev, M., Kucuk, O., and Sarkar, F.H. (2007) Progression of renal cell carcinoma is inhibited by genistein and radiation in an orthotopic model. BMC Cancer 9(7), 4.

    Article  CAS  Google Scholar 

  88. Singh, A.V., Franke, A.A., Blackburn, G.L., and Zhou, J.R. (2006) Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis. Cancer Res 66, 1851–58.

    Article  PubMed  CAS  Google Scholar 

  89. Büchler, P., Gukovskaya, A.S., Mouria, M., Büchler, M.C., Büchler, M.W., Friess, H., Pandol, S.J., Reber, H.A., and Hines, O.J. (2003) Prevention of metastatic pancreatic cancer growth in vivo by induction of apoptosis with genistein, a naturally occurring isoflavonoid. Pancreas 26, 264–73.

    Article  PubMed  Google Scholar 

  90. Lakshman, M., Xu, L., Ananthanarayanan, V., Cooper, J., Takimoto, C.H., Helenowski, I., Pelling, J.C., and Bergan, R.C. (2008) Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Res 68, 2024–32.

    Article  PubMed  CAS  Google Scholar 

  91. Raffoul, J.J., Banerjee, S., Che, M., Knoll, Z.E., Doerge, D.R., Abrams, J., Kucuk, O., Sarkar, F.H., and Hillman, G.G. (2007) Soy isoflavones enhance radiotherapy in a metastatic prostate cancer model. Int J Cancer 120, 2491–98.

    Article  PubMed  CAS  Google Scholar 

  92. Wang, Y., Raffoul, J.J., Che, M., Doerge, D.R., Joiner, M.C., Kucuk, O., Sarkar, F.H., and Hillman, G.G. (2006) Prostate cancer treatment is enhanced by genistein in vitro and in vivo in a syngeneic orthotopic tumor model. Radiat Res 166, 73–80.

    Article  PubMed  CAS  Google Scholar 

  93. Lightfoot, R.J., Smith, J.F., Cumming, I.A., Marshall, T., Wroth, R.H., and Hearnshaw, H. (1974) Infertility in ewes caused by prolonged grazing on oestrogenic pastures: Oestrus, fertilization and cervical mucus. Aust J Biol Sci 27, 409–14.

    PubMed  CAS  Google Scholar 

  94. Leopold, A.S., Erwin, M., Oh, J., and Browning, B. (1976) Phytoestrogens: Adverse effects on reproduction in California quail. Science 191, 98–100.

    Article  PubMed  CAS  Google Scholar 

  95. Wilhelms, K.W., Scanes, C.G., and Anderson, L.L. (2006) Lack of estrogenic or antiestrogenic actions of soy isoflavones in an avian model: The Japanese quail. Poult Sci 85, 1885–89.

    PubMed  CAS  Google Scholar 

  96. Setchell, K.D., Gosselin, S.J., Welsh, M.B., Johnston, J.O., Balistreri, W.F., Kramer, L.W., Dresser, B.L., and Tarr, M.J. (1987) Dietary estrogens–a probable cause of infertility and liver disease in captive cheetahs. Gastroenterology 93, 225–33.

    PubMed  CAS  Google Scholar 

  97. Martin, P.M., Horwitz, K.B., Ryan, D.S., and McGuire, W.L. (1978) Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology 103, 1860–67.

    Article  PubMed  CAS  Google Scholar 

  98. Mathieson, R.A., and Kitts, W.D. (1980) Binding of phyto-oestrogen and oestradiol-17 beta by cytoplasmic receptors in the pituitary gland and hypothalamus of the ewe. J Endocrinol 85, 317–25.

    Article  PubMed  CAS  Google Scholar 

  99. Kuiper, G.G., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J.A. (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 93, 5925–30.

    Article  PubMed  CAS  Google Scholar 

  100. Kuiper, G.G., Carlsson, B., Grandien, K., Enmark, E., Häggblad, J., Nilsson, S., and Gustafsson, J.A. (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138, 863–70.

    Article  PubMed  CAS  Google Scholar 

  101. Setchell, K.D., Clerici, C., Lephart, E.D., Cole, S.J., Heenan, C., Castellani, D., Wolfe, B.E., Nechemias-Zimmer, L., Brown, N.M., Lund, T.D., Handa, R.J., and Heubi, J.E. (2005) S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr 81, 1072–79.

    PubMed  CAS  Google Scholar 

  102. Pelissero, C., Lenczowski, M.J., Chinzi, D., Davail-Cuisset, B., Sumpter, J.P., and Fostier, A. (1996) Effects of flavonoids on aromatase activity, an in vitro study. J Steroid Biochem Mol Biol 57, 215–23.

    Article  PubMed  CAS  Google Scholar 

  103. Kao, Y.C., Zhou, C., Sherman, M., Laughton, C.A., and Chen, S. (1998) Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ Health Perspect 106, 85–92.

    Article  PubMed  CAS  Google Scholar 

  104. Fiorelli, G., Picariello, L., Martineti, V., Tonelli, F., and Brandi, M.L. (1999) Estrogen synthesis in human colon cancer epithelial cells. J Steroid Biochem Mol Biol 71, 223–30.

    Article  PubMed  CAS  Google Scholar 

  105. Sanderson, J.T., Hordijk, J., Denison, M.S., Springsteel, M.F., Nantz, M.H., and van den Berg, M. (2004) Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicol Sci 82, 70–79.

    Article  PubMed  CAS  Google Scholar 

  106. Myllymäki, S., Haavisto, T., Vainio, M., Toppari, J., and Paranko, J. (2005) In vitro effects of diethylstilbestrol, genistein, 4-tert-butylphenol, and 4-tert-octylphenol on steroidogenic activity of isolated immature rat ovarian follicles. Toxicol Appl Pharmacol 204, 69–80.

    Article  PubMed  CAS  Google Scholar 

  107. Brooks, J.D., and Thompson, L.U. (2005) Mammalian lignans and genistein decrease the activities of aromatase and 17beta-hydroxysteroid dehydrogenase in MCF-7 cells. J Steroid Biochem Mol Biol 94, 461–67.

    Article  PubMed  CAS  Google Scholar 

  108. Whitehead, S.A., Cross, J.E., Burden, C., and Lacey, M. (2002) Acute and chronic effects of genistein, tyrphostin and lavendustin A on steroid synthesis in luteinized human granulosa cells. Hum Reprod 17, 589–94.

    Article  PubMed  CAS  Google Scholar 

  109. Lacey, M., Bohday, J., Fonseka, S.M., Ullah, A.I., and Whitehead, S.A. (2005) Dose-response effects of phytoestrogens on the activity and expression of 3beta-hydroxysteroid dehydrogenase and aromatase in human granulosa-luteal cells. J Steroid Biochem Mol Biol 96, 279–86.

    Article  PubMed  CAS  Google Scholar 

  110. Fritz, W.A., Cotroneo, M.S., Wang, J., Eltoum, I.E., and Lamartiniere, C.A. (2003) Dietary diethylstilbestrol but not genistein adversely affects rat testicular development. J Nutr 133, 2287–93.

    PubMed  CAS  Google Scholar 

  111. Le Page, Y., Scholze, M., Kah, O., and Pakdel, F. (2006) Assessment of xenoestrogens using three distinct estrogen receptors and the zebrafish brain aromatase gene in a highly responsive glial cell system. Environ Health Perspect 114, 752–58.

    Article  PubMed  CAS  Google Scholar 

  112. Rice, S., Mason, H.D., and Whitehead, S.A. (2006) Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells. J Steroid Biochem Mol Biol 101, 216–25.

    Article  PubMed  CAS  Google Scholar 

  113. van Meeuwen, J.A., Korthagen, N., de Jong, P.C., Piersma, A.H., and van den Berg, M. (2007) (Anti)estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture. Toxicol Appl Pharmacol 221, 372–83.

    Article  PubMed  CAS  Google Scholar 

  114. Lyou, S., Kawano, S., Yamada, T., Okuyama, S., Terashima, T., Hayase, K., and Yokogoshi, H. (2008) Role of estrogen receptors and aromatase on brain protein synthesis rates in ovariectomized female rats fed genistein. Nutr Neurosci 11, 155–60.

    Article  PubMed  CAS  Google Scholar 

  115. Davis, J.N., Muqim, N., Bhuiyan, M., Kucuk, O., Pienta, K.J., and Sarkar, F.H. (2000) Inhibition of prostate specific antigen expression by genistein in prostate cancer cells. Int J Oncol 16, 1091–97.

    PubMed  CAS  Google Scholar 

  116. Maubach, J., Bracke, M.E., Heyerick, A., Depypere, H.T., Serreyn, R.F., Mareel, M.M., and De Keukeleire, D. (2003) Quantitation of soy-derived phytoestrogens in human breast tissue and biological fluids by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 784, 137–44.

    Article  PubMed  CAS  Google Scholar 

  117. Petrakis, N.L., Barnes, S., King, E.B., Lowenstein, J., Wiencke, J., Lee, M.M., Miike, R., Kirk, M., and Coward, L. (1996) Stimulatory influence of soy protein isolate on breast secretion in pre- and post-menopausal women. Cancer Epidemiol Biomarkers Prev 5, 785–94.

    PubMed  CAS  Google Scholar 

  118. Maskarinec, G., Hebshi, S., Custer, L., and Franke, A.A. (2008) The relation of soy intake and isoflavone levels in nipple aspirate fluid. Eur J Cancer Prev 17, 67–70.

    Article  PubMed  Google Scholar 

  119. Hedlund, T.E., Maroni, P.D., Ferucci, P.G., Dayton, R., Barnes, S., Jones, K., Moore, R., Ogden, L.G., Wähälä, K., Sackett, H.M., and Gray, K.J. (2005) Long-term dietary habits affect soy isoflavone metabolism and accumulation in prostatic fluid in caucasian men. J Nutr 135, 1400–06.

    PubMed  CAS  Google Scholar 

  120. Hedlund, T.E., van Bokhoven, A., Johannes, W.U., Nordeen, S.K., and Ogden, L.G. (2006) Prostatic fluid concentrations of isoflavonoids in soy consumers are sufficient to inhibit growth of benign and malignant prostatic epithelial cells in vitro. Prostate 66, 557–66.

    Article  PubMed  CAS  Google Scholar 

  121. Löffer, M., and Schneider, F. (1982) Further characterization of the growth inhibitory effect of rotenone on in vitro cultured Ehrlich ascites tumour cells. Mol Cell Biochem 48, 77–90.

    PubMed  Google Scholar 

  122. Kuzumaki, T., Kobayashi, T., and Ishikawa, K. (1998) Genistein induces p21(Cip1/WAF1) expression and blocks the G1 to S phase transition in mouse fibroblast and melanoma cells, Biochem. Biophys Res Commun 251, 291–95.

    Article  CAS  Google Scholar 

  123. Pagliacci, M.C., Smacchia, M., Migliorati, G., Grignani, F., Riccardi, C., and Nicoletti, I. (1994) Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells, Eur. J Cancer 30A, 1675–82.

    CAS  Google Scholar 

  124. Davis, J.N., Singh, B., Bhuiyan, M., and Sarkar, F.H. (1998) Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells, Nutr. Cancer 32, 123–31.

    CAS  Google Scholar 

  125. Choi, Y.H., Zhang, L., Lee, W.H., and Park, K.Y. (1998) Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Int J Oncol 13, 391–96.

    PubMed  CAS  Google Scholar 

  126. Shen, J.C., Klein, R.D., Wei, Q., Guan, Y., Contois, J.H., Wang, T.T., Chang, S., and Hursting, S.D. (2000) Low-dose genistein induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Mol Carcinog 29, 92–102.

    Article  PubMed  CAS  Google Scholar 

  127. Frey, R.S., Li, J., and Singletary, K.W. (2001) Effects of genistein on cell proliferation and cell cycle arrest in nonneoplastic human mammary epithelial cells: Involvement of Cdc2, p21(waf/cip1), p27(kip1), and Cdc25C expression. Biochem Pharmacol 61, 979–89.

    Article  PubMed  CAS  Google Scholar 

  128. Matsumura, K., Tanaka, T., Kawashima, H., and Nakatani, T. (2008) Involvement of the estrogen receptor beta in genistein-induced expression of p21(waf1/cip1) in PC-3 prostate cancer cells. Anticancer Res 28, 709–14.

    PubMed  CAS  Google Scholar 

  129. Fang, M.Z., Chen, D., Sun, Y., Jin, Z., Christman, J.K., and Yang, C.S. (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11, 7033–41.

    Article  PubMed  CAS  Google Scholar 

  130. Majid, S., Kikuno, N., Nelles, J., Noonan, E., Tanaka, Y., Kawamoto, K., Hirata, H., Li, L.C., Zhao, H., Okino, S.T., Place, R.F., Pookot, D., and Dahiya, R. (2008) Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res 68, 2736–44.

    Article  PubMed  CAS  Google Scholar 

  131. Li, M., Zhang, Z., Hill, D.L., Chen, X., Wang, H., and Zhang, R. (2005) Genistein, a dietary isoflavone, down-regulates the MDM2 oncogene at both transcriptional and posttranslational levels. Cancer Res 65, 8200–08.

    Article  PubMed  CAS  Google Scholar 

  132. El Touny, L.H. (2006) Banerjee PP Identification of both Myt-1 and Wee-1 as necessary mediators of the p21-independent inactivation of the cdc-2/cyclin B1 complex and growth inhibition of TRAMP cancer cells by genistein. Prostate 66, 1542–55.

    Article  CAS  Google Scholar 

  133. Natarajan, K., Manna, S.K., Chaturvedi, M.M., and Aggarwal, B.B. (1998) Protein tyrosine kinase inhibitors block tumor necrosis factor-induced activation of nuclear factor-kappaB, degradation of IkappaBalpha, nuclear translocation of p65, and subsequent gene expression. Arch Biochem Biophys 352, 59–70.

    Article  PubMed  CAS  Google Scholar 

  134. Li, Y., and Sarkar, F.H. (2002) Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res 8, 2369–77.

    PubMed  CAS  Google Scholar 

  135. El Touny, L.H., and Banerjee, P.P. (2007) Akt GSK-3 pathway as a target in genistein-induced inhibition of TRAMP prostate cancer progression toward a poorly differentiated phenotype. Carcinogenesis 28, 1710–17.

    Article  PubMed  CAS  Google Scholar 

  136. Huang, X., Chen, S., Xu, L., Liu, Y., Deb, D.K., Platanias, L.C., and Bergan, R.C. (2005) Genistein inhibits p38 MAP kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res 65, 3470–78.

    PubMed  CAS  Google Scholar 

  137. Lee, M.W., Bach, J.H., Lee, H.J., Lee, D.Y., Joo, W.S., Kim, Y.S., Park, S.C., Kim, K.Y., Lee, W.B., and Kim, S.S. (2005) The activation of ERK1/2 via a tyrosine kinase pathway attenuates trail-induced apoptosis in HeLa cells. Cancer Invest 23, 586–92.

    Article  PubMed  CAS  Google Scholar 

  138. Boersma, B.J., Patel, R.P., Kirk, M., Darley-Usmar, V.M., and Barnes, S. (1999) Chlorination and Nitration of Soy Isoflavones. Arch Biochem Biophys 368, 265–75.

    Article  PubMed  CAS  Google Scholar 

  139. Boersma, B.J., D’Alessandro, T., Benton, M.R., Kirk, M., Wilson, L.S., Prasain, J., Botting, N.P., Barnes, S., Darley-Usmar, V.M., and Patel, R.P. (2003) Neutrophil myeloperoxidase chlorinates soy isoflavones and enhances their antioxidant properties. Free Rad Biol Med 35, 1417–30.

    Article  PubMed  CAS  Google Scholar 

  140. D’Alessandro, T., Prasain, J., Botting, N.P., Moore, R., Darley-Usmar, V.M., Patel, R.P., and Barnes, S. (2003) Polyphenols, inflammatory response, and cancer prevention: Chlorination of isoflavones by human neutrophils. J Nutr 133, 3773S–3777S.

    PubMed  Google Scholar 

  141. Chacko, B.K., Chandler, R.T., Mundhekar, A., Pruitt, H.M., Kucik, D.F., Kevil, C.G., Barnes, S., and Patel, R.P. (2005) Revealing anti-inflammatory mechanisms of soy-isoflavones by flow: Modulation of leukocyte-endothelial cell interactions. Am J Physiol 289, H908–H15.

    Article  CAS  Google Scholar 

  142. Chacko, B.K., Chandler, R.T., D’Alessandro, T.L., Mundhekar, A., Khoo, N.K., Botting, N., Barnes, S., and Patel, R.P. (2007) Anti-inflammatory effects of isoflavones are dependent on flow and human endothelial cell PPARγ. J Nutr 137, 351–56.

    PubMed  CAS  Google Scholar 

  143. Hernandez-Montes, E., Pollard, S.E., Vauzour, D., Jofre-Montseny, L., Rota, C., Rimbach, G., Weinberg, P.D., and Spencer, J.P. (2006) Activation of glutathione peroxidase via Nrf1 mediates genistein’s protection against oxidative endothelial cell injury, Biochem. Biophys Res Commun 346, 851–59.

    Article  CAS  Google Scholar 

  144. Lau, T.Y., and Leung, L.K. (2006) Soya isoflavones suppress phorbol 12-myristate 13-acetate-induced COX-2 expression in MCF-7 cells. Br J Nutr 96, 169–76.

    Article  PubMed  CAS  Google Scholar 

  145. Li, H.C., and Zhang, G.Y. (2003) Activation of STAT3 induced by cerebral ischemia in rat hippocampus and its possible mechanisms. Sheng Li Xue Bao 55, 311–16.

    PubMed  CAS  Google Scholar 

  146. Chen, W.F., Gao, Q.G., and Wong, M.S. (2007) Mechanism involved in genistein activation of insulin-like growth factor 1 receptor expression in human breast cancer cells. Br J Nutr 98, 1120–25.

    Article  PubMed  CAS  Google Scholar 

  147. Kim, E.J., Shin, H.K., and Park, J.H. (2005) Genistein inhibits insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells: A possible mechanism of the growth inhibitory effect of genistein. J Med Food 8, 431–38.

    Article  PubMed  CAS  Google Scholar 

  148. Su, S.J., Chow, N.H., Kung, M.L., Hung, T.C., and Chang, K.L. (2003) Effects of soy isoflavones on apoptosis induction and G2-M arrest in human hepatoma cells involvement of caspase-3 activation, Bcl-2 and Bcl-XL downregulation, and Cdc2 kinase activity. Nutr Cancer 45, 113–23.

    Article  PubMed  CAS  Google Scholar 

  149. Moiseeva, E.P., Almeida, G.M., Jones, G.D., and Manson, M.M. (2007) Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Mol Cancer Ther 6, 3071–79.

    Article  PubMed  CAS  Google Scholar 

  150. Vantyghem, S.A., Wilson, S.M., Postenka, C.O., Al-Katib, W., Tuck, A.B., and Chambers, A.F. (2005) Dietary genistein reduces metastasis in a postsurgical orthotopic breast cancer model. Cancer Res 65, 3396–403.

    PubMed  CAS  Google Scholar 

  151. King-Batoon, A., Leszczynska, J.M., and Klein, C.B. (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 49, 36–45.

    Article  PubMed  CAS  Google Scholar 

  152. Kikuno, N., Shiina, H., Urakami, S., Kawamoto, K., Hirata, H., Tanaka, Y., Majid, S., Igawa, M., and Dahiya, R. (2008) Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 123, 552–60.

    Article  PubMed  CAS  Google Scholar 

  153. Chen, Z.P., and Yeung, D.C. (1996) Regulation of p53 expression in HeLa cells. Biochem Mol Biol Int 38, 607–16.

    PubMed  CAS  Google Scholar 

  154. Rauth, S., Kichina, J., and Green, A. (1997) Inhibition of growth and induction of differentiation of metastatic melanoma cells in vitro by genistein: Chemosensitivity is regulated by cellular p53. Br J Cancer 75, 1559–66.

    Article  PubMed  CAS  Google Scholar 

  155. Ye, R., Bodero, A., Zhou, B.B., Khanna, K.K., Lavin, M.F., and Lees-Miller, S.P. (2001) The plant isoflavenoid genistein activates p53 and Chk2 in an ATM-dependent manner. J Biol Chem 276, 4828–33.

    Article  PubMed  CAS  Google Scholar 

  156. Ye, R., Goodarzi, A.A., Kurz, E.U., Saito, S., Higashimoto, Y., Lavin, M.F., Appella, E., Anderson, C.W., and Lees-Miller, S.P. (2004) The isoflavonoids genistein and quercetin activate different stress signaling pathways as shown by analysis of site-specific phosphorylation of ATM, p53 and histone H2AX. DNA Repair (Amst 3, 235–44.

    Article  CAS  Google Scholar 

  157. Frey, R.S., Li, J., and Singletary, K.W. (2001) Effects of genistein on cell proliferation and cell cycle arrest in nonneoplastic human mammary epithelial cells: Involvement of Cdc2, p21(waf/cip1), p27(kip1), and Cdc25C expression. Biochem Pharmacol 61, 979–89.

    Article  PubMed  CAS  Google Scholar 

  158. Wilson, L.C., Baek, S.J., Call, A., and Eling, T.E. (2003) Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int J Cancer 105, 747–53.

    Article  PubMed  CAS  Google Scholar 

  159. Dijsselbloem, N., Goriely, S., Albarani, V., Gerlo, S., Francoz, S., Marine, J.C., Goldman, M., Haegeman, G., and Vanden Berghe, W. (2007) A critical role for p53 in the control of NF-kappaB-dependent gene expression in TLR4-stimulated dendritic cells exposed to genistein. J Immunol 178, 5048–57.

    PubMed  CAS  Google Scholar 

  160. Vissac-Sabatier, C., Bignon, Y.J., and Bernard-Gallon, D.J. (2003) Effects of the phytoestrogens genistein and daidzein on BRCA2 tumor suppressor gene expression in breast cell lines. Nutr Cancer 45, 247–55.

    Article  PubMed  CAS  Google Scholar 

  161. Vissac-Sabatier, C., Coxam, V., Déchelotte, P., Picherit, C., Horcajada, M.N., Davicco, M.J., Lebecque, P., Bignon, Y.J., and Bernard-Gallon, D. (2003) Phytoestrogen-rich diets modulate expression of Brca1 and Brca2 tumor suppressor genes in mammary glands of female Wistar rats. Cancer Res 63, 6607–12.

    PubMed  CAS  Google Scholar 

  162. Cabanes, A., Wang, M., Olivo, S., DeAssis, S., Gustafsson, J.A., Khan, G., and Hilakivi-Clarke, L. (2004) Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis 25, 741–48.

    Article  PubMed  CAS  Google Scholar 

  163. Dave, B., Eason, R.R., Till, S.R., Geng, Y., Velarde, M.C., Badger, T.M., and Simmen, R.C. (2005) The soy isoflavone genistein promotes apoptosis in mammary epithelial cells by inducing the tumor suppressor PTEN. Carcinogenesis 26, 1793–803.

    Article  PubMed  CAS  Google Scholar 

  164. Cao, F., Jin, T.Y., and Zhou, Y.F. (2006) Inhibitory effect of isoflavones on prostate cancer cells and PTEN gene. Biomed Environ Sci 19, 35–41.

    PubMed  CAS  Google Scholar 

  165. Singletary, K., and Ellington, A. (2006) Genistein suppresses proliferation and MET oncogene expression and induces EGR-1 tumor suppressor expression in immortalized human breast epithelial cells. Anticancer Res 26, 1039–48.

    PubMed  CAS  Google Scholar 

  166. Liu, C., Yu, S., Zinn, K., Wang, J., Zhang, L., Jia, Y., Kappes, J.C., Barnes, S., Kimberly, R.P., Grizzle, W.E., and Zhang, H.G. (2006) Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol 176, 1375–85.

    PubMed  CAS  Google Scholar 

  167. Zhang, H.G., Kim, H., Liu, C., Yu, S., Wang, J., Grizzle, W.E., Kimberly, R.P., and Barnes, S. (2007) Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity. Biochim Biophys Acta 1773, 1116–23.

    Article  PubMed  CAS  Google Scholar 

  168. Power, K.A., Saarinen, N.M., Chen, J.M., and Thompson, L.U. (2006) Mammalian lignans enterolactone and enterodiol, alone and in combination with the isoflavone genistein, do not promote the growth of MCF-7 xenografts in ovariectomized athymic nude mice. Int J Cancer 118, 1316–20.

    Article  PubMed  CAS  Google Scholar 

  169. Power, K.A., Ward, W.E., Chen, J.M., Saarinen, N.M., and Thompson, L.U. (2006) Genistein alone and in combination with the mammalian lignans enterolactone and enterodiol induce estrogenic effects on bone and uterus in a postmenopausal breast cancer mouse model. Bone 39, 117–24.

    Article  PubMed  CAS  Google Scholar 

  170. Wang, Z., Desmoulin, S., Banerjee, S., Kong, D., Li, Y., Deraniyagala, R.L., Abbruzzese, J., and Sarkar, F.H. (2008) Synergistic effects of multiple natural products in pancreatic cancer cells. Life Sci 83, 293–300.

    Article  PubMed  CAS  Google Scholar 

  171. Lambert, J.D., Kwon, S.J., Ju, J., Bose, M., Lee, M.J., Hong, J., Hao, X., and Yang, C.S. (2008) Effect of genistein on the bioavailability and intestinal cancer chemopreventive activity of (-)-epigallocatechin-3-gallate. Carcinogenesis 29, 2019–24.

    Article  PubMed  CAS  Google Scholar 

  172. Barnes, S., Allison, D.B., Page, G.P., Carpenter, M., Gadbury, G.L., Meleth, S, Horn-Ross, P., Kim, H., Lamartinere, C.A., and Grubbs, C.J. (2006) Genistein and polyphenols in the study of cancer prevention: Chemistry, biology, statistics, and experimental design. In: Kaput J., and Rodrigues R. eds. Discovering the Path to Personalized Nutrition. 1st ed., 55–62, New York: Wiley & Sons.

    Google Scholar 

  173. Zakharkin, S.O., Kim, K., Mehta, T., Chen, L., Barnes, S., Scheirer, K.E., Parrish, R.S., Allison, D.B., and Page, G.P. (2005) Sources of variation in Affymetrix microarray experiments. BMC Bioinformatics 6, 214.

    Article  PubMed  CAS  Google Scholar 

  174. Trotman, L.C., Niki, M., Dotan, Z.A., Koutcher, J.A., Di Cristofano, A., Xiao, A., Khoo, A.S., Roy-Burman, P., Greenberg, N.M., Van Dyk, T., Carlos Cordon-Cardo, C., and Pandolfi, P.P. (2003) Pten Dose Dictates Cancer Progression in the Prostate. PLoS Biology 1, 385–96.

    Article  CAS  Google Scholar 

  175. Bonferroni, C.E. (1935) Il calcolo delle assicurazioni su gruppi di teste. In: Studi in Onore del Professore Salvatore Ortu Carboni. 13–60, Rome: Italy.

    Google Scholar 

  176. Chen, C.C., Shieh, B., Jin, Y.T., Liau, Y.E., Huang, C.H., Liou, J.T., Wu, L.W., Huang, W., Young, K.C., Lai, M.D., Liu, H.S., and Li, C. (2001) Microarray profiling of gene expression patterns in bladder tumor cells treated with genistein. J Biomed Sci 8, 214–22.

    Article  PubMed  CAS  Google Scholar 

  177. Chen, W.F., Huang, M.H., Tzang, C.H., Yang, M., and Wong, M.S. (2003) Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochim Biophys Acta 1638, 187–96.

    Article  PubMed  CAS  Google Scholar 

  178. Ise, R., Han, D., Takahasi, Y., Teresaka, S., Inoue, A., Tanji, M., and Kiyama, R. (2005) Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lttr 579, 1732–40.

    Article  CAS  Google Scholar 

  179. Shioda, T., Chesnes, J., Coser, K.R., Zou, L., Hur, J., Dean, K.L., Sonnenschein, C., Soto, A.M., and Isselbacher, K.J. (2006 Aug 8) Importance of dosage standardization for interpreting transcriptomal signature profiles: Evidence from studies of xenoestrogens. Proc Natl Acad Sci U S A 103, 12033–38.

    Article  PubMed  CAS  Google Scholar 

  180. Lee, W.Y., Huang, S.C., Tzeng, C.C., Chang, T.L., and Hsu, K.F. (2007) Alterations of metastasis-related genes identified using an oligonucleotide microarray of genistein-treated HCC1395 breast cancer cells. Nutr Cancer 58, 239–46.

    Article  PubMed  CAS  Google Scholar 

  181. Lavigne, J.A., Takahashi, Y., Chandramouli, G.V., Liu, H., Perkins, S.N., Hursting, S.D., and Wang, T.T. (2008) Concentration-dependent effects of genistein on global gene expression in MCF-7 breast cancer cells: An oligo microarray study. Breast Cancer Res Treat 110, 85–98.

    Article  PubMed  CAS  Google Scholar 

  182. Konstantakopoulos, N., Montgomery, K.G., Chamberlain, N., Quinn, M.A., Baker, M.S., Rice, G.E., Georgiou, H.M., and Campbell, I.G. (2006) Changes in gene expressions elicited by physiological concentrations of genistein on human endometrial cancer cells. Mol Carcinog 45, 752–63.

    Article  PubMed  CAS  Google Scholar 

  183. Zou, H., Zhan, S., and Cao, K. (2008) Apoptotic activity of genistein on human lung adenocarcinoma SPC-A-1 cells and preliminary exploration of its mechanisms using microarray. Biomed Pharmacother 62, 583–89.

    Article  PubMed  CAS  Google Scholar 

  184. Bai, J., Sata, N., Nagai, H., Wada, T., Yoshida, K., Mano, H., Sata, F., and Kishi, R. (2004) Genistein-induced changes in gene expression in Panc 1 cells at physiological concentrations of genistein. Pancreas 29, 93–98.

    Article  PubMed  CAS  Google Scholar 

  185. Rice, L., Samedi, V.G., Medrano, T.A., Sweeney, C.A., Baker, H.V., Stenstrom, A., Furman, J., and Shiverick, K.T. (2002) Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts. Prostate 52, 201–12.

    Article  PubMed  CAS  Google Scholar 

  186. Suzuki, K., Koike, H., Matsui, H., Ono, Y., Hasumi, M., Nakazato, H., Okugi, H., Sekine, Y., Oki, K., Ito, K., Yamamoto, T., Fukabori, Y., Kurokawa, K., and Yamanaka, H. (2002) Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. Int J Cancer 99, 846–52.

    Article  PubMed  CAS  Google Scholar 

  187. Li, Y., and Sarkar, F.H. (2002) Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett 186, 157–64.

    Article  PubMed  CAS  Google Scholar 

  188. Li, Y., and Sarkar, F.H. (2002) Gene expression profiles of genistein-treated PC3 prostate cancer cells. J Nutr 132, 3623–31.

    PubMed  CAS  Google Scholar 

  189. Ayala, G.E., Dai, H., Ittmann, M., Li, R., Powell, M., Frolov, A., Wheeler, T.M., Thompson, T.C., and Rowley, D. (2004) Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res 64, 6082–90.

    Article  PubMed  CAS  Google Scholar 

  190. Takahashi, Y., Lavigne, J.A., Hursting, S.D., Chandramouli, G.V., Perkins, S.N., Barrett, J.C., and Wang, T.T. (2004) Using DNA microarray analyses to elucidate the effects of genistein in androgen-responsive prostate cancer cells: Identification of novel targets. Mol Carcinog 41, 108–19.

    Article  PubMed  CAS  Google Scholar 

  191. Davis, D.A., Sarkar, S.H., Hussain, M., Li, Y., and Sarkar, F.H. (2006) Increased therapeutic potential of an experimental anti-mitotic inhibitor SB715992 by genistein in PC-3 human prostate cancer cell line. BMC Cancer 6, 22.

    Article  PubMed  CAS  Google Scholar 

  192. Li, Y., Kucuk, O., Hussain, M., Abrams, J., Cher, M.L., and Sarkar, F.H. (2006) Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res 66, 4816–25.

    Article  PubMed  CAS  Google Scholar 

  193. Skogseth, H., Follestad, T., Larsson, E., and Halgunset, J. (2006) Transcription levels of invasion-related genes in prostate cancer cells are modified by inhibitors of tyrosine kinase. APMIS 114, 364–71.

    Article  PubMed  Google Scholar 

  194. Takahashi, Y., Lavigne, J.A., Hursting, S.D., Chandramouli, G.V., Perkins, S.N., Kim, Y.S., and Wang, T.T. (2006) Molecular signatures of soy-derived phytochemicals in androgen-responsive prostate cancer cells: A comparison study using DNA microarray. Mol Carcinog 45, 943–56.

    Article  PubMed  CAS  Google Scholar 

  195. Mori, R., Xiong, S., Wang, Q., Tarabolous, C., Shimada, H., Panteris, E., Danenbehrg, K.D., Danenberg, P.V., and Pinski, J.K. (2009) Gene profiling and pathway analysis of neuroendocrine transdifferentiated prostate cancer cells. Prostate 69, 12–23.

    Article  CAS  Google Scholar 

  196. Willcox, D.L., McColm, S.C., Arthur, P.G., and Yovich, J.L. (1983) The application of rate dialysis to the determination of free steroids in plasma. Anal Biochem 135, 304–11.

    Article  PubMed  CAS  Google Scholar 

  197. Menon, D.V., and Vongpatanasin, W. (2006) Effects of transdermal estrogen replacement therapy on cardiovascular risk factors. Treat Endocrinol 5, 37–51.

    Article  PubMed  CAS  Google Scholar 

  198. Naciff, J.M., Jump, M.L., Torontali, S.M., Carr, G.J., Tiesman, J.P., Overmann, G.J., and Daston, G.P. (2002) Gene expression profile induced by 17alpha-ethynyl estradiol, bisphenol A, and genistein in the developing female reproductive system of the rat. Toxicol Sci 68, 184–99.

    Article  PubMed  CAS  Google Scholar 

  199. Li, Y., Che, M., Bhagat, S., Ellis, K.L., Kucuk, O., Doerge, D.R., Abrams, J., Cher, M.L., and Sarkar, F.H. (2004) Regulation of gene expression and inhibition of experimental prostate cancer bone metastasis by dietary genistein. Neoplasia 6, 354–63.

    Article  PubMed  CAS  Google Scholar 

  200. Li, Y., Kucuk, O., Hussain, M., Abrams, J., Cher, M.L., and Sarkar, F.H. (2006) Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res 66, 4816–25.

    Article  PubMed  CAS  Google Scholar 

  201. Barve, A., Khor, T.O., Nair, S., Lin, W., Yu, S., Jain, M.R., Chan, J.Y., and Kong, A.N. (2008) Pharmacogenomic profile of soy isoflavone concentrate in the prostate of Nrf2 deficient and wild-type mice. J Pharm Sci 97, 4528–45.

    Article  PubMed  CAS  Google Scholar 

  202. Hochstrasser, D. (2008) Should the Human Proteome Project Be Gene- or Protein-centric? J Proteome Res 7, 5071.

    Article  PubMed  CAS  Google Scholar 

  203. Washburn, M.P., Wolters, D., and Yates, J.R., 3rd. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–47.

    Article  PubMed  CAS  Google Scholar 

  204. Resing, K.A., Meyer-Arendt, K., Mendoza, A.M., Aveline-Wolf, L.D., Jonscher, K.R., Pierce, K.G., Old, W.M., Cheung, H.T., Russell, S., Wattawa, J.L., Goehle, G.R., Knight, R.D., and Ahn, N.G. (2004) Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics. Anal Chem 76, 3556–68.

    Article  PubMed  CAS  Google Scholar 

  205. Denoeud, F., Kapranov, P., Ucla, C., Frankish, A., Castelo, R., Drenkow, J., Lagarde, J., Alioto, T., Manzano, C., Chrast, J., Dike, S., Wyss, C., Henrichsen, C.N., Holroyd, N., Dickson, M.C., Taylor, R., Hance, Z., Foissac, S., Myers, R.M., Rogers, J., Hubbard, T., Harrow, J., Guigo, R., Gingeras, T.R., Antonarakis, S.E., and Reymond, A. (2007) Prominent use of distal 5' transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome Res 17, 746–59.

    Article  PubMed  CAS  Google Scholar 

  206. Nielsen, M.L., Savitski, M.M., and Zubarev, R.A. (2006) Extent of modifications in human proteome samples and their effect on dynamic range of analysis in shotgun proteomics. Mol Cell Proteomics 5, 2384–91.

    Article  PubMed  CAS  Google Scholar 

  207. Taupenot, L., Harper, K.L., and O’Connor, D.T. (2003) The chromogranin-secretogranin family. N Engl J Med 348, 1134–49.

    Article  PubMed  CAS  Google Scholar 

  208. O’Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007–21.

    PubMed  Google Scholar 

  209. Kim, H., Page, G.P., and Barnes, S. (2004) Proteomics and mass spectrometry in nutrition research. Nutrition 20, 155–65.

    Article  PubMed  CAS  Google Scholar 

  210. Unlü, M., Morgan, M.E., and Minden, J.S. (1997) Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–77.

    Article  PubMed  Google Scholar 

  211. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–85.

    Article  PubMed  CAS  Google Scholar 

  212. Schägger, H., and von Jagow, G. (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199, 223–31.

    Article  PubMed  Google Scholar 

  213. Brookes, P.S., Pinner, A., Ramachandran, A., Coward, L., Barnes, S., Kim, H., and Darley-Usmar, V.M. (2002) High throughput 2D blue-native electrophoresis – a tool for functional proteomics of mitochondria and signaling complexes. Proteomics 2, 969–77.

    Article  PubMed  CAS  Google Scholar 

  214. Wittig, I., Karas, M., and Schägger, H. (2007) High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics 6, 1215–25.

    Article  PubMed  CAS  Google Scholar 

  215. Rowell, C., Carpenter, D.M., and Lamartiniere, C.A. (2005) Chemoprevention of breast cancer, proteomic discovery of genistein action in the rat mammary gland. J Nutr 135, 2953S–2959S.

    PubMed  CAS  Google Scholar 

  216. Nomura, T., Tazawa, M., Ohtsuki, M., Sumi-Ichinose, C., Hagino, Y., Ota, A., Nakashima, A., Mori, K., Sugimoto, T., Ueno, O., Nozawa, Y., Ichinose, H., and Nagatsu, T. (1998) Enzymes related to catecholamine biosynthesis in Tetrahymena pyriformis. Presence of GTP cyclohydrolase I. Comp Biochem Physiol B Biochem Mol Biol 120, 753–60.

    Article  PubMed  CAS  Google Scholar 

  217. Kim, H., Cope, M., Herring, R., Robinson, G., Wilson, L., Page, G.P., and Barnes, S. (2008) 2D difference gel electrophoresis of pre-pubertal and pubertal rat mammary gland proteomes. J Proteome Res 7, 4638–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barnes, S. (2010). Mechanisms of Action of Isoflavones in Cancer Prevention. In: Milner, J.A., Romagnolo, D.F. (eds) Bioactive Compounds and Cancer. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-627-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-627-6_27

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-626-9

  • Online ISBN: 978-1-60761-627-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics