Skip to main content

Cancer and n–3PUFAs: The Translation Initiation Connection

  • Chapter
  • First Online:
Bioactive Compounds and Cancer

Part of the book series: Nutrition and Health ((NH))

  • 1752 Accesses

Key Points

1. A combination of epidemiological, case–control, and cohort studies in the second half of the past century underscored the possibility that high dietary intake of n–3 polyunsaturated fatty acids (n–3 PUFA) could have a protective effect against cancer.

2. Polyunsaturated fatty acids are classified as having at least 18 carbon chains that are linear and display sequential non-conjugated double bonds separated by single methylene units. The double bonds are solely in the cis configuration, with the two hydrogens and the two methylenes on opposite side of the double bond. The two polyunsaturated fatty acids of importance are linoleic (18:2 n–6) and linolenic (18:3 n–3).

3. Since n–3 PUFA incorporate into and are an integral part of membrane phospholipids they can exert profound effects on its physical properties, including permeability, lateral diffusion, lipid packing, and domain formation, and thereby affect function of membrane proteins intimately involved in intracellular signaling. Consistently, n–3 PUFA have been shown to influence G protein-coupled receptors and receptor tyrosine kinase signaling pathways, and ion channels, a diversity of cellular effects believed to contribute to their anti-cancer properties.

4. The long chain PUFA are highly susceptible to lipid peroxidation. Peroxidation products of the marine fatty acids have been proposed as mediators of their anti-cancer effects.

5. Evolutionary and cultural changes have shifted the human diet over time toward a lower n–3 to n–6 PUFA ratio to the point that the modern Western diet is overwhelmingly rich in n–6 PUFA. The observed increase in cancer rates in populations that until recently still relied on n–3 PUFA-rich diets may be a reflection of the potential impact of the dietary transition from n–3 to n–6 PUFA-rich diets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansen, A.E., Haggard, M.E., Boelsche, A.N., Adam, D.J., and Wiese, H.F. (1958) Essential fatty acids in infant nutrition. III. Clinical manifestations of linoleic acid deficiency. J Nutr 66, 565–76.

    PubMed  CAS  Google Scholar 

  2. Collins, F.D. et al. (1971) Plasma lipids in human linoleic acid deficiency. Nutr Metab 13, 150–67.

    Article  PubMed  CAS  Google Scholar 

  3. Holman, R.T., Johnson, S.B., and Hatch, T.F. (1982) A case of human linolenic acid deficiency involving neurological abnormalities. Am J Clin Nutr 35, 617–23.

    PubMed  CAS  Google Scholar 

  4. Paulsrud, J.R., Pensler, L., Whitten, C.F., Stewart, S., and Holman, R.T. (1972) Essential fatty acid deficiency in infants induced by fat-free intravenous feeding. Am J Clin Nutr 25, 897–904.

    PubMed  CAS  Google Scholar 

  5. Needleman, P., Raz, A., Minkes, M.S., Ferrendelli, J.A., and Sprecher, H. (1979) Triene prostaglandins: Prostacyclin and thromboxane biosynthesis and unique biological properties. Proc Natl Acad Sci U S A 76, 944–48.

    Article  PubMed  CAS  Google Scholar 

  6. Fischer, S., and Weber, P.C. (1984) Prostaglandin I3 is formed in vivo in man after dietary eicosapentaenoic acid. Nature 307, 165–68.

    Article  PubMed  CAS  Google Scholar 

  7. Prescott, S.M. (1984) The effect of eicosapentaenoic acid on leukotriene B production by human neutrophils. J Biol Chem 259, 7615–21.

    PubMed  CAS  Google Scholar 

  8. Lee, T.H. et al. (1984) Characterization and biologic properties of 5,12-dihydroxy derivatives of eicosapentaenoic acid, including leukotriene B5 and the double lipoxygenase product. J Biol Chem 259, 2383–89.

    PubMed  CAS  Google Scholar 

  9. Strasser, T., Fischer, S., and Weber, P.C. (1985) Leukotriene B5 is formed in human neutrophils after dietary supplementation with icosapentaenoic acid. Proc Natl Acad Sci U S A 82, 1540–43.

    Article  PubMed  CAS  Google Scholar 

  10. Brenner, R.R. (1974) The oxidative desaturation of unsaturated fatty acids in animals. Mol Cell Biochem 3, 41–52.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, Q., and Nilsson, A. (1993) Desaturation and chain elongation of n-3 and n-6 polyunsaturated fatty acids in the human CaCo-2 cell line. Biochim Biophys Acta 1166, 193–201.

    Article  PubMed  CAS  Google Scholar 

  12. Emken, E.A. (1994) Metabolism of dietary stearic acid relative to other fatty acids in human subjects. Am J Clin Nutr 60, 1023S–1028S.

    PubMed  CAS  Google Scholar 

  13. Emken, E.A., Adlof, R.O., Duval, S.M., and Nelson, G.J. (1998) Effect of dietary arachidonic acid on metabolism of deuterated linoleic acid by adult male subjects. Lipids 33, 471–80.

    Article  PubMed  CAS  Google Scholar 

  14. Emken, E.A., Adlof, R.O., Duval, S.M., and Nelson, G.J. (1999) Effect of dietary docosahexaenoic acid on desaturation and uptake in vivo of isotope-labeled oleic, linoleic, and linolenic acids by male subjects. Lipids 34, 785–91.

    Article  PubMed  CAS  Google Scholar 

  15. Sauerwald, T.U. et al. (1996) Effect of dietary alpha-linolenic acid intake on incorporation of docosahexaenoic and arachidonic acids into plasma phospholipids of term infants. Lipids 31(Suppl), S131–S35.

    Article  PubMed  CAS  Google Scholar 

  16. Sayanova, O.V., and Napier, J.A. (2004) Eicosapentaenoic acid: Biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry 65, 147–58.

    Article  PubMed  CAS  Google Scholar 

  17. Ziegler, R.G. et al. (1993) Migration patterns and breast cancer risk in Asian–American women. J Nat Cancer Inst 85, 1819–27.

    Article  PubMed  CAS  Google Scholar 

  18. Deapen, D., Liu, L., Perkins, C., Bernstein, L., and Ross, R.K. (2002) Rapidly rising breast cancer incidence rates among Asian–American women. Int J Cancer 99, 747–50.

    Article  PubMed  CAS  Google Scholar 

  19. Bjarnason, O., Day, N., Snaedal, G., and Tulinius, H. (1974) The effect of year of birth on the breast cancer age-incidence curve in Iceland. Int J Cancer 13, 689–96.

    Article  PubMed  CAS  Google Scholar 

  20. Nielson, N.H., and Hansen, J.P. (1980) Breast cancer in greenland – selected epidemiological, clinical, and histological features. Clin Oncol 1980, 287–99.

    Google Scholar 

  21. Lanier, A.P., Bulkow, L.R., and Ireland, B. (1989) Cancer in Alaskan Indians, Eskimos, and Aleuts, 1969–1983: Implications for etiology and control. Public Health Rep 104, 658–64.

    PubMed  CAS  Google Scholar 

  22. Lanier, A.P., Bender, T.R., Blot, W.J., Fraumeni, J.F., Jr., and Hurlburt, W.B. (1976) Cancer incidence in Alaska natives. Int J Cancer 18, 409–12.

    Article  PubMed  CAS  Google Scholar 

  23. Lanier, A.P. et al. (1996) Alaska Native cancer update: Incidence rates 1989–1993. Cancer Epidemiol Biomarkers Prev 5, 749–51.

    PubMed  CAS  Google Scholar 

  24. Tsuji, K., Harashima, E., Nakagawa, Y., Urata, G., and Shirataka, M. (1996) Time-lag effect of dietary fiber and fat intake ratio on Japanese colon cancer mortality. Biomed Environ Sci 9, 223–28.

    PubMed  CAS  Google Scholar 

  25. You, W.C. et al. (2002) Rapid increase in colorectal cancer rates in urban Shanghai, 1972–1997, in relation to dietary changes. J Cancer Epidemiol Prev 7, 143–46.

    PubMed  Google Scholar 

  26. Bruce, W.R., Giacca, A., and Medline, A. (2000) Possible mechanisms relating diet and risk of colon cancer. Cancer Epidemiol Biomarkers Prev 9, 1271–79.

    PubMed  CAS  Google Scholar 

  27. Wynder, E.L., Fujita, Y., Harris, R.E., Hirayama, T., and Hiyama, T. (1991) Comparative epidemiology of cancer between the United States and Japan. A second look. Cancer 67, 746–63.

    Article  PubMed  CAS  Google Scholar 

  28. Hirayama, T. (1978) Epidemiology of breast cancer with special reference to the role of diet. Prev Med 7, 173–95.

    Article  PubMed  CAS  Google Scholar 

  29. Karmali, R.A. et al. (1987) The effects of dietary w-3 fatty acids on the DU-145 transplantable human prostatic tumor. Anticancer Res 7, 1173–80.

    PubMed  CAS  Google Scholar 

  30. Kaizer, L., Boyd, N.F., Kriukov, V., and Tritchler, D. (1989) Fish consumption and breast cancer risk: An ecological study. Nutr Cancer 12, 61–68.

    Article  PubMed  CAS  Google Scholar 

  31. Armstrong, B., and Doll, R. (1975) Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer 15, 617–31.

    Article  PubMed  CAS  Google Scholar 

  32. Sasaki, S., Horacsek, M., and Kesteloot, H. (1993) An ecological study of the relationship between dietary fat intake and breast cancer mortality. Prev Med 22, 187–202.

    Article  PubMed  CAS  Google Scholar 

  33. Jansson, B., Seibert, B., and Speer, J.F. (1975) Gastrointestinal cancer. Its geographic distribution and correlation to breast cancer. Cancer 36, 2373–84.

    Article  PubMed  CAS  Google Scholar 

  34. Willett, W.C. (1997) Specific fatty acids and risks of breast and prostate cancer: Dietary intake. Am J Clin Nutr 66, 1557S–1563S.

    PubMed  CAS  Google Scholar 

  35. MacLean, C.H. et al. (2006) Effects of omega-3 fatty acids on cancer risk: A systematic review. JAMA 295, 403–15, DOI: %R 10.1001/jama.295.4.403.

    Article  PubMed  CAS  Google Scholar 

  36. Terry, P.D., Rohan, T.E., and Wolk, A. (2003) Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: A review of the epidemiologic evidence. Am J Clin Nutr 77, 532–43.

    PubMed  CAS  Google Scholar 

  37. Augustsson, K. et al. (2003) A prospective study of intake of fish and marine fatty acids and prostate cancer. Cancer Epidemiol Biomarkers Prev 12, 64–67.

    PubMed  CAS  Google Scholar 

  38. Wolk, A., Larsson, S.C., Johansson, J.E., and Ekman, P. (2006) Long-term fatty fish consumption and renal cell carcinoma incidence in women. JAMA 296, 1371–76.

    Article  PubMed  CAS  Google Scholar 

  39. Grammatikos, S.I., Subbaiah, P.V., Victor, T.A., and Miller, W.M. (1994) n-3 and n-6 fatty acid processing and growth effects in neoplastic and non-cancerous human mammary epithelial cell lines. Br J Cancer 70, 219–27.

    Article  PubMed  CAS  Google Scholar 

  40. Falconer, J.S. et al. (1994) Effect of eicosapentaenoic acid and other fatty acids on the growth in vitro of human pancreatic cancer cell lines. Br J Cancer 69, 826–32.

    Article  PubMed  CAS  Google Scholar 

  41. Whelan, J., Petrik, M.B., McEntee, M.F., and Obukowicz, M.G. (2002) Dietary EPA reduces tumor load in ApcMin/+ mice by altering arachidonic acid metabolism, but conjugated linoleic acid, gamma – and alpha-linolenic acids have no effect. Adv Exp Med Biol 507, 579–84.

    Article  PubMed  CAS  Google Scholar 

  42. Calviello, G. et al. (1998) Dietary supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of Morris hepatocarcinoma 3924A in rats: Effects on proliferation and apoptosis. Int J Cancer 75, 699–705.

    Article  PubMed  CAS  Google Scholar 

  43. Rose, D.P., Connolly, J.M., and Coleman, M. (1996) Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clinical Cancer Res 2, 1751–56.

    CAS  Google Scholar 

  44. Mitchell, D., Niu, S., and Litman, B. (2003) DHA-rich phospholipids optimize G-Protein-coupled signaling. J Pediatr 143, S80–S86.

    PubMed  CAS  Google Scholar 

  45. Zhang, Y.W., Morita, I., Yao, X.S., and Murota, S. (1999) Pretreatment with eicosapentaenoic acid prevented hypoxia/reoxygenation-induced abnormality in endothelial gap junctional intercellular communication through inhibiting the tyrosine kinase activity. Prostaglandins Leukot Essent Fatty Acids 61, 33–40.

    Article  PubMed  CAS  Google Scholar 

  46. Xiao, Y.-F. et al. (2001) Single point mutations affect fatty acid block of human myocardial sodium channel alpha subunit Na+ channels. PNAS 98, 3606–11.

    Article  PubMed  CAS  Google Scholar 

  47. Form, D.M., and Auerbach, R. (1983) PGE2 and angiogenesis. Proc Soc Exp Biol Med 172, 214–18.

    PubMed  CAS  Google Scholar 

  48. Connolly, J.M., Coleman, M., and Rose, D.P. (1997) Effects of dietary fatty acids on DU145 human prostate cancer cell growth in athymic nude mice. Nutr Cancer 29, 114–19.

    Article  PubMed  CAS  Google Scholar 

  49. Tang, G., Blanco, M.C., Fox, J.G., and Russell, R.M. (1995) Supplementing ferrets with canthaxanthin affects the tissue distributions of canthaxanthin, other carotenoids, vitamin A and vitamin E. J Nutr 125, 1945–51.

    PubMed  CAS  Google Scholar 

  50. Rose, D.P., and Connolly, J.M. (1999) Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 83, 217–44.

    Article  PubMed  CAS  Google Scholar 

  51. Benoit, V. et al. (2004) Regulation of HER-2 oncogene expression by cyclooxygenase-2 and prostaglandin E2. Oncogene 23, 1631–35.

    Article  PubMed  CAS  Google Scholar 

  52. Christiansen, E.N., Lund, J.S., Rortveit, T., and Rustan, A.C. (1991) Effect of dietary n-3 and n-6 fatty acids on fatty acid desaturation in rat liver. Biochim Biophys Acta 1082, 57–62.

    Article  PubMed  CAS  Google Scholar 

  53. Rose, D.P., Rayburn, J., Hatala, M.A., and Connolly, J.M. (1994) Effects of dietary fish oil on fatty acids and eicosanoids in metastasizing human breast cancer cells. Nutr Cancer 22, 131–41.

    Article  PubMed  CAS  Google Scholar 

  54. Madani, S., Hichami, A., Charkaoui-Malki, M., and Khan, N.A. (2004) Diacylglycerols containing omega 3 and omega 6 fatty acids bind to RasGRP and modulate MAP kinase activation. J Biol Chem 279, 1176–83.

    Article  PubMed  CAS  Google Scholar 

  55. Elson, C.E. (1995) Suppression of mevalonate pathway activities by dietary isoprenoids: Protective roles in cancer and cardiovascular disease. J Nutr 125, 1666S–1672S.

    PubMed  CAS  Google Scholar 

  56. El-Sohemy, A., and Archer, M.C. (1997) Regulation of mevalonate synthesis in rat mammary glands by dietary n-3 and n-6 polyunsaturated fatty acids. Cancer Res 57, 3685–87.

    PubMed  CAS  Google Scholar 

  57. Fishman, J., Osborne, M.P., and Telang, N.T. (1995) The role of estrogen in mammary carcinogenesis. Ann N Y Acad Sci 768, 91–100.

    Article  PubMed  CAS  Google Scholar 

  58. Telang, N.T., Inoue, S., Bradlow, H.L., and Osborne, M.P. (1997) Negative growth regulation of oncogene-transformed mammary epithelial cells by tumor inhibitors. Adv Exp Med Biol 400A, 409–18.

    Article  PubMed  CAS  Google Scholar 

  59. Telang, N.T., Katdare, M., Bradlow, H.L., and Osborne, M.P. (1997) Estradiol metabolism: An endocrine biomarker for modulation of human mammary carcinogenesis. Environ Health Perspect 105, 559–64.

    PubMed  CAS  Google Scholar 

  60. Osborne, C.K. (1988) Effects of estrogens and antiestrogens on cell proliferation: Implications for the treatment of breast cancer. Cancer Treat Res 39, 111–29.

    Article  PubMed  CAS  Google Scholar 

  61. Liang, T., and Liao, S. (1992) Inhibition of steroid 5 alpha-reductase by specific aliphatic unsaturated fatty acids. Biochem J 285, 557–62.

    PubMed  CAS  Google Scholar 

  62. Welsch, C. (1997) The role of lipid peroxidation in growth suppression of human breast carcinoma by dietary fish oil. Adv Exp Med Biol 400B, 849–60.

    PubMed  CAS  Google Scholar 

  63. Gonzalez, M.J. (1995) Fish oil, lipid peroxidation and mammary tumor growth. J Am Coll Nutr 14, 325–35.

    PubMed  CAS  Google Scholar 

  64. Gonzalez, M.J., Schemmel, R.A., Dugan, L., Jr., Gray, J.I., and Welsch, C.W. (1993) Dietary fish oil inhibits human breast carcinoma growth: A function of increased lipid peroxidation. Lipids 28, 827–32.

    Article  PubMed  CAS  Google Scholar 

  65. Hardman, W.E., Munoz, J., Jr., and Cameron, I.L. (2002) Role of lipid peroxidation and antioxidant enzymes in omega 3 fatty acids induced suppression of breast cancer xenograft growth in mice. Cancer Cell Int 2, 10.

    Article  PubMed  Google Scholar 

  66. Colas, S. et al. (2005) Alpha-tocopherol suppresses mammary tumor sensitivity to anthracyclines in fish oil-fed rats. Nutr Cancer 51, 178–83.

    Article  PubMed  CAS  Google Scholar 

  67. Welsch, C.W. (1995) Review of the effects of dietary fat on experimental mammary gland tumorigenesis: Role of lipid peroxidation. Free Radic Biol Med 18, 757–73.

    Article  PubMed  CAS  Google Scholar 

  68. Mamane, Y. et al. (2004) eIF4E – from translation to transformation. Oncogene 23, 3172–79.

    Article  PubMed  CAS  Google Scholar 

  69. Li, S. et al. (2002) Translational control of cell fate: Availability of phosphorylation sites on translational repressor 4E-BP1 governs its proapoptotic potency. Mol Cell Biol 22, 2853–61.

    Article  PubMed  CAS  Google Scholar 

  70. Gingras, A.C., Raught, B., and Sonenberg, N. (1999) eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68, 913–63.

    Article  PubMed  CAS  Google Scholar 

  71. Koromilas, A.E., Lazaris-Karatzas, A., and Sonenberg, N. (1992) mRNAs containing extensive secondary structure in their 5 non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J 11, 4153–58.

    PubMed  CAS  Google Scholar 

  72. Rousseau, D., Kaspar, R., Rosenwald, I., Gehrke, L., and Sonenberg, N. (1996) Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci U S A 93, 1065–70.

    Article  PubMed  CAS  Google Scholar 

  73. Kozak, M. (1991) An analysis of vertebrate mRNA sequences: Intimations of translational control. J Cell Biol 115, 887–903.

    Article  PubMed  CAS  Google Scholar 

  74. Aktas, H. et al. (1998) Depletion of intracellular Ca2+ stores, phosphorylation of eIF2alpha, and sustained inhibition of translation initiation mediate the anticancer effects of clotrimazole. Proc Natl Acad Sci U S A 95, 8280–85.

    Article  PubMed  CAS  Google Scholar 

  75. Duan, D.R. et al. (1995) Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269, 1402–06.

    Article  PubMed  CAS  Google Scholar 

  76. Shilatifard, A., Lane, W.S., Jackson, K.W., Conaway, R.C., and Conaway, J.W. (1996) An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271, 1873–76.

    Article  PubMed  CAS  Google Scholar 

  77. Lazaris-Karatzas, A., Montine, K.S., and Sonenberg, N. (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5 cap. Nature 345, 544–47.

    Article  PubMed  CAS  Google Scholar 

  78. Wang, S. et al. (1999) Expression of the eukaryotic translation initiation factors 4E and 2alpha in non-Hodgkin’s lymphomas. Am J Pathol 155, 247–55.

    Article  PubMed  CAS  Google Scholar 

  79. Raught, B. et al. (1996) Expression of a translationally regulated, dominant-negative CCAAT/ enhancer-binding protein b isoform and up-regulation of the eukaryotic translation initiation factor 2a are correlated with neoplastic transformation of Mammary epithelial cells. Cancer Res 56, 4382–86.

    PubMed  CAS  Google Scholar 

  80. Li, B.D. et al. (2002) Prospective study of eukaryotic initiation factor 4E protein elevation and breast cancer outcome. Ann Surg 235, 732–38, discussion 738–739.

    Article  PubMed  Google Scholar 

  81. Nathan, C.A. et al. (1997) Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene 15, 1087–94.

    Article  PubMed  CAS  Google Scholar 

  82. Rosenwald, I.B., Hutzler, M.J., Wang, S., Savas, L., and Fraire, A.E. (2001) Expression of eukaryotic translation initiation factors 4E and 2alpha is increased frequently in bronchioloalveolar but not in squamous cell carcinomas of the lung. Cancer 92, 2164–71.

    Article  PubMed  CAS  Google Scholar 

  83. Li, B.D., McDonald, J.C., Nasssar, R., and DeBenedetti, A. (1998) Clinical outcome in stage I to III breast carcinoma and eIF4E overexpression. Ann Surg 227, 756–63.

    Article  PubMed  CAS  Google Scholar 

  84. Nathan, C.A. et al. (2002) Molecular analysis of surgical margins in head and neck squamous cell carcinoma patients. Laryngoscope 112, 2129–40.

    Article  PubMed  CAS  Google Scholar 

  85. Crew, J.P. et al. (2000) Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. Br J Cancer 82, 161–66.

    Article  PubMed  CAS  Google Scholar 

  86. Berkel, H.J., Turbat-Herrera, E.A., Shi, R., and de Benedetti, A. (2001) Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer Epidemiol Biomarkers Prev 10, 663–66.

    PubMed  CAS  Google Scholar 

  87. Scott, P.A. et al. (1998) Differential expression of vascular endothelial growth factor mRNA vs protein isoform expression in human breast cancer and relationship to eIF-4E. Br J Cancer 77, 2120–28.

    Article  PubMed  CAS  Google Scholar 

  88. Arrick, B.A., Grendell, R.L., and Griffin, L.A. (1994) Enhanced translational efficiency of a novel transforming growth factor beta 3 mRNA in human breast cancer cells. Mol Cell Biol 14, 619–28.

    PubMed  CAS  Google Scholar 

  89. Rousseau, D., Gingras, A.C., Pause, A., and Sonenberg, N. (1996) The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13, 2415–20.

    PubMed  CAS  Google Scholar 

  90. Graff, J.R. et al. (1995) Reduction of translation initiation factor 4E decreases the malignancy of ras-transformed cloned rat embryo fibroblasts. Int J Cancer 60, 255–63.

    Article  PubMed  CAS  Google Scholar 

  91. Sonenberg, N. (1994) mRNA translation: Influence of the 5 and 3 untranslated regions. Curr Opin Genet Dev 4, 310–15.

    Article  PubMed  CAS  Google Scholar 

  92. Avdulov, S. et al. (2004) Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5, 553–63.

    Article  PubMed  CAS  Google Scholar 

  93. Rastinejad, F., Conboy, M.J., Rando, T.A., and Blau, H.M. (1993) Tumor suppression by RNA from the 3 untranslated region of a-tropomyosin. Cell 75, 1107–17.

    Article  PubMed  CAS  Google Scholar 

  94. Davis, S., and Watson, J.C. (1996) In vitro activation of the interferon-induced, double-stranded RNA-dependent protein kinase PKR by RNA from the 3 untranslated regions of human alpha-tropomyosin. Proc Natl Acad Sci U S A 93, 508–13.

    Article  PubMed  CAS  Google Scholar 

  95. Palakurthi, S.S. et al. (2000) Inhibition of translation initiation mediates the anticancer effect of the n-3 polyunsaturated fatty acid eicosapentaenoic acid. Cancer Res 60, 2919–25.

    PubMed  CAS  Google Scholar 

  96. Barnhart, B.C., and Simon, M.C. (2007) Taking aim at translation for tumor therapy. J Clin Invest 117, 2385–88.

    Article  PubMed  CAS  Google Scholar 

  97. Graff, J.R. et al. (2007) Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 117, 2638–48.

    Article  PubMed  CAS  Google Scholar 

  98. Mathis, J.M. et al. (2006) Cancer-specific targeting of an adenovirus-delivered herpes simplex virus thymidine kinase suicide gene using translational control. J Gene Med 8, 1105–20.

    Article  PubMed  CAS  Google Scholar 

  99. Palakurthi, S.S., Aktas, H., Grubissich, L.M., Mortensen, R.M., and Halperin, J.A. (2001) Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor gamma and mediated by inhibition of translation initiation. Cancer Res 61, 6213–18.

    PubMed  CAS  Google Scholar 

  100. Aissat, N. et al. (2008) Antiproliferative effects of rapamycin as a single agent and in combination with carboplatin and paclitaxel in head and neck cancer cell lines. Cancer Chemother Pharmacol 62, 305–13.

    Article  PubMed  CAS  Google Scholar 

  101. Clemens, M.J., and Bommer, U.A. (1999) Translational control: The cancer connection. Int J Biochem Cell Biol 31, 1–23.

    Article  PubMed  CAS  Google Scholar 

  102. Dua, K., Williams, T.M., and Beretta, L. (2001) Translational control of the proteome: Relevance to cancer. Proteomics 1, 1191–99.

    Article  PubMed  CAS  Google Scholar 

  103. Aktas, H., and Halperin, J.A. (2004) Translational regulation of gene expression by omega-3 fatty acids. J Nutr 134, 2487S–2491S.

    PubMed  CAS  Google Scholar 

  104. Pain, V.M. (1996) Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236, 747–71.

    Article  PubMed  CAS  Google Scholar 

  105. Brostrom, C.O., Chin, K.V., Wong, W.L., Cade, C., and Brostrom, M.A. (1989) Inhibition of translational initiation in eukaryotic cells by calcium ionophore. J Biol Chem 264, 1644–49.

    PubMed  CAS  Google Scholar 

  106. Srivastava, S.P., Davies, M.V., and Kaufman, R.J. (1995) Calcium depletion from the endoplasmic reticulum activates the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis. J Biol Chem 270, 16619–24.

    Article  PubMed  CAS  Google Scholar 

  107. Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H., and Ron, D. (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5, 897–904.

    Article  PubMed  CAS  Google Scholar 

  108. Kaufman, R.J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes Dev 13, 1211–33.

    Article  PubMed  CAS  Google Scholar 

  109. Berridge, M.J. (1995) Capacitative calcium entry. Biochem J 312, 1–11.

    PubMed  CAS  Google Scholar 

  110. Putney, J.W., Jr. (1997) Type 3 inositol 1,4,5-trisphosphate receptor and capacitative calcium entry. Cell Calcium 21, 257–61.

    Article  PubMed  CAS  Google Scholar 

  111. Sobczak, K., and Krzyzosiak, W.J. (2002) Structural determinants of BRCA1 translational regulation. J Biol Chem 277, 17349–58.

    Article  PubMed  CAS  Google Scholar 

  112. Esteller, M. et al. (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92, 564–69.

    Article  PubMed  CAS  Google Scholar 

  113. Zheng, W. et al. (2000) Reduction of BRCA1 expression in sporadic ovarian cancer. Gynecol Oncol 76, 294–300.

    Article  PubMed  CAS  Google Scholar 

  114. Futreal, P.A. et al. (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120–22.

    Article  PubMed  CAS  Google Scholar 

  115. Miyamoto, K. et al. (2002) Promoter hypermethylation and post-transcriptional mechanisms for reduced BRCA1 immunoreactivity in sporadic human breast cancers. Jpn J Clin Oncol 32, 79–84.

    Article  PubMed  Google Scholar 

  116. Magdinier, F., Ribieras, S., Lenoir, G.M., Frappart, L., and Dante, R. (1998) Down-regulation of BRCA1 in human sporadic breast cancer; analysis of DNA methylation patterns of the putative promoter region. Oncogene 17, 3169–76.

    Article  PubMed  CAS  Google Scholar 

  117. Dobrovic, A., and Simpfendorfer, D. (1997) Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 57, 3347–50.

    PubMed  CAS  Google Scholar 

  118. Dumitrescu, R.G., and Cotarla, I. (2005) Understanding breast cancer risk – where do we stand in 2005? J Cell Mol Med 9, 208–21.

    Article  PubMed  CAS  Google Scholar 

  119. Wilson, C.A. et al. (1999) Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nat Genet 21, 236–40.

    Article  PubMed  CAS  Google Scholar 

  120. Lambie, H. et al. (2003) Prognostic significance of BRCA1 expression in sporadic breast carcinomas. J Pathol 200, 207–13.

    Article  PubMed  CAS  Google Scholar 

  121. Yang, Q. et al. (2002) BRCA1 in non-inherited breast carcinomas (Review). Oncol Rep 9, 1329–33.

    PubMed  CAS  Google Scholar 

  122. Taylor, J. et al. (1998) An important role for BRCA1 in breast cancer progression is indicated by its loss in a large proportion of non-familial breast cancers. Int J Cancer 79, 334–42.

    Article  PubMed  CAS  Google Scholar 

  123. Thompson, M.E., Jensen, R.A., Obermiller, P.S., Page, D.L., and Holt, J.T. (1995) Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet 9, 444–50.

    Article  PubMed  CAS  Google Scholar 

  124. Holt, J.T. et al. (1996) Growth retardation and tumour inhibition by BRCA1. Nat Genet 12, 298–302.

    Article  PubMed  CAS  Google Scholar 

  125. Kang, J.X., Wang, J., Wu, L., and Kang, Z.B. (2004) Transgenic mice: Fat-1 mice convert n-6 to n-3 fatty acids. Nature 427, 504.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aktas, B., Chorev, M., Halperin, J. (2010). Cancer and n–3PUFAs: The Translation Initiation Connection. In: Milner, J., Romagnolo, D. (eds) Bioactive Compounds and Cancer. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-627-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-627-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-626-9

  • Online ISBN: 978-1-60761-627-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics