Skip to main content

Murine Models of Myeloma Bone Disease: The Importance of Choice

  • Chapter
  • First Online:
Book cover Myeloma Bone Disease

Part of the book series: Current Clinical Oncology ((CCO))

  • 874 Accesses

Abstract

Murine models of human disease have contributed significantly to our understanding of the pathophysiology of disease and played a key role in development of new treatments. The study of myeloma bone disease is no exception. In recent decades we have seen the development of a number of different models of myeloma bone disease. These include the syngeneic models, such as the 5TMM series, and the SCID models, including the SCID-hu model and those based upon engraftment of human cell lines. They have contributed directly to the identification of key molecules such as MIP-1α, facilitated establishing a critical role for the RANKL pathway, and been used to identify new agents for treatment including RANKL inhibition therapies and the bisphosphonates. More recently, they have been used to establish the role for osteoblast inhibition in the development of myeloma bone disease and contributed to the study of molecular pathways that regulate osteoblast suppression. In addition, these models have played a key role in understanding the importance of the bone microenvironment in supporting myeloma cell growth and survival in bone. It is likely that further refinements to our understanding of these models will lead to further insights into the mechanisms of myeloma bone disease. Murine models of myeloma bone disease will remain central to the development of new therapeutic approaches to treating this important clinical feature of myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radl J, et al. Transplantation of the paraprotein-producing clone from old to young C57BL/KaLwRij mice. J Immunol. 1979;122:609–613.

    CAS  PubMed  Google Scholar 

  2. Radl J, et al. Animal model of human disease: multiple myeloma. Am J Pathol. 1988;132:177–181.

    Google Scholar 

  3. Van Valckenborgh E, et al. Murine 5T multiple myeloma cells induce angiogenesis in vitro and in vivo. Br J Cancer. 2002;86:796–802.

    Article  PubMed  Google Scholar 

  4. Radl J. Age-related monoclonal gammopathies: clinical lessons from the aging C57BL mouse. Immunol Today. 1990;11:234–236.

    Article  CAS  PubMed  Google Scholar 

  5. van den Akker TW, et al. Cytogenetic findings in mouse multiple myeloma and Waldenstrom’s Macroglobulinemia. Cancer Genet Cytogenet. 1996;86:156–161.

    Article  PubMed  Google Scholar 

  6. Vanderkerken K, et al. Organ involvement and phenotypic adhesion profile of 5T2 and 5T33MM cells in the C57BL/KaLwRij mouse. Br J Cancer. 1997;76:451–460.

    CAS  PubMed  Google Scholar 

  7. Vanderkerken K, et al. Follow-up of bone lesions in an experimental multiple myeloma mouse model: description of an in vivo technique using radiography dedicated for mammography. Br J Cancer. 1996;73:1463–1465.

    CAS  PubMed  Google Scholar 

  8. Croucher PI, et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood. 2001;98:3534–3540.

    Article  CAS  PubMed  Google Scholar 

  9. Heath DJ, et al. Inhibiting Dickkopf1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res. 2009;24:425–436.

    Article  CAS  PubMed  Google Scholar 

  10. Vanderkerken K, et al. Monocyte chemoattractant protein-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of 5T multiple myeloma cells. Clin Exp Metast. 2002;19:87–90.

    Article  CAS  Google Scholar 

  11. Asosingh K, et al. A unique pathway in the homing of murine multiple myeloma cells: CD44v10 mediates binding to bone marrow endothelium. Cancer Res. 2001;61:2862–2865.

    CAS  PubMed  Google Scholar 

  12. Vande Broek I, et al. Laminin-1-induced migration of multiple myeloma cells involves the high-affinity 67kD laminin receptor. Br J Cancer. 2001;85:1387–1395.

    Article  CAS  PubMed  Google Scholar 

  13. Vanderkerken K, et al. Insulin like growth factor-1 acts as a chemoattractant for 5T2 multiple myeloma cells. Blood. 1999;93:235–241.

    CAS  PubMed  Google Scholar 

  14. Asosingh K, et al. In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. Cancer Res. 2000;60:3096–3104.

    CAS  PubMed  Google Scholar 

  15. Van Valckenborgh E, et al. Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int J Cancer. 2002;101:512–518.

    Article  PubMed  Google Scholar 

  16. Radl J, et al. Influence of treatment with APD-bisphosphonate on the bone lesions in the mouse 5T2 multiple myeloma. Cancer. 1985;55:1030–1040.

    Article  CAS  PubMed  Google Scholar 

  17. Croucher PI, et al. Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival. J Bone Miner Res. 2003;18(3):482–492.

    Article  CAS  PubMed  Google Scholar 

  18. Heath DJ, et al. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma. Cancer Res. 2007;67:202–208.

    Article  CAS  PubMed  Google Scholar 

  19. Vanderkerken K, et al. Inhibition of p38alpha mitogen-activated protein kinase prevents the development of osteolytic bone disease, reduces tumor burden, and increases survival in murine models of multiple myeloma. Cancer Res. 2007;67:4572–4577.

    Article  CAS  PubMed  Google Scholar 

  20. Deleu S, et al. Bortezomib alone or in combination with the histone deacetylase inhibitor JNJ-26481585: effect on myeloma bone disease in the 5T2MM murine model of myeloma. Cancer Res. 2009;69:5307–5311.

    Article  CAS  PubMed  Google Scholar 

  21. Garrett IR, et al. A murine model of human myeloma bone disease. Bone. 1997;20:515–520.

    Article  CAS  PubMed  Google Scholar 

  22. King CA, et al. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med. 1998;4:1281–1286.

    Article  CAS  PubMed  Google Scholar 

  23. Vanderkerken K, et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res. 2003;63:287–289.

    CAS  PubMed  Google Scholar 

  24. Manning LS, et al. A model of multiple myeloma: culture of 5T33 murine myeloma cells and evaluation of tumorigenicity in the C57BL/KaLwRij mouse. Br J Cancer. 1992;66:1088–1093.

    CAS  PubMed  Google Scholar 

  25. Asosingh K, et al. The 5TMM series: a useful in vivo mouse model of human multiple myeloma. Hematol J. 2000;1:351–356.

    Article  CAS  PubMed  Google Scholar 

  26. Dallas SL, et al. Ibandronate reduces osteolytic lesions but not tumor burden in a murine model of myeloma bone disease. Blood. 1999;93:1697–1706.

    CAS  PubMed  Google Scholar 

  27. Oyajobi BO, et al. Detection of myeloma in skeleton of mice by whole-body optical fluorescence imaging. Mol Cancer Ther. 2007;6:1701–1708.

    Article  CAS  PubMed  Google Scholar 

  28. Michigami T, et al. Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood. 2000;96:1953–1960.

    CAS  PubMed  Google Scholar 

  29. Mori Y, et al. Anti-alpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood. 2004;104:2149–2154.

    Article  CAS  PubMed  Google Scholar 

  30. Olson DL, et al. Anti-alpha4 integrin monoclonal antibody inhibits multiple myeloma growth in a murine model. Mol Cancer Ther. 2005;4:91–99.

    CAS  PubMed  Google Scholar 

  31. Edwards CM, et al. Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo. Blood. 2008;111:2833–2842.

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, et al. Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood. 2006;107:2432–2439.

    Article  CAS  PubMed  Google Scholar 

  33. Hong S, et al. Roles of idiotype-specific T cells in myeloma cell growth and survival: Th1 and CTL cells are tumoricidal while Th2 cells promote tumor growth. Cancer Res. 2008;68:8456–8464.

    Article  CAS  PubMed  Google Scholar 

  34. Oyajobi BO, et al. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood. 2003;102:311–319.

    Article  CAS  PubMed  Google Scholar 

  35. Oyajobi BO, et al. Stimulation of new bone formation by the proteasome inhibitor, bortezomib: implications for myeloma bone disease. Br J Haematol. 2007;139:434–438.

    Article  CAS  PubMed  Google Scholar 

  36. Goel A, et al. Synergistic activity of the proteasome inhibitor PS-341 with non-myeloablative 153-Sm-EDTMP skeletally targeted radiotherapy in an orthotopic model of multiple myeloma. Blood. 2006;107:4063–4070.

    Article  CAS  PubMed  Google Scholar 

  37. Goel A, et al. Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV(Delta51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene. Blood. 2007;110:2342–2350.

    Article  CAS  PubMed  Google Scholar 

  38. Murillo O, et al. Therapeutic antitumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma. Clin Cancer Res. 2008;14:6895–6906.

    Article  CAS  PubMed  Google Scholar 

  39. Huang YW, et al. Disseminated growth of a human multiple myeloma cell line in mice with severe combined immunodeficiency disease. Cancer Res. 1993;53:1392–1396.

    CAS  PubMed  Google Scholar 

  40. Alsina M, et al. Development of an in vivo model of human multiple myeloma bone disease. Blood. 1996;87:1495–1501.

    CAS  PubMed  Google Scholar 

  41. Choi SJ, et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood. 2000;96:671–675.

    CAS  PubMed  Google Scholar 

  42. Choi SJ, et al. Antisense inhibition of macrophage inflammatory protein 1-a blocks bone destruction in a model of myeloma bone disease. J Clin Invest. 2001;108:1833–1841.

    CAS  PubMed  Google Scholar 

  43. Doran P, et al. Native osteoprotegerin gene transfer inhibits the development of murine osteolytic bone disease induced by tumor xenografts. Exp Hematol. 2004;32:351–359.

    Article  CAS  PubMed  Google Scholar 

  44. Cruz JC, et al. Ibandronate decreases bone disease development and osteoclast stimulatory activity in an in vivo model of human myeloma. Exp Haematol. 2001;29:441–447.

    Article  CAS  Google Scholar 

  45. Hjorth-Hansen H, et al. Marked osteoblastopenia and reduced bone formation in a model of multiple myeloma bone disease in severe combined immunodeficiency mice. J Bone Miner Res. 1999;14:256–263.

    Article  CAS  PubMed  Google Scholar 

  46. Rabin N, et al. A new xenograft model of myeloma bone disease demonstrating the efficacy of human mesenchymal stem cells expressing osteoprotegerin by lentiviral gene transfer. Leukemia. 2007;21:2181–2191.

    Article  CAS  PubMed  Google Scholar 

  47. Tsunenari T, et al. New xenograft model of multiple myeloma and efficacy of a humanized antibody against human interleukin-6 receptor. Blood. 1997;90:2437–2444.

    CAS  PubMed  Google Scholar 

  48. Mitsiades CS, et al. Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications. Cancer Res. 2003;63:6689–6696.

    CAS  PubMed  Google Scholar 

  49. Tassone P, et al. A clinically relevant SCID-hu in vivo model of human multiple myeloma. Blood. 2005;106:713–716.

    Article  CAS  PubMed  Google Scholar 

  50. Feo-Zuppardi FJ, et al. Long-term engraftment of fresh human myeloma cells in SCID mice. Blood. 1992;80:2843–2850.

    CAS  PubMed  Google Scholar 

  51. Ahsmann EJ, et al. The SCID mouse as a model for multiple myelom. Br J Haematol. 1995;89:319–327.

    Article  CAS  PubMed  Google Scholar 

  52. Pilarski L, Belch AR. Clonotypic myeloma cells able to xenograft myeloma to nonobese diabetic severe combined immunodeficient mice copurify with CD34 (+) hematopoietic progenitors. Clin Cancer Res. 2002;8:3198–3204.

    PubMed  Google Scholar 

  53. McCune JM, et al. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241:1632–1639.

    Article  CAS  PubMed  Google Scholar 

  54. Urashima M, et al. The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood. 1997;90:754–765.

    CAS  PubMed  Google Scholar 

  55. Yaccoby S, Barlogie B, Epstein J. Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood. 1998;92:2908–2913.

    CAS  PubMed  Google Scholar 

  56. Yaccoby S, Epstein J. The proliferative potential of myeloma plasma cells manifest in the SCID-hu host. Blood. 1999;94:3576–3582.

    CAS  PubMed  Google Scholar 

  57. Yaccoby S, et al. Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity. Br J Haematol. 2002;116:278–290.

    Article  PubMed  Google Scholar 

  58. Yaccoby S, et al. Antimyeloma efficacy of thalidomide in the SCID-hu model. Blood. 2002;100:4162–4168.

    Article  CAS  PubMed  Google Scholar 

  59. Fujii R, Yaccoby S, Epstein J. Control of myeloma with the anti-angiogenic agent endostatin [abstract]. Blood. 2000;96:360A.

    Google Scholar 

  60. Tian E, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483–2494.

    Article  CAS  PubMed  Google Scholar 

  61. Yaccoby S, et al. Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica. 2006;91:192–199.

    CAS  PubMed  Google Scholar 

  62. Yaccoby S, et al. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood. 2007;109:2106–2111.

    Article  CAS  PubMed  Google Scholar 

  63. Qiang YW, Shaughnessy JDJ, Yaccoby S. Wnt3a signaling within bone inhibits multiple myeloma bone disease and tumor growth. Blood. 2008;112:374–382.

    Article  CAS  PubMed  Google Scholar 

  64. Yata K, Yaccoby S. The SCID-rab model: a novel in vivo system for primary human myeloma demonstrating growth of CD138-expressing malignant cells. Leukemia. 2004;18:1891–1897.

    Article  CAS  PubMed  Google Scholar 

  65. Pennisi A, et al. The proteasome inhibitor, bortezomib suppresses primary myeloma and stimulates bone formation in myelomatous and nonmyelomatous bones in vivo. Am J Hematol. 2009;84:6–14.

    Article  CAS  PubMed  Google Scholar 

  66. Oyajobi BO, et al. A soluble murine receptor activator of NF-kB-human immunoglobulin fusion protein (RANK.Fc) inhibits bone resorption in a murine model of human multiple myeloma bone disease. J Bone Miner Res. 2000;15:S176 (Abstr).

    Google Scholar 

  67. Pearse RN, et al. Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA. 2001;98:11581–11586.

    Article  CAS  PubMed  Google Scholar 

  68. Oyajobi BO, Mundy GR. Receptor activator of NF-kappaB ligand, macrophage inflammatory protein-1alpha, and the proteosome: novel therapeutic targets in myeloma. Cancer. 2003;97(3 Suppl):813–817.

    Article  PubMed  Google Scholar 

  69. Chesi M, et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell. 2008;13:167–180.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Peter Croucher is supported by the Leukaemia Research Fund and Karin Vanderkerken is supported by the VUB, Fonds voor Wetenschappelijk (FWO) – Vlaanderen and Stichting tegen Kanker. Joshua Epstein is supported by grants CA-55819 and CA-113992 from the National Cancer Institute and Babatunde Oyajobi is supported by grants KO1 CA104180 and PO1 CA000435 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter I. Croucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Croucher, P.I., Vanderkerken, K., Epstein, J., Oyajobi, B. (2010). Murine Models of Myeloma Bone Disease: The Importance of Choice. In: Roodman, G. (eds) Myeloma Bone Disease. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-60761-554-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-554-5_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-553-8

  • Online ISBN: 978-1-60761-554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics