Skip to main content

Biochemical Markers of Bone Remodeling in Multiple Myeloma

  • Chapter
  • First Online:
  • 864 Accesses

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Osteolytic bone disease is a frequent complication of multiple myeloma which results in significant skeletal morbidity. A characteristic feature of myeloma bone disease is that the lesions rarely heal and bone scans are often negative in myeloma patients who have extensive lytic lesions, offering very little in the follow-up of bone disease. X-rays are also of limited value in monitoring bone destruction during anti-myeloma or anti-resorptive treatment. Biochemical markers of bone resorption, such as N- and C-terminal cross-linking telopeptide of type I collagen and markers of bone formation, such as bone-specific alkaline phosphatase and osteocalcin, provide information on bone dynamics that in turn may reflect disease activity in bone. These markers have been investigated as tools for evaluating the extent of bone disease, risk of skeletal morbidity, and response to anti-resorptive treatment in myeloma. Several studies have shown that the majority of biochemical markers of bone resorption are elevated in myeloma patients with lytic bone lesions, thus reflecting changes in bone metabolism associated with tumor growth. There is also a growing body of evidence that markers of bone resorption correlate with the risk of skeletal complications, disease progression, and survival. In addition, bone markers could potentially be used as a tool for early diagnosis of bone lesions. This chapter summarizes the existing data for the role of bone markers in assessing the extent of bone destruction in myeloma and monitoring bone turnover during specific anti-myeloma therapies, while it gives information for novel markers that may be of particular interest in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Coleman RE. Bisphosphonates: clinical experience. Oncologist. 2004;9(Suppl 4):14–27.

    Article  PubMed  CAS  Google Scholar 

  2. Terpos E, Dimopoulos MA. Myeloma bone disease: pathophysiology and management. Ann Oncol. 2005;16:1223–1231.

    Article  PubMed  CAS  Google Scholar 

  3. Roodman GD. Pathogenesis of myeloma bone disease. Leukemia. 2009;23:435–441.

    Article  PubMed  CAS  Google Scholar 

  4. Callander NS, Roodman GD. Myeloma bone disease. Semin Hematol. 2001;38:276–285.

    Article  PubMed  CAS  Google Scholar 

  5. Mileshkin L, Blum R, Seymour JF, et al. A comparison of fluorine-18 fluoro-deoxyglucose PET and technetium-99m sestamibi in assessing patients with multiple myeloma. Eur J Haematol. 2004;72:32–37.

    Article  PubMed  CAS  Google Scholar 

  6. Abildgaard N, Brixen K, Eriksen EF, et al. Sequential analysis of biochemical markers of bone resorption and bone densitometry in multiple myeloma. Haematologica. 2004;89: 567–577.

    PubMed  CAS  Google Scholar 

  7. Winterbottom AP, Shaw AS. Imaging patients with myeloma. Clin Radiol. 2009;64:1–11.

    Article  PubMed  CAS  Google Scholar 

  8. Kyle RA, Yee GC, Somerfield MR, et al. American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J Clin Oncol. 2007;25:2464–2472.

    Article  PubMed  CAS  Google Scholar 

  9. Terpos E, Sezer O, Croucher P, Dimopoulos MA. Myeloma bone disease and proteasome inhibition therapies. Blood. 2007;110:1098–1104.

    Article  PubMed  CAS  Google Scholar 

  10. Calvo MS, Eyre DR, Gundberg CM. Molecular basis and clinical application of biological markers of bone turnover. Endocrine Rev. 1996;17:333–368.

    CAS  Google Scholar 

  11. Hannon RA, Eastell R. Biochemical markers of bone turnover and fracture prediction. J Br Menopause Soc. 2003;9:10–15.

    Article  PubMed  Google Scholar 

  12. Hannon RA, Clowes JA, Eagleton AC, et al. Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone. 2004;34: 187–194.

    Article  PubMed  CAS  Google Scholar 

  13. Woitge HW, Pecherstorfer M, Horn E, et al. Serum bone sialoprotein as a marker of tumour burden and neoplastic bone involvement and as a prognostic factor in multiple myeloma. Br J Cancer. 2001;84:344–351.

    Article  PubMed  CAS  Google Scholar 

  14. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005;26:97–122.

    PubMed  Google Scholar 

  15. Delmas PD. Bone marker nomenclature. Bone. 2001;28:575–576.

    Article  PubMed  CAS  Google Scholar 

  16. Prockop DJ, Keiser HR, Sjoerdsma A. Gastrointestinal absorption and renal excretion of hydroxyproline peptides. Lancet. 1962;2:527–528.

    Article  PubMed  CAS  Google Scholar 

  17. Al-Dehaimi AW, Blumsohn A, Eastell R. Serum galactosyl hydroxylysine as a biochemical marker of bone resorption. Clin Chem. 1999;45:676–681.

    PubMed  CAS  Google Scholar 

  18. Leigh SD, Ju HS, Lundgard R, et al. Development of an immunoassay for urinary galactosylhydroxylysine. J Immunol Methods. 1998;220:169–178.

    Article  PubMed  CAS  Google Scholar 

  19. Eyre DR, Paz MA, Gallop PM. Cross-linking in collagen and elastin. Annu Rev Biochem. 1984;53:717–748.

    Article  PubMed  CAS  Google Scholar 

  20. Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone. 1998;22:181–187.

    Article  PubMed  CAS  Google Scholar 

  21. Hanson DA, Weis MA, Bollen AM, et al. A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res. 1992;7:1251–1258.

    Article  PubMed  CAS  Google Scholar 

  22. Apone S, Lee MY, Eyre DR. Osteoclasts generate cross-linked collagen N-telopeptides (NTx) but not free pyridinolines when cultured on human bone. Bone. 1997;21:129–136.

    Article  PubMed  CAS  Google Scholar 

  23. Bonde M, Garnero P, Fledelius C, et al. Measurement of bone degradation products in serum using antibodies reactive with an isomerized form of an 8 amino acid sequence of the C-telopeptide of type I collagen. J Bone Miner Res. 1997;12:1028–1034.

    Article  PubMed  CAS  Google Scholar 

  24. Rosenquist C, Fledelius C, Christgau S, et al. Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clin Chem. 1998;44:2281–2289.

    PubMed  CAS  Google Scholar 

  25. Janckila AJ, Takahashi K, Sun SZ, Yam LT. Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin Chem. 2001;47:74–80.

    PubMed  CAS  Google Scholar 

  26. Janckila AJ, Neustadt DH, Nakasato YR, et al. Serum tartrate-resistant acid phosphatase isoforms in rheumatoid arthritis. Clin Chim Acta. 2002;320:49–58.

    Article  PubMed  CAS  Google Scholar 

  27. Lam WK, Eastlund DT, Li CY, Yam LT. Biochemical properties of tartrate-resistant acid phosphatase in serum of adults and children. Clin Chem. 1978;24:1105–1108.

    PubMed  CAS  Google Scholar 

  28. Ylipahkala H, Halleen JM, Kaija H, et al. Tartrate-resistant acid phosphatase 5B circulates in human serum in complex with alpha2-macroglobulin and calcium. Biochem Biophys Res Commun. 2003;308:320–324.

    Article  PubMed  CAS  Google Scholar 

  29. Moss DW. Perspectives in alkaline phosphatase research. Clin Chem. 1992;38:2486–2492.

    PubMed  CAS  Google Scholar 

  30. Gallop PM, Lian JB, Hauschka PV. Carboxylated calcium-binding proteins and vitamin K. N Engl J Med. 1980;302:1460–1466.

    Article  PubMed  CAS  Google Scholar 

  31. Nelsestuen GL, Shah AM, Harvey SB. Vitamin K-dependent proteins. Vitam Horm. 2000;58:355–389.

    Article  PubMed  CAS  Google Scholar 

  32. Young MF, Kerr JM, Ibaraki K, et al. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop. 1992;281:275–294.

    PubMed  Google Scholar 

  33. Sierra J, Villagra A, Paredes R, et al. Regulation of the bone-specific osteocalcin gene by p300 requires Runx2/Cbfa1 and the vitamin D3 receptor but not p300 intrinsic histone acetyltransferase activity. Mol Cell Biol. 2003;23:3339–3351.

    Article  PubMed  CAS  Google Scholar 

  34. Koeneman KS, Kao C, Ko SC, et al. Osteocalcin-directed gene therapy for prostate-cancer bone metastasis. World J Urol. 2000;18:102–110.

    Article  PubMed  CAS  Google Scholar 

  35. Christenson RH. Biochemical markers of bone metabolism: an overview. Clin Biochem. 1997;30:573–593.

    Article  PubMed  CAS  Google Scholar 

  36. Smedsrod B, Melkko J, Risteli L, Risteli J. Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J. 1990;271:345–350.

    PubMed  CAS  Google Scholar 

  37. Risteli J, Risteli L. Assays of type I procollagen domains and collagen fragments: problems to be solved and future trends. Scand J Clin Lab Invest Suppl. 1997;227:105–113.

    PubMed  CAS  Google Scholar 

  38. Fohr B, Dunstan CR, Seibel MJ. Clinical review 165: Markers of bone remodeling in metastatic bone disease. J Clin Endocrinol Metab. 2003;88:5059–5075.

    Article  PubMed  CAS  Google Scholar 

  39. Nawawi H, Samson D, Apperley J, Girgis S. Biochemical bone markers in patients with multiple myeloma. Clin Chim Acta. 1996;253:61–77.

    Article  PubMed  CAS  Google Scholar 

  40. Abildgaard N, Bentzen SM, Nielsen JL, Heickendorff L. Serum markers of bone metabolism in multiple myeloma: prognostic value of the carboxy-terminal telopeptide of type I collagen (ICTP). Br J Haematol. 1997;96:103–110.

    Article  PubMed  CAS  Google Scholar 

  41. Withold W, Arning M, Schwarz M, et al. Monitoring of multiple myeloma patients by simultaneously measuring marker substances of bone resorption and formation. Clin Chim Acta. 1998;269:21–30.

    Article  PubMed  CAS  Google Scholar 

  42. Carlson L, Larsson A, Simonsson B, et al. Evaluation of bone disease in multiple myeloma: a comparison between the resorption markers urinary deoxypyridinoline/creatinine (DPD) and serum ICTP, and an evaluation of the DPD/osteocalcin and ICTP/osteocalcin ratios. Eur J Haematol. 1999;62:300–306.

    Article  PubMed  CAS  Google Scholar 

  43. Woitge HW, Pecherstorfer M, Li Y, et al. Novel serum markers of bone resorption: clinical assessment and comparison with established urinary indices. J Bone Miner Res. 1999;14: 792–801.

    Article  PubMed  CAS  Google Scholar 

  44. Fonseca R, Trendle MC, Leong T, et al. Prognostic value of serum markers of bone metabolism in untreated multiple myeloma patients. Br J Haematol. 2000;109:24–29.

    Article  PubMed  CAS  Google Scholar 

  45. Terpos E, Palermos J, Tsionos K, et al. Effect of pamidronate administration on markers of bone turnover and disease activity in multiple myeloma. Eur J Haematol. 2000;65:331–336.

    Article  PubMed  CAS  Google Scholar 

  46. Woitge HW, Horn E, Keck AV, et al. Biochemical markers of bone formation in patients with plasma cell dyscrasias and benign osteoporosis. Clin Chem. 2001;47:686–693.

    PubMed  CAS  Google Scholar 

  47. Corso A, Arcaini L, Mangiacavalli S, et al. Biochemical markers of bone disease in asymptomatic early stage multiple myeloma. A study on their role in identifying high risk patients. Haematologica. 2001;86:394–398.

    PubMed  CAS  Google Scholar 

  48. Jakob C, Zavrski I, Heider U, et al. Bone resorption parameters [carboxy-terminal telopeptide of type-I collagen (ICTP), amino-terminal collagen type-I telopeptide (NTx), and deoxypyridinoline (Dpd)] in MGUS and multiple myeloma. Eur J Haematol. 2002;69: 37–42.

    Article  PubMed  CAS  Google Scholar 

  49. Alexandrakis MG, Passam FH, Malliaraki N, et al. Evaluation of bone disease in multiple myeloma: a correlation between biochemical markers of bone metabolism and other clinical parameters in untreated multiple myeloma patients. Clin Chim Acta. 2002;325:51–57.

    Article  PubMed  CAS  Google Scholar 

  50. Abildgaard N, Brixen K, Kristensen JE, et al. Comparison of five biochemical markers of bone resorption in multiple myeloma: elevated pre-treatment levels of S-ICTP and U-Ntx are predictive for early progression of the bone disease during standard chemotherapy. Br J Haematol. 2003;120:235–242.

    Article  PubMed  CAS  Google Scholar 

  51. Terpos E, Szydlo R, Apperley JF, et al. Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood. 2003;102:1064–1069.

    Article  PubMed  CAS  Google Scholar 

  52. Terpos E, de la Fuente J, Szydlo R, et al. Tartrate-resistant acid phosphatase isoform 5b: a novel serum marker for monitoring bone disease in multiple myeloma. Int J Cancer. 2003;106:455–457.

    Article  PubMed  CAS  Google Scholar 

  53. Coleman RE, Major P, Lipton A, et al. Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol. 2005;23:4925–4935.

    Article  PubMed  CAS  Google Scholar 

  54. Kuliszkiewicz-Janus M, Małecki R, Zółtaszek A, Zastawny M. The significance of carboxy-terminal telopeptide of type I collagen (ICTP) and osteocalcin (OC) in assessment of bone disease in patients with multiple myeloma. Leuk Lymphoma. 2005;46:1749–1753.

    Article  PubMed  CAS  Google Scholar 

  55. Dizdar O, Barista I, Kalyoncu U, et al. Biochemical markers of bone turnover in diagnosis of myeloma bone disease. Am J Hematol. 2007;82:185–191.

    Article  PubMed  CAS  Google Scholar 

  56. Jakob C, Sterz J, Liebisch P, et al. Incorporation of the bone marker carboxy-terminal telopeptide of type-1 collagen improves prognostic information of the International Staging System in newly diagnosed symptomatic multiple myeloma. Leukemia. 2008;22:1767–1772.

    Article  PubMed  CAS  Google Scholar 

  57. Terpos E, Palermos J, Viniou N, et al. Pamidronate increases markers of bone formation in patients with multiple myeloma in plateau phase under interferon-alpha treatment. Calcif Tissue Int. 2001;68:285–290.

    Article  PubMed  CAS  Google Scholar 

  58. Clark RE, Flory AJ, Ion EM, et al. Biochemical markers of bone turnover following high-dose chemotherapy and autografting in multiple myeloma. Blood. 2000;96:2697–2702.

    PubMed  CAS  Google Scholar 

  59. Terpos E, Politou M, Szydlo R, et al. Autologous stem cell transplantation normalizes abnormal bone remodeling and sRANKL/osteoprotegerin ratio in patients with multiple myeloma. Leukemia. 2004;18:1420–1426.

    Article  PubMed  CAS  Google Scholar 

  60. Abildgaard N, Glerup H, Rungby J, et al. Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma. Eur J Haematol. 2000;64:121–129.

    Article  PubMed  CAS  Google Scholar 

  61. Jakob C, Zavrski I, Heider U, et al. Serum levels of carboxy-terminal telopeptide of type-I collagen are elevated in patients with multiple myeloma showing skeletal manifestations in magnetic resonance imaging but lacking lytic bone lesions in conventional radiography. Clin Cancer Res. 2003;9:3047–3051.

    PubMed  CAS  Google Scholar 

  62. Alexandrakis MG, Kyriakou DS, Passam FH, et al. Urinary N-telopeptide levels in multiple myeloma patients, correlation with Tc-99m-sestaMIBI scintigraphy and other biochemical markers of disease activity. Hematol Oncol. 2003;21:17–24.

    Article  PubMed  CAS  Google Scholar 

  63. Turesson I, Abildgaard N, Ahlgren T, et al. Prognostic evaluation in multiple myeloma: an analysis of the impact of new prognostic factors. Br J Haematol. 1999;106: 1005–1012.

    Article  PubMed  CAS  Google Scholar 

  64. Schütt P, Rebmann V, Brandhorst D, et al. The clinical significance of soluble human leukocyte antigen class-I, ICTP, and RANKL molecules in multiple myeloma patients. Hum Immunol. 2008;69:79–87.

    Article  PubMed  CAS  Google Scholar 

  65. Terpos E, Berenson J, Lipton A, et al. High baseline NTX predicts for inferior survival and shorter time to first SRE in Multiple Myeloma. Clin Lymphoma Myeloma. 2009;9(Suppl 1):50–51.

    Article  PubMed  CAS  Google Scholar 

  66. Elomaa I, Risteli L, Laakso M, et al. Monitoring the action of clodronate with type I collagen metabolites in multiple myeloma. Eur J Cancer. 1996;32A:1166–1170.

    Article  PubMed  CAS  Google Scholar 

  67. Berenson JR, Rosen LS, Howell A, et al. Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases. Cancer. 2001;91:1191–1200.

    Article  PubMed  CAS  Google Scholar 

  68. Rosen LS, Gordon D, Kaminski M, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J. 2001;7:377–387.

    PubMed  CAS  Google Scholar 

  69. Menssen HD, Sakalova A, Fontana A, et al. Effects of long-term intravenous ibandronate therapy on skeletal-related events, survival, and bone resorption markers in patients with advanced multiple myeloma. J Clin Oncol. 2002;20:2353–2359.

    Article  PubMed  CAS  Google Scholar 

  70. Terpos E, Viniou N, de la Fuente J, et al. Pamidronate is superior to ibandronate in decreasing bone resorption, interleukin-6 and beta 2-microglobulin in multiple myeloma. Eur J Haematol. 2003;70:34–42.

    Article  PubMed  CAS  Google Scholar 

  71. Terpos E, Mihou D, Szydlo R, et al. The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio. Leukemia. 2005;19:1969–1976.

    Article  PubMed  CAS  Google Scholar 

  72. Lipton A, Cook RJ, Coleman RE, et al. Clinical utility of biochemical markers of bone metabolism for improving the management of patients with advanced multiple myeloma. Clin Lymphoma Myeloma. 2007;7:346–353.

    Article  PubMed  CAS  Google Scholar 

  73. Seidel C, Hjertner O, Abildgaard N, et al. Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood. 2001;98:2269–2271.

    Article  PubMed  CAS  Google Scholar 

  74. Lipton A, Ali SM, Leitzel K, et al. Serum osteoprotegerin levels in healthy controls and cancer patients. Clin Cancer Res. 2002;8:2306–2310.

    PubMed  CAS  Google Scholar 

  75. Goranova-Marinova V, Goranov S, Pavlov P, Tzvetkova T. Serum levels of OPG, RANKL and RANKL/OPG ratio in newly-diagnosed patients with multiple myeloma. Clinical correlations. Haematologica. 2007;92:1000–1001.

    Article  PubMed  Google Scholar 

  76. Martini G, Gozzetti A, Gennari L, et al. The effect of zoledronic acid on serum osteoprotegerin in early stage multiple myeloma. Haematologica. 2006;91:1720–1721.

    PubMed  CAS  Google Scholar 

  77. Terpos E, Kastritis E, Roussou M, et al. The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis. Leukemia. 2008;22:2247–2256.

    Article  PubMed  CAS  Google Scholar 

  78. Kraj M, Owczarska K, Sokołowska U, et al. Correlation of osteoprotegerin and sRANKL concentrations in serum and bone marrow of multiple myeloma patients. Arch Immunol Ther Exp. 2005;53:454–464.

    CAS  Google Scholar 

  79. Nanci A. Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. J Struct Biol. 1999;126: 256–269.

    Article  PubMed  CAS  Google Scholar 

  80. Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349: 2483–2494.

    Article  PubMed  CAS  Google Scholar 

  81. Politou MC, Heath DJ, Rahemtulla A, et al. Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Int J Cancer. 2006;119:1728–1731.

    Article  PubMed  CAS  Google Scholar 

  82. Kaiser M, Mieth M, Liebisch P, et al. Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma. Eur J Hematol. 2008;80:490–494.

    Article  CAS  Google Scholar 

  83. Haaber J, Abildgaard N, Knudsen LM, et al. Myeloma cell expression of 10 candidate genes for osteolytic bone disease. Only overexpression of DKK1 correlates with clinical bone involvement at diagnosis. Br J Haematol. 2008;140:25–35.

    PubMed  CAS  Google Scholar 

  84. Yaccoby S, Ling W, Zhan F, et al. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood. 2007;109:2106–2111.

    Article  PubMed  CAS  Google Scholar 

  85. Terpos E, Mihou D, Szydlo R, et al. The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio. Leukemia. 2005;19:1969–1976.

    Article  PubMed  CAS  Google Scholar 

  86. Tosi P, Zamagni E, Cellini C, et al. First-line therapy with thalidomide, dexamethasone and zoledronic acid decreases bone resorption markers in patients with multiple myeloma. Eur J Haematol. 2006;76:399–404.

    Article  PubMed  CAS  Google Scholar 

  87. Breitkreutz I, Raab MS, Vallet S, et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia. 2008;22:1925–1932.

    Article  PubMed  CAS  Google Scholar 

  88. Zangari M, Esseltine D, Lee CK, et al. Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol. 2005;131:71–73.

    Article  PubMed  CAS  Google Scholar 

  89. Zangari M, Yaccoby S, Cavallo F, et al. Response to bortezomib and activation of osteoblasts in multiple myeloma. Clin Lymphoma Myeloma. 2006;7:109–114.

    Article  PubMed  CAS  Google Scholar 

  90. Heider U, Kaiser M, Muller C, et al. Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol. 2006;77:233–238.

    Article  PubMed  CAS  Google Scholar 

  91. Giuliani N, Morandi F, Tagliaferri S, et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood. 2007;110:334–338.

    Article  PubMed  CAS  Google Scholar 

  92. Terpos E, Heath DJ, Rahemtulla A, et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand co ncentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol. 2006;135:688–692.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Terpos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Terpos, E. (2010). Biochemical Markers of Bone Remodeling in Multiple Myeloma. In: Roodman, G. (eds) Myeloma Bone Disease. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-60761-554-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-554-5_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-553-8

  • Online ISBN: 978-1-60761-554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics