Skip to main content

Imaging of Multiple Myeloma, Solitary Plasmacytoma, MGUS, and Other Plasma Cell Dyscrasias

  • Chapter
  • First Online:
Myeloma Bone Disease

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

The significance of medical imaging in multiple myeloma was established in 1975 with the classic description of the Durie–Salmon staging system which incorporated the presence and number of focal osteolytic lesions in the staging scheme. A third of a century later, this staging system remains in use, though augmented by advances in medical imaging. By the early 1980s, CT imaging demonstrated more focal bone lesions than were seen with standard radiographs as well as extramedullary disease. By the 1980s, MRI imaging revealed skeletal disease that was not apparent by either standard x-rays or CT, focal plasmacytomas in bone that had not yet produced focal osteolysis, and diffuse marrow infiltration. Subsequent work throughout the 1990s developed and established MRI as a very powerful tool to demonstrate the full extent of skeletal disease with resolution approaching a few millimeters. MRI was also used to direct biopsies of focal lesions which increased the detection rate of clinically relevant information compared to random marrow biopsies. However, standard MRI lacked the wide field of view of CT and was both considerably more expensive and less widely available than CT. An additional weakness of standard x-rays, CT, and MRI was their limited utility in the demonstration of response to treatment. By the mid- to late 1990s, the utility of 18F-FDG PET and (after 2000) PET/CT was apparent. PET/CT was particularly powerful since it provided a “whole-body” examination combining the utility of CT (“anatomy”) with a “metabolic” image that was linked to the Warburg physiology of tumors, at a fraction of the cost of an extensive MRI. Thus, PET and PET/CT can demonstrate both active disease and, very importantly, response to treatment. The PET image fused to the CT portion of the PET/CT also provides a “free” whole-body metastatic bone survey that can reveal not only focal bone lesions but also additional clinically relevant findings (fractures or impending fractures, additional malignancies, occult infections, unsuspected regions of tumor involvement such as extramedullary tumor). Recent work has established the fundamental importance of 18F-FDG PET and PET/CT for the baseline evaluation of patients with multiple myeloma and related plasma cell dyscrasias, as well as for subsequent evaluations related to patient management. Future directions for imaging research in multiple myeloma will include PET imaging with isotopes other than 18F-FDG and whole-body MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angtuaco EJ, Fassas AB, Walker R, Sethi R, Barlogie B. Multiple myeloma: clinical review and diagnostic imaging. Radiology. 2004;231:11–23.

    Article  PubMed  Google Scholar 

  2. Dankerl A, Liebisch P, Glatting G, et al. Multiple myeloma: molecular imaging with 11C-methionine PET/CT – initial experience. Radiology. 2007;242:498–508.

    PubMed  Google Scholar 

  3. Nanni C, Zamagni E, Cavo M, et al. 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol. 2007;5:68.

    Article  PubMed  Google Scholar 

  4. Pace L, Catalano L, Pinto A, et al. Different patterns of technetium-99m sestamibi uptake in multiple myeloma. Eur J Nucl Med. 1998;25:714–720.

    PubMed  Google Scholar 

  5. Fonti R, Del Vecchio S, Zannetti A, et al. Bone marrow uptake of 99mTc-MIBI in patients with multiple myeloma. Eur J Nucl Med. 2001;28:214–220.

    Article  PubMed  CAS  Google Scholar 

  6. Chiu ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblasts. J Nucl Med. 1990;31:1646–1653.

    PubMed  Google Scholar 

  7. Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349: 2483–2494.

    Article  PubMed  Google Scholar 

  8. Roodman GD. Pathogenesis of myeloma bone disease. Blood Cells Mol Dis. 2004;32: 290–292.

    Article  PubMed  CAS  Google Scholar 

  9. Epstein J, Walker R. Myeloma and bone disease: “the dangerous tango”. Clin Adv Hematol Oncol. 2006;4:300–306.

    PubMed  Google Scholar 

  10. Nanni C, Rubello D, Zamagni E, et al. 18F-FDG PET/CT in myeloma with presumed solitary plasmocytoma of bone. In Vivo. 2008;22:513–517.

    PubMed  Google Scholar 

  11. Blade J, Kyle RA. Nonsecretory myeloma, immunoglobulin D myeloma, and plasma cell leukemia. Hematol Oncol Clin North Am. 1999;13:1259–1272.

    Article  PubMed  Google Scholar 

  12. Dispenzieri A, Kyle R, Merlini G, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia. 2009;23:215–224.

    Article  PubMed  CAS  Google Scholar 

  13. Drayson M, Tang LX, Drew R, Mead GP, Carr-Smith H, Bradwell AR. Serum free light-chain measurements for identifying and monitoring patients with nonsecretory multiple myeloma. Blood. 2001;97:2900–2902.

    Article  PubMed  Google Scholar 

  14. Durie BG, Kyle RA, Belch A, et al. Myeloma management guidelines: a consensus report from the Scientific Advisors of the International Myeloma Foundation. Hematol J. 2003;4:379–398.

    Article  PubMed  Google Scholar 

  15. Orchard K, Barrington S, Buscombe J, Hilson A, Prentice HG, Mehta A. Fluoro-deoxyglucose positron emission tomography imaging for the detection of occult disease in multiple myeloma. Br J Haematol. 2002;117:133–135.

    Article  PubMed  Google Scholar 

  16. Schirrmeister H, Bommer M, Buck AK, et al. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2002;29:361–366.

    PubMed  Google Scholar 

  17. Durie BG, Waxman AD, D’Agnolo A, Williams CM. Whole-body (18)F-FDG PET identifies high-risk myeloma. J Nucl Med. 2002;43:1457–1463.

    PubMed  Google Scholar 

  18. Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36:842–854.

    Article  PubMed  Google Scholar 

  19. Durie BG. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer. 2006;42:1539–1543.

    Article  PubMed  Google Scholar 

  20. Edelstyn GA, Gillespie PJ, Grebbell FS. The radiological demonstration of osseous metastases. Experimental observations. Clin Radiol. 1967;18:158–162.

    Article  PubMed  Google Scholar 

  21. Baur-Melnyk A, Reiser M. [Staging of multiple myeloma with MRI: comparison to MSCT and conventional radiography]. Radiologe. 2004;44:874–881.

    Article  PubMed  Google Scholar 

  22. Bartel TB, Haessler J, Brown TL, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. September 3, 2009;114(10):2068–2076.

    Article  PubMed  CAS  Google Scholar 

  23. Dispenzieri A, Kyle RA, Lacy MQ, et al. POEMS syndrome: definitions and long-term outcome. Blood. 2003;101:2496–2506.

    Article  PubMed  CAS  Google Scholar 

  24. Gandhi GY, Basu R, Dispenzieri A, Basu A, Montori VM, Brennan MD. Endocrinopathy in POEMS syndrome: the Mayo Clinic experience. Mayo Clin Proc. 2007;82:836–842.

    Article  PubMed  Google Scholar 

  25. Dispenzieri A. POEMS syndrome. Blood Rev. 2007;21:285–299.

    Article  PubMed  Google Scholar 

  26. Prasad R, Yadav RR, Singh A, Mathur SP, Mangal Y, Singh M.. Case report. Non-secretory multiple myeloma presenting with diffuse sclerosis of affected bones interspersed with osteolytic lesions. Br J Radiol. 2009;82:e29–e31.

    Article  PubMed  CAS  Google Scholar 

  27. Ludwig H, Fruhwald F, Tscholakoff D, Rasoul S, Neuhold A, Fritz E. Magnetic resonance imaging of the spine in multiple myeloma. Lancet. 1987;2:364–366.

    PubMed  Google Scholar 

  28. Fruehwald FX, Tscholakoff D, Schwaighofer B, et al. Magnetic resonance imaging of the lower vertebral column in patients with multiple myeloma. Invest Radiol. 1988;23:193–199.

    Article  PubMed  Google Scholar 

  29. Libshitz HI, Malthouse SR, Cunningham D, MacVicar AD, Husband JE. Multiple myeloma: appearance at MR imaging. Radiology. 1992;182:833–837.

    PubMed  Google Scholar 

  30. Moulopoulos LA, Varma DG, Dimopoulos MA, et al. Multiple myeloma: spinal MR imaging in patients with untreated newly diagnosed disease. Radiology. 1992;185:833–840.

    PubMed  Google Scholar 

  31. Rahmouni A, Divine M, Mathieu D, et al. Detection of multiple myeloma involving the spine: efficacy of fat-suppression and contrast-enhanced MR imaging. AJR Am J Roentgenol. 1993;160:1049–1052.

    PubMed  Google Scholar 

  32. Moulopoulos LA, Dimopoulos MA, Smith TL, et al. Prognostic significance of magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol. 1995;13:251–256.

    PubMed  Google Scholar 

  33. Dimopoulos MA, Moulopoulos LA, Datseris I, et al. Imaging of myeloma bone disease – implications for staging, prognosis and follow-up. Acta Oncol. 2000;39:823–827.

    PubMed  Google Scholar 

  34. Tertti R, Alanen A, Remes K. The value of magnetic resonance imaging in screening myeloma lesions of the lumbar spine. Br J Haematol. 1995;91:658–660.

    Article  PubMed  Google Scholar 

  35. Van de Berg BC, Lecouvet FE, Michaux L, et al. Stage I multiple myeloma: value of MR imaging of the bone marrow in the determination of prognosis. Radiology. 1996;201: 243–246.

    PubMed  Google Scholar 

  36. Walker R, Barlogie B, Haessler J, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol. 2007;25:1121–1128.

    Article  PubMed  Google Scholar 

  37. Talamo G, Angtuaco E, Walker RC, et al. Avascular necrosis of femoral and/or humeral heads in multiple myeloma: results of a prospective study of patients treated with dexamethasone-based regimens and high-dose chemotherapy. J Clin Oncol. 2005;23: 5217–5223.

    Article  PubMed  CAS  Google Scholar 

  38. Garcia-Ferrer L, Bagan JV, Martinez-Sanjuan V, et al. MRI of mandibular osteonecrosis secondary to bisphosphonates. AJR Am J Roentgenol. 2008;190:949–955.

    Article  PubMed  Google Scholar 

  39. Bisdas S, Chambron Pinho N, Smolarz A, Sader R, Vogl TJ, Mack MG. Bisphosphonate-induced osteonecrosis of the jaws: CT and MRI spectrum of findings in 32 patients. Clin Radiol. 2008;63:71–77.

    Article  PubMed  Google Scholar 

  40. Agarwal R, Brunelli SM, Williams K, Mitchell MD, Feldman HI, Umscheid CA. Gadolinium-based contrast agents and nephrogenic systemic fibrosis: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009;24:856–863.

    PubMed  Google Scholar 

  41. Broome DR. Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol. 2008;66:230–234.

    Article  PubMed  Google Scholar 

  42. Chrysochou C, Buckley DL, Dark P, Cowie A, Kalra PA. Gadolinium-enhanced magnetic resonance imaging for renovascular disease and nephrogenic systemic fibrosis: Critical review of the literature and UK experience. J Magn Reson Imaging. 2009;29:887–894.

    Article  PubMed  Google Scholar 

  43. Zamagni E, Nanni C, Patriarca F, et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica. 2007;92:50–55.

    Article  PubMed  Google Scholar 

  44. Weininger M, Lauterbach B, Knop S, et al. Whole-body MRI of multiple myeloma: comparison of different MRI sequences in assessment of different growth patterns. Eur J Radiol. 2009;69:339–345.

    Article  PubMed  Google Scholar 

  45. Baur-Melnyk A, Buhmann S, Becker C, et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol. 2008;190:1097–1104.

    Article  PubMed  Google Scholar 

  46. Miceli MH, Jones Jackson LB, Walker RC, Talamo G, Barlogie B, Anaissie EJ. Diagnosis of infection of implantable central venous catheters by [18F]fluorodeoxyglucose positron emission tomography. Nucl Med Commun. 2004;25:813–818.

    Article  PubMed  Google Scholar 

  47. Miceli M, Atoui R, Thertulien R, et al. Deep septic thrombophlebitis: an unrecognized cause of relapsing bacteremia in patients with cancer. J Clin Oncol. 2004;22:1529–1531.

    PubMed  Google Scholar 

  48. Miceli M, Atoui R, Walker R, et al. Diagnosis of deep septic thrombophlebitis in cancer patients by fluorine-18 fluorodeoxyglucose positron emission tomography scanning: a preliminary report. J Clin Oncol. 2004;22:1949–1956.

    PubMed  Google Scholar 

  49. Mahfouz T, Miceli MH, Saghafifar F, et al. 18F-fluorodeoxyglucose positron emission tomography contributes to the diagnosis and management of infections in patients with multiple myeloma: a study of 165 infectious episodes. J Clin Oncol. 2005;23:7857–7863.

    Article  PubMed  Google Scholar 

  50. Walker R, Jones-Jackson L, Rasmussen E, et al. PET and PET/CT imaging in multiple myeloma, solitary plasmacytoma, MGUS and other plasma cell dyscrasias. In: Valk PE, Delbeke D, Bailey DL, Townsend DW, Maisey MN, eds. Positron Emission Tomography: Clinical Practice. 2nd ed. Vol. 2. London, UK: Springer-Verlag London Limited; 2006:475p.

    Google Scholar 

  51. Delbeke D, Coleman RE, Guiberteau MJ, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47:885–895.

    PubMed  Google Scholar 

  52. Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med. 2003;44:170–176.

    PubMed  Google Scholar 

  53. Cohade C, Mourtzikos KA, Wahl RL. “USA-Fat”: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med. 2003;44:1267–1270.

    PubMed  Google Scholar 

  54. Baba S, Tatsumi M, Ishimori T, Lilien DL, Engles JM, Wahl RL. Effect of nicotine and ephedrine on the accumulation of 18F-FDG in brown adipose tissue. J Nucl Med. 2007;48:981–986.

    PubMed  Google Scholar 

  55. Parysow O, Mollerach AM, Jager V, Racioppi S, San Roman J, Gerbaudo VH. Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin Nucl Med. 2007;32:351–357.

    Article  PubMed  Google Scholar 

  56. Basu S. Functional imaging of brown adipose tissue with PET: can this provide new insights into the pathophysiology of obesity and thereby direct antiobesity strategies? Nucl Med Commun. 2008;29:931–933.

    PubMed  Google Scholar 

  57. Williams G, Kolodny GM. Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. AJR Am J Roentgenol. 2008;190:1406–1409.

    Article  PubMed  Google Scholar 

  58. el-Shirbiny AM, Yeung H, Imbriaco M, Michaeli J, Macapinlac H, Larson SM. Technetium-99m-MIBI versus fluorine-18-FDG in diffuse multiple myeloma. J Nucl Med. 1997;38:1208–1210.

    PubMed  Google Scholar 

  59. Blocklet D, Schoutens A, Kentos A, Feremans W. Bone marrow uptake of 99mTc-MIBI in patients with multiple myeloma. Eur J Nucl Med. 2001;28:1430–1432.

    Article  PubMed  CAS  Google Scholar 

  60. Giovanella L, Taborelli M, Ceriani L, Zucca E, Cavalli F, Delaloye AB.. 99mTc-sestamibi imaging and bone marrow karyotyping in the assessment of multiple myeloma and MGUS. Nucl Med Commun. 2008;29:535–541.

    Article  PubMed  Google Scholar 

  61. Fonti R, Salvatore B, Quarantelli M, et al. 18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med. 2008;49:195–200.

    Article  PubMed  Google Scholar 

  62. Avva R, Vanhemert RL, Barlogie B, Munshi N, Angtuaco EJ. CT-guided biopsy of focal lesions in patients with multiple myeloma may reveal new and more aggressive cytogenetic abnormalities. AJNR Am J Neuroradiol. 2001;22:781–785.

    PubMed  Google Scholar 

  63. Walker R. Jones-Jackson L, Miceli M, et al. FDG PET functional imaging in multiple myeloma: clinically important caveats, pitfalls, and pearls. In: ASH Meeting 2004; San Diego, 2004 (Blood. November 16, 2004;104:11 (abs)).

    Google Scholar 

  64. Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    PubMed  Google Scholar 

  65. Suzuki C, Jacobsson H, Hatschek T, et al. Radiologic measurements of tumor response to treatment: practical approaches and limitations. Radiographics. 2008;28:329–344.

    Article  PubMed  Google Scholar 

  66. Michaelis LC, Ratain MJ. Measuring response in a post-RECIST world: from black and white to shades of grey. Nat Rev Cancer. 2006;6:409–414.

    Article  PubMed  CAS  Google Scholar 

  67. Ratain MJ, Eckhardt SG. Phase II studies of modern drugs directed against new targets: if you are fazed, too, then resist RECIST. J Clin Oncol. 2004;22:4442–4445.

    Article  PubMed  Google Scholar 

  68. Bogaerts J, Ford R, Sargent D, et al. Individual patient data analysis to assess modifications to the RECIST criteria. Eur J Cancer. 2009;45:248–260.

    Article  PubMed  Google Scholar 

  69. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–247.

    Article  PubMed  Google Scholar 

  70. Schwartz LH, Bogaerts J, Ford R, et al. Evaluation of lymph nodes with RECIST 1.1. Eur J Cancer. 2009;45:261–267.

    Article  PubMed  Google Scholar 

  71. Verweij J, Therasse P, Eisenhauer E. Cancer clinical trial outcomes: any progress in tumour-size assessment? Eur J Cancer. 2009;45:225–227.

    Article  PubMed  Google Scholar 

  72. Wahl RL Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S–150S.

    Article  PubMed  CAS  Google Scholar 

  73. Callander NS, Roodman GD. Myeloma bone disease. Semin Hematol. 2001;38: 276–285.

    Article  PubMed  Google Scholar 

  74. Barlogie B, Shaughnessy J, Tricot G, et al. Treatment of multiple myeloma. Blood. 2004;103:20–32.

    Article  PubMed  CAS  Google Scholar 

  75. Chim CS, Ooi GC, Loong F, Liang R. Unusual presentations of hematologic malignancies: CASE 1. Solitary bone plasmacytoma: role of magnetic resonance imaging and positron emission tomography. J Clin Oncol. 2004;22:1328–1330.

    Article  PubMed  Google Scholar 

  76. Liebross RH, Ha CS, Cox JD, Weber D, Delasalle K, Alexanian R. Solitary bone plasmacytoma: outcome and prognostic factors following radiotherapy. Int J Radiat Oncol Biol Phys. 1998;41:1063–1067.

    PubMed  Google Scholar 

  77. Moulopoulos LA, Dimopoulos MA, Weber D, Fuller L, Libshitz HI, Alexanian R. Magnetic resonance imaging in the staging of solitary plasmacytoma of bone. J Clin Oncol. 1993;11:1311–1315.

    PubMed  Google Scholar 

  78. Schirrmeister H, Buck AK, Bergmann L, Reske SN, Bommer M. Positron emission tomography (PET) for staging of solitary plasmacytoma. Cancer Biother Radiopharm. 2003;18:841–845.

    Article  PubMed  Google Scholar 

  79. Weber DM. Solitary bone and extramedullary plasmacytoma. Hematol Am Soc Hematol Educ Program. 2005;45:373–376.

    Google Scholar 

  80. Soutar R, Lucraft H, Jackson G, et al. Guidelines on the diagnosis and management of solitary plasmacytoma of bone and solitary extramedullary plasmacytoma. Br J Haematol. 2004;124:717–726.

    Article  PubMed  Google Scholar 

  81. Schomburg A, Bender H, Reichel C, et al. Standardized uptake values of fluorine-18 fluorodeoxyglucose: the value of different normalization procedures. Eur J Nucl Med. 1996;23:571–574.

    Article  PubMed  Google Scholar 

  82. Shortt CP, Gleeson TG, Breen KA, et al. Whole-Body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol. 2009;192:980–986.

    Article  PubMed  Google Scholar 

  83. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992;33:1972–1980.

    PubMed  Google Scholar 

  84. Higashi K, Clavo AC, Wahl RL. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med. 1993;34:773–779.

    PubMed  Google Scholar 

  85. Naumann R, Vaic A, Beuthien-Baumann B, et al. Prognostic value of positron emission tomography in the evaluation of post-treatment residual mass in patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Br J Haematol. 2001;115:793–800.

    PubMed  Google Scholar 

  86. Weihrauch MR, Re D, Scheidhauer K, et al. Thoracic positron emission tomography using 18F-fluorodeoxyglucose for the evaluation of residual mediastinal Hodgkin disease. Blood. 2001;98:2930–2934.

    Article  PubMed  Google Scholar 

  87. Walker RC, Jones-Jackson LB, Martin W, Habibian MR, Delbeke D. New imaging tools for the diagnosis of infection. Future Microbiol. 2007;2:527–554.

    Article  PubMed  Google Scholar 

  88. Migliorati CA. Bisphosphonates and oral cavity avascular bone necrosis. J Clin Oncol. 2003;21:4253–4254.

    Article  PubMed  Google Scholar 

  89. Leung AN, Gosselin MV, Napper CH, et al. Pulmonary infections after bone marrow transplantation: clinical and radiographic findings. Radiology. 1999;210:699–710.

    PubMed  Google Scholar 

  90. Mulligan ME, Badros AZ. PET/CT and MR imaging in myeloma. Skeletal Radiol. 2007;36:5–16.

    Article  PubMed  Google Scholar 

  91. Dimopoulos M, Terpos E, Comenzo RL, et al. International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma. Leukemia. 2009;23:1545–1556.

    Article  PubMed  CAS  Google Scholar 

  92. Nelis GF. An unusual case of myeloma. Non-secretory IgD-kappa myeloma with de-differentiation of kappa myeloma evolving from solitary plasmocytoma. Acta Med Scand. 1982;211:141–144.

    PubMed  Google Scholar 

  93. Volberding PA, Baker KR, Levine AM. Human immunodeficiency virus hematology. Hematol Am Soc Hematol Educ Program. 2003;294–313.

    Google Scholar 

  94. Roca B, Torres V. Castleman’s disease presenting as fever of unknown origin: diagnostic value of fluorodeoxyglucose-positron emission tomography/computed tomography. Am J Med Sci. 2009;337:295–296.

    Article  PubMed  Google Scholar 

  95. Roca B.. Castleman’s disease. A review. AIDS Rev. 2009;11:3–7.

    PubMed  Google Scholar 

  96. Powles T, Stebbing J, Bazeos A, et al. The role of immune suppression and HHV-8 in the increasing incidence of HIV-associated multicentric Castleman’s disease. Ann Oncol. 2009;20:775–779.

    Article  PubMed  Google Scholar 

  97. Ghobrial IM, Gertz MA, Fonseca R.. Waldenstrom macroglobulinaemia. Lancet Oncol. 2003;4:679–685.

    Article  PubMed  Google Scholar 

  98. Blade J, Samson D, Reece D, et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol. 1998;102:1115–1123.

    PubMed  Google Scholar 

  99. Durie BG, Harousseau JL, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20:1467–1473.

    PubMed  Google Scholar 

  100. Okada J, Yoshikawa K, Imazeki K, et al. The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J Nucl Med. 1991;32:686–691.

    PubMed  Google Scholar 

  101. Kostakoglu L, Goldsmith SJ.. 18F-FDG PET evaluation of the response to therapy for lymphoma and for breast, lung, and colorectal carcinoma. J Nucl Med. 2003;44:224–239.

    PubMed  Google Scholar 

  102. Juweid ME. Utility of positron emission tomography (PET) scanning in managing patients with Hodgkin lymphoma. Hematol Am Soc Hematol Educ Program. 2006;2006(1):259–265.

    Google Scholar 

  103. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25:571–578.

    Article  PubMed  Google Scholar 

  104. Haessler J, Shaughnessy JD Jr, Zhan F, et al. Benefit of complete response in multiple myeloma limited to high-risk subgroup identified by gene expression profiling. Clin Cancer Res. 2007;13:7073–7079.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald C. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Walker, R.C., Jones-Jackson, L., Bartel, T., Brown, T., Barlogie, B. (2010). Imaging of Multiple Myeloma, Solitary Plasmacytoma, MGUS, and Other Plasma Cell Dyscrasias. In: Roodman, G. (eds) Myeloma Bone Disease. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-60761-554-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-554-5_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-553-8

  • Online ISBN: 978-1-60761-554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics