Skip to main content

Potential Role of IMiDs and Other Agents as Therapy for Myeloma Bone Disease

  • Chapter
  • First Online:
Myeloma Bone Disease

Part of the book series: Current Clinical Oncology ((CCO))

  • 845 Accesses

Abstract

Multiple myeloma (MM) is a plasma cell malignancy characterized by the frequent development of bone lesions (Lentzsch et al. Hematol Oncol Clin North Am 21:1035–1049, 2007). The development of osteolytic lesions is attributable to increased bone resorption caused by stimulation of osteoclast formation and activity (Barille-Nion and Bataille Leuk Lymphoma 44:1463–1467, 2003), (Giuliani et al. Exp Hematol 32:685–691, 2004), and (Roodman Blood Cells Mol Dis 32:290–292, 2004). The increased osteoclast activity is accompanied by decreased osteoblast function resulting in imbalanced bone remodeling, which increases bone resorption and decreases bone formation (Bataille et al. J Clin Oncol 7:1909–1914, 1989) and (Bataille et al. Br J Haematol 76:484–487, 1990). Bisphosphonate therapy targets the inhibition of osteoclast activity. But unfortunately bisphosphonates are associated with side effects such as renal toxicity and osteonecrosis of the jaw. Therefore new drugs capable of targeting activated osteoclasts without completely arresting bone resorption and remodeling are needed. In this chapter, the author discusses potential new drugs which target osteoclast formation and activity and which also lack severe side effects and provide a potential effective treatment for bone disease in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melton LJ 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL. How many women have osteoporosis? JBMR Anniversary Classic. JBMR. 1992;7(9). J Bone Miner Res. 2005;20:886–892.

    Google Scholar 

  2. Barille-Nion S, Bataille R. New insights in myeloma-induced osteolysis. Leuk Lymphoma. 2003;44:1463–1467.

    Article  CAS  PubMed  Google Scholar 

  3. Giuliani N, Colla S, Rizzoli V. New insight in the mechanism of osteoclast activation and formation in multiple myeloma: focus on the receptor activator of NF-kappaB ligand (RANKL). Exp Hematol. 2004;32:685–691.

    Article  CAS  PubMed  Google Scholar 

  4. Roodman GD. Pathogenesis of myeloma bone disease. Blood Cells Mol Dis. 2004;32:290–292.

    Article  CAS  PubMed  Google Scholar 

  5. Bataille R, Chappard D, Marcelli C, et al. Mechanisms of bone destruction in multiple myeloma: the importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol. 1989;7:1909–1914.

    CAS  PubMed  Google Scholar 

  6. Bataille R, Chappard D, Marcelli C, et al. Osteoblast stimulation in multiple myeloma lacking lytic bone lesions. Br J Haematol. 1990;76:484–487.

    Article  CAS  PubMed  Google Scholar 

  7. Dimopoulos M, Spencer A, Attal M, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007;357:2123–2132.

    Article  CAS  PubMed  Google Scholar 

  8. Weber DM, Chen C, Niesvizky R, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med. 2007;357:2133–2142.

    Article  CAS  PubMed  Google Scholar 

  9. Anderson G, Gries M, Kurihara N, et al. Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood. 2006;107:3098–3105.

    Article  CAS  PubMed  Google Scholar 

  10. Pal R, Monaghan SA, Mapara MY, et al. Immunomodulatory Derivatives (IMiDs) Induce PU.1 Downregulation, Myeloid Maturation Arrest and Neutropenia. Blood. 2010;115:605–614.

    Google Scholar 

  11. Tondravi MM, McKercher SR, Anderson K, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature. 1997;386:81–84.

    Article  CAS  PubMed  Google Scholar 

  12. Breitkreutz I, Raab MS, Vallet S, et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia. 2008;22:1925–1932.

    Article  CAS  PubMed  Google Scholar 

  13. Terpos E, Mihou D, Szydlo R, et al. The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio. Leukemia. 2005;19:1969–1976.

    Article  CAS  PubMed  Google Scholar 

  14. Tosi P, Zamagni E, Cellini C, et al. First-line therapy with thalidomide, dexamethasone and zoledronic acid decreases bone resorption markers in patients with multiple myeloma. Eur J Haematol. 2006;76:399–404.

    Article  CAS  PubMed  Google Scholar 

  15. Demerson CA, Humber LG, Abraham NA, Schilling G, Martel RR, Pace-Asciak C. Resolution of etodolac and antiinflammatory and prostaglandin synthetase inhibiting properties of the enantiomers. J Med Chem. 1983;26:1778–1780.

    Article  CAS  PubMed  Google Scholar 

  16. Yasui H, Hideshima T, Ikeda H, et al. Novel etodolac analog SDX-308 (CEP-18082) induces cytotoxicity in multiple myeloma cells associated with inhibition of beta-catenin/TCF pathway. Leukemia. 2007;21:535–540.

    Article  CAS  PubMed  Google Scholar 

  17. Feng R, Anderson G, Xiao G, et al. SDX-308, a nonsteroidal anti-inflammatory agent, inhibits NF-{kappa}B activity, resulting in strong inhibition of osteoclast formation/activity and multiple myeloma cell growth. Blood. 2007;109:2130–2138.

    Article  CAS  PubMed  Google Scholar 

  18. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998;95:3597–3602.

    Article  CAS  PubMed  Google Scholar 

  19. Sung B, Murakami A, Oyajobi BO, Aggarwal BB. Zerumbone abolishes RANKL-induced NF-kappaB activation, inhibits osteoclastogenesis, and suppresses human breast cancer-induced bone loss in athymic nude mice. Cancer Res. 2009;69:1477–1484.

    Article  CAS  PubMed  Google Scholar 

  20. Body JJ, Facon T, Coleman RE, et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res. 2006;12:1221–1228.

    Article  CAS  PubMed  Google Scholar 

  21. Vij R, Horvath N, Spencer A, et al. An open-label, phase 2 trial of denosumab in the treatment of Relapsed (R) or Plateau-Phase (PP) Multiple Myeloma (MM). Blood. 2007;110:3604.

    Google Scholar 

  22. Cook DN. The role of MIP-1 alpha in inflammation and hematopoiesis. J Leukoc Biol. 1996;59:61–66.

    CAS  PubMed  Google Scholar 

  23. Abe M, Hiura K, Wilde J, et al. Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood. 2002;100:2195–2202.

    CAS  PubMed  Google Scholar 

  24. Fuller K, Owens JM, Chambers TJ. Macrophage inflammatory protein-1 alpha and IL-8 stimulate the motility but suppress the resorption of isolated rat osteoclasts. J Immunol. 1995;154:6065–6072.

    CAS  PubMed  Google Scholar 

  25. Kukita T, Nomiyama H, Ohmoto Y, et al. Macrophage inflammatory protein-1 alpha (LD78) expressed in human bone marrow: its role in regulation of hematopoiesis and osteoclast recruitment. Lab Invest. 1997;76:399–406.

    CAS  PubMed  Google Scholar 

  26. Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY. Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood. 2003;101:3568–3573.

    Article  CAS  PubMed  Google Scholar 

  27. Choi SJ, Cruz JC, Craig F, et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood. 2000;96:671–675.

    CAS  PubMed  Google Scholar 

  28. Hashimoto T, Abe M, Oshima T, et al. Ability of myeloma cells to secrete macrophage inflammatory protein (MIP)-1alpha and MIP-1beta correlates with lytic bone lesions in patients with multiple myeloma. Br J Haematol. 2004;125:38–41.

    Article  CAS  PubMed  Google Scholar 

  29. Uneda S, Hata H, Matsuno F, et al. Macrophage inflammatory protein-1 alpha is produced by human multiple myeloma (MM) cells and its expression correlates with bone lesions in patients with MM. Br J Haematol. 2003;120:53–55.

    Article  CAS  PubMed  Google Scholar 

  30. Choi SJ, Oba Y, Gazitt Y, et al. Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest. 2001;108:1833–1841.

    CAS  PubMed  Google Scholar 

  31. Vallet S, Raje N, Ishitsuka K, et al. MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood. 2007;110:3744–3752.

    Article  CAS  PubMed  Google Scholar 

  32. Vanderkerken K, Medicherla S, Coulton L, et al. Inhibition of p38alpha mitogen-activated protein kinase prevents the development of osteolytic bone disease, reduces tumor burden, and increases survival in murine models of multiple myeloma. Cancer Res. 2007;67:4572–4577.

    Article  CAS  PubMed  Google Scholar 

  33. Lawson MA, Coulton L, Ebetino FH, Vanderkerken K, Croucher PI. Geranylgeranyl transferase type II inhibition prevents myeloma bone disease. Biochem Biophys Res Commun. 2008;377:453–457.

    Article  CAS  PubMed  Google Scholar 

  34. Feng R, Ma H, Hassig CA, et al. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling. Mol Cancer Ther. 2008;7:1494–1505.

    Article  CAS  PubMed  Google Scholar 

  35. Feng R, Oton A, Mapara MY, Anderson G, Belani C, Lentzsch S. The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage. Br J Haematol. 2007;139:385–397.

    Article  CAS  PubMed  Google Scholar 

  36. Okawa Y, Hideshima T, Steed P, et al. SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood. 2009;113:846–855.

    Article  CAS  PubMed  Google Scholar 

  37. Hongming H, Jian H. Bortezomib inhibits maturation and function of osteoclasts from PBMCs of patients with multiple myeloma by downregulating TRAF6. Leuk Res. 2009;33:115–122.

    Article  PubMed  Google Scholar 

  38. von Metzler I, Krebbel H, Hecht M, et al. Bortezomib inhibits human osteoclastogenesis. Leukemia. 2007;21:2025–2034.

    Article  CAS  PubMed  Google Scholar 

  39. Zavrski I, Krebbel H, Wildemann B, et al. Proteasome inhibitors abrogate osteoclast differentiation and osteoclast function. Biochem Biophys Res Commun. 2005;333:200–205.

    Article  CAS  PubMed  Google Scholar 

  40. Feng R, Lentzsch S. Treatment of multiple myeloma with SDX-308. Drug News Perspect. 2007 Sep;20(7):431–435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Lentzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lentzsch, S. (2010). Potential Role of IMiDs and Other Agents as Therapy for Myeloma Bone Disease. In: Roodman, G. (eds) Myeloma Bone Disease. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-60761-554-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-554-5_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-553-8

  • Online ISBN: 978-1-60761-554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics