Skip to main content
Book cover

Lung Cancer pp 331–393Cite as

Lung Cancer Resistance to Chemotherapy

  • Chapter
  • First Online:
  • 2328 Accesses

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Metastatic lung cancer remains incurable by chemotherapy. Several factors contribute to resistance to chemotherapy, including many factors that are adaptations of systems that evolved to protect normal cells from a hostile environment. Tumor cell characteristics, tumor cell interactions with extracellular matrix and stromal cells, and tumor physical characteristics all contribute to resistance. Resistance may arise from gene upregulation or downregulation as a downstream consequence of the oncogene mutations or tumor suppressor gene deletions that underlie tumorigenesis or may also arise due to tumor hypoxia or due to exposure to therapy. Host gene polymorphisms may alter resistance by determining the half-life or enzymatic activity of upregulated resistance factors. Resistance may arise from decreased drug delivery to tumor, impact of extracellular pH on drug uptake, altered drug uptake transporters or cell membrane characteristics, increased drug efflux or detoxification, decreased drug binding, altered drug targets, increased DNA repair, decreased proapoptotic factors, increased antiapoptotic factors, altered cell cycling or mitotic checkpoints, or altered transcription factors. This diversity of resistance mechanisms magnifies the challenges facing us in predicting patient prognosis and in overcoming resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kikuchi T, Daigo Y, Katagiri T et al (2003) Expression profiles of non-small cell lung cancers on cDNA microarrays: identification of genes for prediction of lymph-node metastasis and sensitivity to anti-cancer drugs. Oncogene 22(14):2192-2205

    Article  PubMed  CAS  Google Scholar 

  2. Dong M, Feng FY, Lin C et al (2004) Mechanisms of the drug resistance of a 2′, 2-difluorodeoxycytide (gemcitabine)-resistant variant of the human lung adenocarcinoma cell line. Zhonghua Yi Xue Za Zhi 84(4):323-328

    PubMed  CAS  Google Scholar 

  3. Hsu DS, Balakumaran BS, Acharya CR et al (2007) Pharmacogenomic strategies provide a rational approach to the treatment of cisplatin-resistant patients with advanced cancer. J Clin Oncol 25(28):4350-4357

    Article  PubMed  CAS  Google Scholar 

  4. Yamada Y, Kubota T, Asanuma F et al (1993) The predictability of clinical antitumor effects using two distinctive in vitro chemosensitivity tests: an analysis of true positive cases. Surg Today 23(3):193-199

    Article  PubMed  CAS  Google Scholar 

  5. Ohnoshi T, Hiraki S (1985) In vitro drug-sensitivity test using human tumor clonogenic assay in lung cancer patients. Gan To Kagaku Ryoho 12(8):1582-1587

    PubMed  CAS  Google Scholar 

  6. Yoshimasu T, Oura S, Hirai I et al (2007) Data acquisition for the histoculture drug response assay in lung cancer. J Thorac Cardiovasc Surg 133(2):303-308

    Article  PubMed  CAS  Google Scholar 

  7. Kawamura M, Gika M, Abiko T et al (2007) Clinical evaluation of chemosensitivity testing for patients with unresectable non-small cell lung cancer (NSCLC) using collagen gel droplet embedded culture drug sensitivity test (CD-DST). Cancer Chemother Pharmacol 59(4):507-513

    Article  PubMed  CAS  Google Scholar 

  8. Loprevite M, Favoni RE, de Cupis A et al (1999) Pre-clinical evaluation of new antineoplastic agents in NSCLC cell lines: evidence of histological subtype-dependent cytotoxicity. Int J Oncol 15(4):787-792

    PubMed  CAS  Google Scholar 

  9. Scagliotti GV, Parikh P, von Pawel J et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26(21):3543-3551

    Article  PubMed  CAS  Google Scholar 

  10. Yabuki N, Sakata K, Yamasaki T et al (2007) Gene amplification and expression in lung cancer cells with acquired paclitaxel resistance. Cancer Genet Cytogenet 173(1):1-9

    Article  PubMed  CAS  Google Scholar 

  11. Chen GY, Yang ZY, Hong X, Wang M, Lu L, Zhang CH (2007) Establishment of a multi drug-resistant human lung adenocarcinoma cell line and biological characteristics there of. Zhonghua Yi Xue Za Zhi 87(13):924-926

    PubMed  CAS  Google Scholar 

  12. Stordal B, Davey M (2007) Understanding cisplatin resistance using cellular models. IUBMB Life 59(11):696-699

    Article  PubMed  CAS  Google Scholar 

  13. Stewart DJ, Tomiak E, Shamji FM, Maziak DE, MacLeod P (2004) Phase II study of alternating chemotherapy regimens for advanced non-small cell lung cancer. Lung Cancer 44(2):241-249

    Article  PubMed  Google Scholar 

  14. Stewart DJ, Raaphorst GP, Yau J, Beaubien AR (1996) Active vs. passive resistance, dose-response relationships, high dose chemotherapy, and resistance modulation: a hypothesis. Invest New Drugs 14(2):115-130

    Article  PubMed  CAS  Google Scholar 

  15. Stewart DJ, Chiritescu G, Dahrouge S, Banerjee S, Tomiak EM (2007) Chemotherapy dose-response relationships in non-small cell lung cancer and implied resistance mechanisms. Cancer Treat Rev 33(2):101-137

    Article  PubMed  CAS  Google Scholar 

  16. Nyce J (1989) Drug-induced DNA hypermethylation and drug resistance in human tumors. Cancer Res 49(21):5829-5836

    PubMed  CAS  Google Scholar 

  17. Shen DW, Su A, Liang XJ, Pai-Panandiker A, Gottesman MM (2004) Reduced expression of small GTPases and hypermethylation of the folate binding protein gene in cisplatin-resistant cells. Br J Cancer 91(2):270-276

    PubMed  CAS  Google Scholar 

  18. Puig PE, Guilly MN, Bouchot A et al (2008) Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int 32(9):1031-1043

    Article  PubMed  CAS  Google Scholar 

  19. Carew JS, Nawrocki ST, Cleveland JL (2007) Modulating autophagy for therapeutic benefit. Autophagy 3(5):464-467

    PubMed  CAS  Google Scholar 

  20. Teicher BA, Chatterjee D, Liu JT, Holden SA, Ara G (1993) Protection of bone-marrow granulocyte-macrophage colony-forming units in mice bearing in vivo alkylating-agent-resistant EMT-6 tumors. Cancer Chemother Pharmacol 32(4):315-319

    Article  PubMed  CAS  Google Scholar 

  21. Jereczek-Fossa B, Jassem J, Karnicka-Mlodkowska H et al (1998) Does chemotherapy-induced leukopenia predict a response in small-cell lung cancer? J Cancer Res Clin Oncol 124(2):106-112

    Article  PubMed  CAS  Google Scholar 

  22. Pan JH, Han JX, Wu JM, Sheng LJ, Huang HN (2007) CYP450 polymorphisms predict clinic outcomes to vinorelbine-based chemotherapy in patients with non-small-cell lung cancer. Acta Oncol 46(3):361-366

    Article  PubMed  CAS  Google Scholar 

  23. Han JY, Lim HS, Shin ES et al (2006) Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 24(15):2237-2244

    Article  PubMed  CAS  Google Scholar 

  24. Stewart DJ (2007) Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 63(1):12-31

    Article  PubMed  Google Scholar 

  25. Kristjansen PE, Brown TJ, Shipley LA, Jain RK (1996) Intratumor pharmacokinetics, flow resistance, and metabolism during gemcitabine infusion in ex vivo perfused human small cell lung cancer. Clin Cancer Res 2(2):359-367

    PubMed  CAS  Google Scholar 

  26. Lee SM, Lee CT, Kim YW, Han SK, Shim YS, Yoo CG (2006) Hypoxia confers protection against apoptosis via PI3K/Akt and ERK pathways in lung cancer cells. Cancer Lett 242(2):231-238

    Article  PubMed  CAS  Google Scholar 

  27. Zeng L, Kizaka-Kondoh S, Itasaka S et al (2007) Hypoxia inducible factor-1 influences sensitivity to paclitaxel of human lung cancer cell lines under normoxic conditions. Cancer Sci 98(9):1394-1401

    Article  PubMed  CAS  Google Scholar 

  28. Lund EL, Hansen LT, Kristjansen PE (2005) Augmenting tumor sensitivity to topotecan by transient hypoxia. Cancer Chemother Pharmacol 56(5):473-480

    Article  PubMed  CAS  Google Scholar 

  29. Knight LA, Conroy M, Fernando A, Polak M, Kurbacher CM, Cree IA (2005) Pilot studies of the effect of zoledronic acid (Zometa) on tumor-derived cells ex vivo in the ATP-based tumor chemosensitivity assay. Anticancer Drugs 16(9):969-976

    Article  PubMed  CAS  Google Scholar 

  30. Song X, Liu X, Chi W et al (2006) Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1alpha gene. Cancer Chemother Pharmacol 58(6):776-784

    Article  PubMed  CAS  Google Scholar 

  31. Weinberg RA (2007) The biology of cancer. Garland Science, New York, NY

    Google Scholar 

  32. Cherk MH, Foo SS, Poon AM et al (2006) Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-Fluoromisonidazole and 18F-FDG PET. J Nucl Med 47(12):1921-1926

    PubMed  CAS  Google Scholar 

  33. Felip E, Taron M, Rosell R et al (2005) Clinical significance of hypoxia-inducible factor-1a messenger RNA expression in locally advanced non-small-cell lung cancer after platinum agent and gemcitabine chemotherapy followed by surgery. Clin Lung Cancer 6(5):299-303

    Article  PubMed  CAS  Google Scholar 

  34. Tas F, Duranyildiz D, Oguz H, Camlica H, Yasasever V, Topuz E (2006) Serum vascular endothelial growth factor (VEGF) and bcl-2 levels in advanced stage non-small cell lung cancer. Cancer Invest 24(6):576-580

    Article  PubMed  CAS  Google Scholar 

  35. Ludovini V, Gregorc V, Pistola L et al (2004) Vascular endothelial growth factor, p53, Rb, Bcl-2 expression and response to chemotherapy in advanced non-small cell lung cancer. Lung Cancer 46(1):77-85

    Article  PubMed  Google Scholar 

  36. Laurencot CM, Kennedy KA (1995) Influence of pH on the cytotoxicity of cisplatin in EMT6 mouse mammary tumor cells. Oncol Res 7(7-8):371-379

    PubMed  CAS  Google Scholar 

  37. Mahoney BP, Raghunand N, Baggett B, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66(7):1207-1218

    Article  PubMed  CAS  Google Scholar 

  38. Raghunand N, Martinez-Zaguilan R, Wright SH, Gillies RJ (1999) pH and drug resistance. II. Turnover of acidic vesicles and resistance to weakly basic chemotherapeutic drugs. Biochem Pharmacol 57(9):1047-1058

    Article  PubMed  CAS  Google Scholar 

  39. Matsumura T, Takigawa N, Kiura K et al (2005) Determinants of cisplatin and irinotecan activities in human lung adenocarcinoma cells: evidence of cisplatin accumulation and topoisomerase I activity. In Vivo 19(4):717-721

    PubMed  CAS  Google Scholar 

  40. Shimura M, Saito A, Matsuyama S et al (2005) Element array by scanning X-ray fluorescence microscopy after cis-diamminedichloro-platinum(II) treatment. Cancer Res 65(12):4998-5002

    Article  PubMed  CAS  Google Scholar 

  41. Kawai H, Kiura K, Tabata M et al (2002) Characterization of non-small-cell lung cancer cell lines established before and after chemotherapy. Lung Cancer 35(3):305-314

    Article  PubMed  Google Scholar 

  42. Shellard SA, Fichtinger-Schepman AM, Lazo JS, Hill BT (1993) Evidence of differential cisplatin-DNA adduct formation, removal and tolerance of DNA damage in three human lung carcinoma cell lines. Anticancer Drugs 4(4):491-500

    Article  PubMed  CAS  Google Scholar 

  43. Moritaka T, Kiura K, Ueoka H et al (1998) Cisplatin-resistant human small cell lung cancer cell line shows collateral sensitivity to vinca alkaloids. Anticancer Res 18(2A):927-933

    PubMed  CAS  Google Scholar 

  44. Henness S, Davey MW, Harvie RM, Davey RA (2002) Fractionated irradiation of H69 small-cell lung cancer cells causes stable radiation and drug resistance with increased MRP1, MRP2, and topoisomerase IIalpha expression. Int J Radiat Oncol Biol Phys 54(3):895-902

    Article  PubMed  CAS  Google Scholar 

  45. Popovic P, Wong PTT, Kates M et al (1994) Membrane fluidity and lipids in cisplatin resistant cells with low cisplatin uptake. Proc AACR 35:440

    Google Scholar 

  46. Liang XJ, Shen DW, Gottesman MM (2004) A pleiotropic defect reducing drug accumulation in cisplatin-resistant cells. J Inorg Biochem 98(10):1599-1606

    Article  PubMed  CAS  Google Scholar 

  47. Timmer-Bosscha H, Hospers GA, Meijer C et al (1989) Influence of docosahexaenoic acid on cisplatin resistance in a human small cell lung carcinoma cell line. J Natl Cancer Inst 81(14):1069-1075

    Article  PubMed  CAS  Google Scholar 

  48. Song IS, Savaraj N, Siddik ZH et al (2004) Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol Cancer Ther 3(12):1543-1549

    PubMed  CAS  Google Scholar 

  49. Stewart DJ, Nunez M, Jelinek J et al (2008) Tumor CTR1 copper transporter modulation by decitabine (DAC) and relationship to global DNA methylation and time from prior therapy. Proc ASCO 26(15S):599s (Abstract # 11088)

    Google Scholar 

  50. Stewart DJ (2008) Gefitinib maintenance in stage III non-small-cell lung cancer. J Clin Oncol 26(29):4849-4850 author reply 50-51

    Article  PubMed  Google Scholar 

  51. Bando T, Fujimura M, Kasahara K, Matsuda T (1998) Significance of Na+, K(+)-ATPase on intracellular accumulation of cis-diamminedichloroplatinum(II) in human non-small-cell but not in small-cell lung cancer cell lines. Anticancer Res 18(2A):1085-1089

    PubMed  CAS  Google Scholar 

  52. Bando T, Fujimura M, Kasahara K, Matsuda T (1998) Role of thromboxane receptor on the intracellular accumulation of cis-diamminedichloroplatinum(II) in non-small-cell but not in small-cell lung cancer cell lines. Anticancer Res 18(2A):1079-1084

    PubMed  CAS  Google Scholar 

  53. Fujimura M, Kasahara K, Shirasaki H et al (1999) Up-regulation of ICH-1L protein by thromboxane A2 antagonists enhances cisplatin-induced apoptosis in non-small-cell lung-cancer cell lines. J Cancer Res Clin Oncol 125(7):389-394

    Article  PubMed  CAS  Google Scholar 

  54. Bando T, Fujimura M, Kasahara K et al (1997) Exposure to sorbitol induces resistance to cisplatin in human non-small-cell lung cancer cell lines. Anticancer Res 17(5A):3345-3348

    PubMed  CAS  Google Scholar 

  55. Tokuchi Y, Isobe H, Takekawa H et al (1998) Predicting chemotherapeutic response to small-cell lung cancer of platinum compounds by thallium-201 single-photon emission computerized tomography. Br J Cancer 77(8):1363-1368

    Article  PubMed  CAS  Google Scholar 

  56. Yamamoto Y, Nishiyama Y, Satoh K et al (1998) Comparative study of technetium-99m-sestamibi and thallium-201 SPECT in predicting chemotherapeutic response in small cell lung cancer. J Nucl Med 39(9):1626-1629

    PubMed  CAS  Google Scholar 

  57. Nishiyama Y, Yamamoto Y, Satoh K et al (2000) Comparative study of Tc-99m MIBI and TI-201 SPECT in predicting chemotherapeutic response in non-small-cell lung cancer. Clin Nucl Med 25(5):364-369

    Article  PubMed  CAS  Google Scholar 

  58. Kasahara K, Fujiwara Y, Sugimoto Y et al (1992) Determinants of response to the DNA topoisomerase II inhibitors doxorubicin and etoposide in human lung cancer cell lines. J Natl Cancer Inst 84(2):113-118

    Article  PubMed  CAS  Google Scholar 

  59. Tsujino I, Yamazaki T, Masutani M, Sawada U, Horie T (1999) Effect of Tween-80 on cell killing by etoposide in human lung adenocarcinoma cells. Cancer Chemother Pharmacol 43(1):29-34

    Article  PubMed  CAS  Google Scholar 

  60. Belanger MM, Gaudreau M, Roussel E, Couet J (2004) Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells. Cancer Biol Ther 3(10):954-959

    Article  PubMed  CAS  Google Scholar 

  61. Seve P, Mackey JR, Isaac S et al (2005) cN-II Expression predicts survival in patients receiving gemcitabine for advanced non-small cell lung cancer. Lung Cancer 49(3):363-370

    Article  PubMed  Google Scholar 

  62. Achiwa H, Oguri T, Sato S, Maeda H, Niimi T, Ueda R (2004) Determinants of sensitivity and resistance to gemcitabine: the roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer. Cancer Sci 95(9):753-757

    Article  PubMed  CAS  Google Scholar 

  63. Oguri T, Achiwa H, Muramatsu H et al (2007) The absence of human equilibrative nucleoside transporter 1 expression predicts nonresponse to gemcitabine-containing chemotherapy in non-small cell lung cancer. Cancer Lett 256(1):112-119

    Article  PubMed  CAS  Google Scholar 

  64. Zaman GJ, Lankelma J, van Tellingen O et al (1995) Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci U S A 92(17):7690-7694

    Article  PubMed  CAS  Google Scholar 

  65. Young LC, Campling BG, Cole SP, Deeley RG, Gerlach JH (2001) Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin Cancer Res 7(6):1798-1804

    PubMed  CAS  Google Scholar 

  66. Narasaki F, Oka M, Fukuda M et al (1997) Multidrug resistance-associated protein gene expression and drug sensitivity in human lung cancer cells. Anticancer Res 17(5A):3493-3497

    PubMed  CAS  Google Scholar 

  67. Oguri T, Ozasa H, Uemura T et al (2008) MRP7/ABCC10 expression is a predictive biomarker for the resistance to paclitaxel in non-small cell lung cancer. Mol Cancer Ther 7(5):1150-1155

    Article  PubMed  CAS  Google Scholar 

  68. Gonzalez Manzano R, Versanvoort C, Wright K, Twentyman PR (1996) Rapid recovery of a functional MDR phenotype caused by MRP after a transient exposure to MDR drugs in a revertant human lung cancer cell line. Eur J Cancer 32A(12):2136-2141

    Article  PubMed  CAS  Google Scholar 

  69. Campling BG, Young LC, Baer KA et al (1997) Expression of the MRP and MDR1 multidrug resistance genes in small cell lung cancer. Clin Cancer Res 3(1):115-122

    PubMed  CAS  Google Scholar 

  70. Giaccone G, van Ark-Otte J, Rubio GJ et al (1996) MRP is frequently expressed in human lung-cancer cell lines, in non-small-cell lung cancer and in normal lungs. Int J Cancer 66(6):760-767

    Article  PubMed  CAS  Google Scholar 

  71. Liang Y, O’Driscoll L, McDonnell S et al (2004) Enhanced in vitro invasiveness and drug resistance with altered gene expression patterns in a human lung carcinoma cell line after pulse selection with anticancer drugs. Int J Cancer 111(4):484-493

    Article  PubMed  CAS  Google Scholar 

  72. Oguri T, Achiwa H, Sato S et al (2006) The determinants of sensitivity and acquired resistance to gemcitabine differ in non-small cell lung cancer: a role of ABCC5 in gemcitabine sensitivity. Mol Cancer Ther 5(7):1800-1806

    Article  PubMed  CAS  Google Scholar 

  73. Perez-Soler R, Kemp B, Wu QP et al (2000) Response and determinants of sensitivity to paclitaxel in human non-small cell lung cancer tumors heterotransplanted in nude mice. Clin Cancer Res 6(12):4932-4938

    PubMed  CAS  Google Scholar 

  74. Ikuta K, Takemura K, Sasaki K et al (2005) Expression of multidrug resistance proteins and accumulation of cisplatin in human non-small cell lung cancer cells. Biol Pharm Bull 28(4):707-712

    Article  PubMed  CAS  Google Scholar 

  75. van Ark-Otte J, Samelis G, Rubio G, Lopez Saez JB, Pinedo HM, Giaccone G (1998) Effects of tubulin-inhibiting agents in human lung and breast cancer cell lines with different multidrug resistance phenotypes. Oncol Rep 5(1):249-255

    PubMed  Google Scholar 

  76. Bergman AM, Pinedo HM, Talianidis I et al (2003) Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines. Br J Cancer 88(12):1963-1970

    Article  PubMed  CAS  Google Scholar 

  77. Zhan M, Liu X (1999) Schedule-dependent reversion of cisplatin resistance by 5-fluorouracil in a cisplatin-resistant human lung adenocarcinoma cell line A549DDP. Chin Med J (Engl) 112(4):336-339

    CAS  Google Scholar 

  78. Xu M, Li J, Xia Q (1999) Expression of multidrug resistance-associated protein gene in non-small cell lung cancer. Zhonghua Jie He He Hu Xi Za Zhi 22(5):268-270

    PubMed  CAS  Google Scholar 

  79. Oshika Y, Nakamura M, Tokunaga T et al (1998) Multidrug resistance-associated protein and mutant p53 protein expression in non-small cell lung cancer. Mod Pathol 11(11):1059-1063

    PubMed  CAS  Google Scholar 

  80. Ota E, Abe Y, Oshika Y et al (1995) Expression of the multidrug resistance-associated protein (MRP) gene in non-small-cell lung cancer. Br J Cancer 72(3):550-554

    Article  PubMed  CAS  Google Scholar 

  81. Triller N, Korosec P, Kern I, Kosnik M, Debeljak A (2006) Multidrug resistance in small cell lung cancer: expression of P-glycoprotein, multidrug resistance protein 1 and lung resistance protein in chemo-naive patients and in relapsed disease. Lung Cancer 54(2):235-240

    Article  PubMed  Google Scholar 

  82. Oguri T, Isobe T, Fujitaka K, Ishikawa N, Kohno N (2001) Association between expression of the MRP3 gene and exposure to platinum drugs in lung cancer. Int J Cancer 93(4):584-589

    Article  PubMed  CAS  Google Scholar 

  83. Oguri T, Isobe T, Suzuki T et al (2000) Increased expression of the MRP5 gene is associated with exposure to platinum drugs in lung cancer. Int J Cancer 86(1):95-100

    Article  PubMed  CAS  Google Scholar 

  84. Yeh JJ, Hsu NY, Hsu WH, Tsai CH, Lin CC, Liang JA (2005) Comparison of chemotherapy response with P-glycoprotein, multidrug resistance-related protein-1, and lung resistance-related protein expression in untreated small cell lung cancer. Lung 183(3):177-183

    Article  PubMed  CAS  Google Scholar 

  85. Ushijima R, Takayama K, Izumi M et al (2007) Immunohistochemical expression of MRP2 and clinical resistance to platinum-based chemotherapy in small cell lung cancer. Anticancer Res 27(6C):4351-4358

    PubMed  CAS  Google Scholar 

  86. Yoh K, Ishii G, Yokose T et al (2004) Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin Cancer Res 10(5):1691-1697

    Article  PubMed  CAS  Google Scholar 

  87. Han JY, Lim HS, Yoo YK et al (2007) Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 110(1):138-147

    Article  PubMed  Google Scholar 

  88. Dingemans AC, van Ark-Otte J, Span S et al (2001) Topoisomerase IIalpha and other drug resistance markers in advanced non-small cell lung cancer. Lung Cancer 32(2):117-128

    Article  PubMed  CAS  Google Scholar 

  89. Filipits M, Haddad V, Schmid K et al (2007) Multidrug resistance proteins do not predict benefit of adjuvant chemotherapy in patients with completely resected non-small cell lung cancer: International Adjuvant Lung Cancer Trial Biologic Program. Clin Cancer Res 13(13):3892-3898

    Article  PubMed  CAS  Google Scholar 

  90. Wang J, Liu X, Jiang W (2000) Expression of LRP, MRP and MDR1 in non-small-cell lung cancer and its clinical significance. Zhonghua Zhong Liu Za Zhi 22(4):304-307

    PubMed  CAS  Google Scholar 

  91. Bergman AM, Munch-Petersen B, Jensen PB et al (2001) Collateral sensitivity to gemcitabine (2′, 2′-difluorodeoxycytidine) and cytosine arabinoside of daunorubicin- and VM-26-resistant variants of human small cell lung cancer cell lines. Biochem Pharmacol 61(11):1401-1408

    Article  PubMed  CAS  Google Scholar 

  92. Glisson BS, Alpeter MD (1992) Multidrug resistance in a small cell lung cancer line: rapid selection with etoposide and differential chemosensitization with cyclosporin A. Anticancer Drugs 3(4):359-366

    Article  PubMed  CAS  Google Scholar 

  93. Takigawa N, Ohnoshi T, Ueoka H, Kiura K, Kimura I (1992) Establishment and characterization of an etoposide-resistant human small cell lung cancer cell line. Acta Med Okayama 46(3):203-212

    PubMed  CAS  Google Scholar 

  94. NicAmhlaoibh R, Heenan M, Cleary I et al (1999) Altered expression of mRNAs for apoptosis-modulating proteins in a low level multidrug resistant variant of a human lung carcinoma cell line that also expresses mdr1 mRNA. Int J Cancer 82(3):368-376

    Article  PubMed  CAS  Google Scholar 

  95. Sato H, Fukumoto K, Hada S et al (2007) Enhancing effect of connexin 32 gene on vinorelbine-induced cytotoxicity in A549 lung adenocarcinoma cells. Cancer Chemother Pharmacol 60(3):449-457

    Article  PubMed  CAS  Google Scholar 

  96. Ji D, Deeds SL, Weinstein EJ (2007) A screen of shRNAs targeting tumor suppressor genes to identify factors involved in A549 paclitaxel sensitivity. Oncol Rep 18(6):1499-1505

    PubMed  CAS  Google Scholar 

  97. Kitazaki T, Oka M, Nakamura Y et al (2005) Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 49(3):337-343

    Article  PubMed  Google Scholar 

  98. Bogush TA, Konukhova AV, Ravcheeva AB et al (2003) Inhibition of ABC-transporter(s)’ function in non-small cell lung cancer cells by platinum drugs. Antibiot Khimioter 48(10):11-15

    PubMed  CAS  Google Scholar 

  99. Xia S, Yu SY, Yuan XL, Xu SP (2004) Effects of hypoxia on expression of P-glycoprotein and multidrug resistance protein in human lung adenocarcinoma A549 cell line. Zhonghua Yi Xue Za Zhi 84(8):663-666

    PubMed  CAS  Google Scholar 

  100. Yasuda H, Nakayama K, Watanabe M et al (2006) Nitroglycerin treatment may enhance chemosensitivity to docetaxel and carboplatin in patients with lung adenocarcinoma. Clin Cancer Res 12(22):6748-6757

    Article  PubMed  CAS  Google Scholar 

  101. Oka M, Fukuda M, Sakamoto A et al (1997) The clinical role of MDR1 gene expression in human lung cancer. Anticancer Res 17(1B):721-724

    PubMed  CAS  Google Scholar 

  102. Inoue Y, Gika M, Abiko T et al (2005) Bcl-2 overexpression enhances in vitro sensitivity against docetaxel in non-small cell lung cancer. Oncol Rep 13(2):259-264

    PubMed  CAS  Google Scholar 

  103. Peng ZM, Luo J, Wang WB, Wang XH, Chen JH, Lan SM (2004) Predictive value of drug resistance-related genes expression in neoadjuvant chemotherapy in patients with non-small cell lung cancer of stage III. Ai Zheng 23(8):963-967

    PubMed  Google Scholar 

  104. Kawasaki M, Nakanishi Y, Kuwano K, Takayama K, Kiyohara C, Hara N (1998) Immunohistochemically detected p53 and P-glycoprotein predict the response to chemotherapy in lung cancer. Eur J Cancer 34(9):1352-1357

    Article  PubMed  CAS  Google Scholar 

  105. Kreisholt J, Sorensen M, Jensen PB, Nielsen BS, Andersen CB, Sehested M (1998) Immunohistochemical detection of DNA topoisomerase IIalpha, P-glycoprotein and multidrug resistance protein (MRP) in small-cell and non-small-cell lung cancer. Br J Cancer 77(9):1469-1473

    Article  PubMed  CAS  Google Scholar 

  106. Kao A, Shiun SC, Hsu NY, Sun SS, Lee CC, Lin CC (2001) Technetium-99m methoxyisobutylisonitrile chest imaging for small-cell lung cancer. Relationship to chemotherapy response (six courses of combination of cisplatin and etoposide) and p-glycoprotein or multidrug resistance related protein expression. Ann Oncol 12(11):1561-1566

    Article  PubMed  CAS  Google Scholar 

  107. Yeh JJ, Hsu WH, Huang WT, Wang JJ, Ho ST, Kao A (2003) Technetium-99m tetrofosmin SPECT predicts chemotherapy response in small cell lung cancer. Tumour Biol 24(3):151-155

    Article  PubMed  Google Scholar 

  108. Savaraj N, Wu CJ, Xu R et al (1997) Multidrug-resistant gene expression in small-cell lung cancer. Am J Clin Oncol 20(4):398-403

    Article  PubMed  CAS  Google Scholar 

  109. Tabata M, Ohnoshi T, Ueoka H, Kiura K, Kimura I (1993) MDR1 gene expression and treatment outcome in small cell lung cancer: MDR1 gene expression as an independent prognostic factor. Acta Med Okayama 47(4):243-248

    PubMed  CAS  Google Scholar 

  110. Hsu WH, Yen RF, Kao CH et al (2002) Predicting chemotherapy response to paclitaxel-based therapy in advanced non-small-cell lung cancer (stage IIIb or IV) with a higher T stage (>T2). Technetium-99m methoxyisobutylisonitrile chest single photon emission computed tomography and P-glycoprotein express ion. Oncology 63(2):173-179

    Article  PubMed  CAS  Google Scholar 

  111. Yeh JJ, Hsu WH, Wang JJ, Ho ST, Kao A (2003) Predicting chemotherapy response to paclitaxel-based therapy in advanced non-small-cell lung cancer with P-glycoprotein expression. Respiration 70(1):32-35

    Article  PubMed  CAS  Google Scholar 

  112. Miyatake K, Gemba K, Ueoka H et al (2003) Prognostic significance of mutant p53 protein, P-glycoprotein and glutathione S-transferase-pi in patients with unresectable non-small cell lung cancer. Anticancer Res 23(3C):2829-2836

    PubMed  CAS  Google Scholar 

  113. Brooks KR, To K, Joshi MB et al (2003) Measurement of chemoresistance markers in patients with stage III non-small cell lung cancer: a novel approach for patient selection. Ann Thorac Surg 76(1):187-193 discussion 93

    Article  PubMed  Google Scholar 

  114. Sohn JW, Lee SY, Lee SJ et al (2006) MDR1 polymorphisms predict the response to etoposide-cisplatin combination chemotherapy in small cell lung cancer. Jpn J Clin Oncol 36(3):137-141

    Article  PubMed  Google Scholar 

  115. Pan JH, Han JX, Wu JM, Sheng LJ, Huang HN, Yu QZ (2008) MDR1 single nucleotide polymorphisms predict response to vinorelbine-based chemotherapy in patients with non-small cell lung cancer. Respiration 75(4):380-385

    Article  PubMed  CAS  Google Scholar 

  116. Isla D, Sarries C, Rosell R et al (2004) Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann Oncol 15(8):1194-1203

    Article  PubMed  CAS  Google Scholar 

  117. Dirlik A, Burak Z, Goksel T et al (2002) The role of Tc-99m sestamibi imaging in predicting clinical response to chemotherapy in lung cancer. Ann Nucl Med 16(2):103-108

    Article  PubMed  CAS  Google Scholar 

  118. Kuo TH, Liu FY, Chuang CY, Wu HS, Wang JJ, Kao A (2003) To predict response chemotherapy using technetium-99m tetrofosmin chest images in patients with untreated small cell lung cancer and compare with p-glycoprotein, multidrug resistance related protein-1, and lung resistance-related protein expression. Nucl Med Biol 30(6):627-632

    Article  PubMed  CAS  Google Scholar 

  119. Shih CM, Hsu WH, Huang WT, Wang JJ, Ho ST, Kao A (2003) Usefulness of chest single photon emission computed tomography with technetium-99m methoxyisobutylisonitrile to predict taxol based chemotherapy response in advanced non-small cell lung cancer. Cancer Lett 199(1):99-105

    Article  PubMed  CAS  Google Scholar 

  120. Sasaki M, Kuwabara Y, Ichiya Y et al (1999) Prediction of the chemosensitivity of lung cancer by 99mTc-hexakis-2-methoxyisobutyl isonitrile SPECT. J Nucl Med 40(11):1778-1783

    PubMed  CAS  Google Scholar 

  121. Yuksel M, Cermik TF, Doganay L et al (2002) 99mTc-MIBI SPET in non-small cell lung cancer in relationship with Pgp and prognosis. Eur J Nucl Med Mol Imaging 29(7):876-881

    Article  PubMed  CAS  Google Scholar 

  122. Ceriani L, Giovanella L, Bandera M, Beghe B, Ortelli M, Roncari G (1997) Semi-quantitative assessment of 99Tcm-sestamibi uptake in lung cancer: relationship with clinical response to chemotherapy. Nucl Med Commun 18(11):1087-1097

    Article  PubMed  CAS  Google Scholar 

  123. Bom HS, Lim SC, Kim YC et al (1999) Dipyridamole modulated Tc-99m sestamibi lung SPECT in small cell lung cancer. Clin Nucl Med 24(2):97-101

    Article  PubMed  CAS  Google Scholar 

  124. Kao CH, Ho YJ, Shen YY, Lee JK (1999) Evaluation of chemotherapy response in patients with small cell lung cancer using Technetium-99m-tetrofosmin. Anticancer Res 19(3B):2311-2315

    PubMed  CAS  Google Scholar 

  125. Shih CM, Shiau YC, Wang JJ, Ho ST, Kao A (2003) Using technetium-99m tetrofosmin chest imaging to predict taxol-based chemotherapy response in non-small cell lung cancer but not related to lung resistance protein expression. Lung 181(2):103-111

    Article  PubMed  CAS  Google Scholar 

  126. Fukumoto M, Yoshida D, Hayase N, Kurohara A, Akagi N, Yoshida S (1999) Scintigraphic prediction of resistance to radiation and chemotherapy in patients with lung carcinoma: technetium 99m-tetrofosmin and thallium-201 dual single photon emission computed tomography study. Cancer 86(8):1470-1479

    Article  PubMed  CAS  Google Scholar 

  127. Bom HS, Kim YC, Song HC, Min JJ, Kim JY, Park KO (1998) Technetium-99m-MIBI uptake in small cell lung cancer. J Nucl Med 39(1):91-94

    PubMed  CAS  Google Scholar 

  128. Changlai SP, Tsai CS, Ding HJ, Huang WT, Kao A, Hsu WH (2003) Using technetium-99m methoxyisobutylisonitrile lung single-photon-emission computed tomography to predict response to chemotherapy and compare with P-glycoprotein expression in patients with untreated small cell lung cancer. Med Oncol 20(3):247-253

    Article  PubMed  Google Scholar 

  129. Akgun A, Cok G, Karapolat I, Goksel T, Burak Z (2006) Tc-99m MIBI SPECT in prediction of prognosis in patients with small cell lung cancer. Ann Nucl Med 20(4):269-275

    Article  PubMed  Google Scholar 

  130. Arvelo F, Poupon MF, Bichat F et al (1995) Adding a reverser (verapamil) to combined chemotherapy overrides resistance in small cell lung cancer xenografts. Eur J Cancer 31A(11):1862-1868

    Article  PubMed  CAS  Google Scholar 

  131. Milroy R (1993) A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of Scotland Lung Cancer Research Group, and the Aberdeen Oncology Group. Br J Cancer 68(4):813-818

    Article  PubMed  CAS  Google Scholar 

  132. Giaccone G, Herbst RS, Manegold C et al (2004) Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial - INTACT 1. J Clin Oncol 22(5):777-784

    Article  PubMed  CAS  Google Scholar 

  133. Herbst RS, Giaccone G, Schiller JH et al (2004) Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial - INTACT 2. J Clin Oncol 22(5):785-794

    Article  PubMed  CAS  Google Scholar 

  134. Wood L, Palmer M, Hewitt J et al (1998) Results of a phase III, double-blind, placebo-controlled trial of megestrol acetate modulation of P-glycoprotein-mediated drug resistance in the first-line management of small-cell lung carcinoma. Br J Cancer 77(4):627-631

    Article  PubMed  CAS  Google Scholar 

  135. Hu Y, Lin DM, Cheng SJ, Liu YN, Feng FY (2006) Influences of PC cell-derived growth factor and breast cancer resistance protein on the curative effects of platinum-based chemotherapeutic regimens for advanced non-small cell lung cancer. Zhonghua Yi Xue Za Zhi 86(37):2611-2614

    PubMed  CAS  Google Scholar 

  136. Hu Y, Feng FY, Cheng SJ, Gao YN, Xiao T, Liu YN (2006) Expression of serum breast drug-resistance protein in predicting chemosensitivity of NSCLC. Zhonghua Zhong Liu Za Zhi 28(10):750-752

    PubMed  CAS  Google Scholar 

  137. Stuckler D, Singhal J, Singhal SS, Yadav S, Awasthi YC, Awasthi S (2005) RLIP76 transports vinorelbine and mediates drug resistance in non-small cell lung cancer. Cancer Res 65(3):991-998

    PubMed  CAS  Google Scholar 

  138. Singhal SS, Yadav S, Singhal J, Zajac E, Awasthi YC, Awasthi S (2005) Depletion of RLIP76 sensitizes lung cancer cells to doxorubicin. Biochem Pharmacol 70(3):481-488

    Article  PubMed  CAS  Google Scholar 

  139. Singhal SS, Wickramarachchi D, Singhal J, Yadav S, Awasthi YC, Awasthi S (2006) Determinants of differential doxorubicin sensitivity between SCLC and NSCLC. FEBS Lett 580(9):2258-2264

    Article  PubMed  CAS  Google Scholar 

  140. Berger W, Elbling L, Micksche M (2000) Expression of the major vault protein LRP in human non-small-cell lung cancer cells: activation by short-term exposure to antineoplastic drugs. Int J Cancer 88(2):293-300

    Article  PubMed  CAS  Google Scholar 

  141. Ikeda K, Oka M, Narasaki F et al (1998) Lung resistance-related protein gene expression and drug sensitivity in human gastric and lung cancer cells. Anticancer Res 18(4C):3077-3080

    PubMed  CAS  Google Scholar 

  142. Lee E, Lim SJ (2006) The association of increased lung resistance protein expression with acquired etoposide resistance in human H460 lung cancer cell lines. Arch Pharm Res 29(11):1018-1023

    Article  PubMed  CAS  Google Scholar 

  143. Trussardi A, Poitevin G, Gorisse MC et al (1998) Sequential overexpression of LRP and MRP but not P-gp 170 in VP16-selected A549 adenocarcinoma cells. Int J Oncol 13(3):543-548

    PubMed  CAS  Google Scholar 

  144. Harada T, Ogura S, Yamazaki K et al (2003) Predictive value of expression of P53, Bcl-2 and lung resistance-related protein for response to chemotherapy in non-small cell lung cancers. Cancer Sci 94(4):394-399

    Article  PubMed  CAS  Google Scholar 

  145. Dingemans AM, van Ark-Otte J, van der Valk P et al (1996) Expression of the human major vault protein LRP in human lung cancer samples and normal lung tissues. Ann Oncol 7(6):625-630

    Article  PubMed  CAS  Google Scholar 

  146. Chiou JF, Liang JA, Hsu WH, Wang JJ, Ho ST, Kao A (2003) Comparing the relationship of Taxol-based chemotherapy response with P-glycoprotein and lung resistance-related protein expression in non-small cell lung cancer. Lung 181(5):267-273

    Article  PubMed  CAS  Google Scholar 

  147. Oguri T, Fujiwara Y, Ochiai M et al (1998) Expression of lung-resistance protein gene is not associated with platinum drug exposure in lung cancer. Anticancer Res 18(6A):4159-4162

    PubMed  CAS  Google Scholar 

  148. Nakagawa T, Inoue Y, Kodama H et al (2008) Expression of copper-transporting P-type adenosine triphosphatase (ATP7B) correlates with cisplatin resistance in human non-small cell lung cancer xenografts. Oncol Rep 20(2):265-270

    PubMed  CAS  Google Scholar 

  149. Meijer C, Mulder NH, Hospers GA, Uges DR, de Vries EG (1990) The role of glutathione in resistance to cisplatin in a human small cell lung cancer cell line. Br J Cancer 62(1):72-77

    Article  PubMed  CAS  Google Scholar 

  150. Oshita F, Fujiwara Y, Saijo N (1992) Radiation sensitivities in various anticancer-drug-resistant human lung cancer cell lines and mechanism of radiation cross-resistance in a cisplatin-resistant cell line. J Cancer Res Clin Oncol 119(1):28-34

    Article  PubMed  CAS  Google Scholar 

  151. Curtin NJ, Turner DP (1999) Dipyridamole-mediated reversal of multidrug resistance in MRP over-expressing human lung carcinoma cells in vitro. Eur J Cancer 35(6):1020-1026

    Article  PubMed  CAS  Google Scholar 

  152. Meijer C, Mulder NH, Timmer-Bosscha H, Sluiter WJ, Meersma GJ, de Vries EG (1992) Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res 52(24):6885-6889

    PubMed  CAS  Google Scholar 

  153. Jain N, Lam YM, Pym J, Campling BG (1996) Mechanisms of resistance of human small cell lung cancer lines selected in VP-16 and cisplatin. Cancer 77(9):1797-1808

    Article  PubMed  CAS  Google Scholar 

  154. D’Incalci M, Bonfanti M, Pifferi A et al (1998) The antitumour activity of alkylating agents is not correlated with the levels of glutathione, glutathione transferase and O6-alkylguanine-DNA-alkyltransferase of human tumour xenografts. EORTC SPG and PAMM Groups. Eur J Cancer 34(11):1749-1755

    Article  PubMed  Google Scholar 

  155. Sharma R, Singhal SS, Srivastava SK, Bajpai KK, Frenkel EP, Awasthi S (1993) Glutathione and glutathione linked enzymes in human small cell lung cancer cell lines. Cancer Lett 75(2):111-119

    Article  PubMed  CAS  Google Scholar 

  156. Kasahara K, Fujiwara Y, Nishio K et al (1991) Metallothionein content correlates with the sensitivity of human small cell lung cancer cell lines to cisplatin. Cancer Res 51(12):3237-3242

    PubMed  CAS  Google Scholar 

  157. Nishi M, Abe Y, Fujimori S et al (2005) The modifier subunit of glutamate cysteine ligase relates to cisplatin resistance in human small cell lung cancer xenografts in vivo. Oncol Rep 14(2):421-424

    PubMed  CAS  Google Scholar 

  158. Fujimori S, Abe Y, Nishi M et al (2004) The subunits of glutamate cysteine ligase enhance cisplatin resistance in human non-small cell lung cancer xenografts in vivo. Int J Oncol 25(2):413-418

    PubMed  CAS  Google Scholar 

  159. Inoue Y, Tomisawa M, Yamazaki H et al (2003) The modifier subunit of glutamate cysteine ligase (GCLM) is a molecular target for amelioration of cisplatin resistance in lung cancer. Int J Oncol 23(5):1333-1339

    PubMed  CAS  Google Scholar 

  160. Ogawa J, Iwazaki M, Inoue H, Koide S, Shohtsu A (1993) Immunohistochemical study of glutathione-related enzymes and proliferative antigens in lung cancer. Relation to cisplatin sensitivity. Cancer 71(7):2204-2209

    Article  PubMed  CAS  Google Scholar 

  161. Hida T, Ariyoshi Y, Kuwabara M et al (1993) Glutathione S-transferase pi levels in a panel of lung cancer cell lines and its relation to chemo-radiosensitivity. Jpn J Clin Oncol 23(1):14-19

    PubMed  CAS  Google Scholar 

  162. Nakagawa K, Yokota J, Wada M et al (1988) Levels of glutathione S transferase pi mRNA in human lung cancer cell lines correlate with the resistance to cisplatin and carboplatin. Jpn J Cancer Res 79(3):301-304

    Article  PubMed  CAS  Google Scholar 

  163. Awasthi S, Sharma R, Singhal SS, Herzog NK, Chaubey M, Awasthi YC (1994) Modulation of cisplatin cytotoxicity by sulphasalazine. Br J Cancer 70(2):190-194

    Article  PubMed  CAS  Google Scholar 

  164. Inoue T, Ishida T, Sugio K, Maehara Y, Sugimachi K (1995) Glutathione S transferase Pi is a powerful indicator in chemotherapy of human lung squamous-cell carcinoma. Respiration 62(4):223-227

    Article  PubMed  CAS  Google Scholar 

  165. Miyara H, Hida T, Nishida K et al (1996) Modification of chemo-radiosensitivity of a human lung cancer cell line by introduction of the glutathione S-transferase pi gene. Jpn J Clin Oncol 26(1):1-5

    Article  PubMed  CAS  Google Scholar 

  166. Nakanishi Y, Kawasaki M, Bai F et al (1999) Expression of p53 and glutathione S-transferase-pi relates to clinical drug resistance in non-small cell lung cancer. Oncology 57(4):318-323

    Article  PubMed  CAS  Google Scholar 

  167. Arai T, Yasuda Y, Takaya T et al (2000) Immunohistochemical expression of glutathione transferase-pi in untreated primary non-small-cell lung cancer. Cancer Detect Prev 24(3):252-257

    PubMed  CAS  Google Scholar 

  168. Unsal M, Akpolat I, Kandemir B (2003) Glutathione-S transferase-pi expression in non small cell lung cancer in the assessment of response to chemotherapy. Saudi Med J 24(5):493-498

    PubMed  Google Scholar 

  169. Lu C, Spitz MR, Zhao H et al (2006) Association between glutathione S-transferase pi polymorphisms and survival in patients with advanced nonsmall cell lung carcinoma. Cancer 106(2):441-447

    Article  PubMed  CAS  Google Scholar 

  170. Booton R, Ward T, Heighway J, Ashcroft L, Morris J, Thatcher N (2006) Glutathione-S-transferase P1 isoenzyme polymorphisms, platinum-based chemotherapy, and non-small cell lung cancer. J Thorac Oncol 1(7):679-683

    Article  PubMed  Google Scholar 

  171. Shimoda R, Achanzar WE, Qu W et al (2003) Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci 73(2):294-300

    Article  PubMed  CAS  Google Scholar 

  172. Matsumoto Y, Oka M, Sakamoto A et al (1997) Enhanced expression of metallothionein in human non-small-cell lung carcinomas following chemotherapy. Anticancer Res 17(5B):3777-3780

    PubMed  CAS  Google Scholar 

  173. Joseph MG, Banerjee D, Kocha W, Feld R, Stitt LW, Cherian MG (2001) Metallothionein expression in patients with small cell carcinoma of the lung: correlation with other molecular markers and clinical outcome. Cancer 92(4):836-842

    Article  PubMed  CAS  Google Scholar 

  174. Wang HW, Lin CP, Chiu JH et al (2007) Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. Int J Cancer 120(9):2019-2027

    Article  PubMed  CAS  Google Scholar 

  175. Hung JJ, Chow KC, Wang HW, Wang LS (2006) Expression of dihydrodiol dehydrogenase and resistance to chemotherapy and radiotherapy in adenocarcinoma cells of lung. Anticancer Res 26(4B):2949-2955

    PubMed  CAS  Google Scholar 

  176. Deng HB, Adikari M, Parekh HK, Simpkins H (2004) Ubiquitous induction of resistance to platinum drugs in human ovarian, cervical, germ-cell and lung carcinoma tumor cells overexpressing isoforms 1 and 2 of dihydrodiol dehydrogenase. Cancer Chemother Pharmacol 54(4):301-307

    Article  PubMed  CAS  Google Scholar 

  177. Smith PG, Marshman E, Newell DR, Curtin NJ (2000) Dipyridamole potentiates the in vitro activity of MTA (LY231514) by inhibition of thymidine transport. Br J Cancer 82(4):924-930

    Article  PubMed  CAS  Google Scholar 

  178. Chattopadhyay S, Tamari R, Min SH, Zhao R, Tsai E, Goldman ID (2007) Commentary: a case for minimizing folate supplementation in clinical regimens with pemetrexed based on the marked sensitivity of the drug to folate availability. Oncologist 12(7):808-815

    Article  PubMed  CAS  Google Scholar 

  179. Kropotov A, Gogvadze V, Shupliakov O et al (2006) Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells. Exp Cell Res 312(15):2806-2815

    Article  PubMed  CAS  Google Scholar 

  180. Tibaldi C, Giovannetti E, Vasile E et al (2008) Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res 14(6):1797-1803

    Article  PubMed  CAS  Google Scholar 

  181. Giovannetti E, Mey V, Nannizzi S et al (2005) Cellular and pharmacogenetics foundation of synergistic interaction of pemetrexed and gemcitabine in human non-small-cell lung cancer cells. Mol Pharmacol 68(1):110-118

    PubMed  CAS  Google Scholar 

  182. Bergman AM, Pinedo HM, Peters GJ (2001) Steroids affect collateral sensitivity to gemcitabine of multidrug-resistant human lung cancer cells. Eur J Pharmacol 416(1-2):19-24

    Article  PubMed  CAS  Google Scholar 

  183. Chau Q, Stewart DJ (1999) Cisplatin efflux, binding and intracellular pH in the HTB56 human lung adenocarcinoma cell line and the E-8/0.7 cisplatin-resistant variant. Cancer Chemother Pharmacol 44(3):193-202

    Article  PubMed  CAS  Google Scholar 

  184. Huang Z, Huang Y (2005) The change of intracellular pH is involved in the cisplatin-resistance of human lung adenocarcinoma A549/DDP cells. Cancer Invest 23(1):26-32

    Article  PubMed  CAS  Google Scholar 

  185. Nishio K, Nakamura T, Koh Y, Kanzawa F, Tamura T, Saijo N (2001) Oncoprotein 18 overexpression increases the sensitivity to vindesine in the human lung carcinoma cells. Cancer 91(8):1494-1499

    Article  PubMed  CAS  Google Scholar 

  186. Rosell R, Scagliotti G, Danenberg KD et al (2003) Transcripts in pretreatment biopsies from a three-arm randomized trial in metastatic non-small-cell lung cancer. Oncogene 22(23):3548-3553

    Article  PubMed  CAS  Google Scholar 

  187. Wehbe H, Kearney CM, Pinney KG (2005) Combretastatin A-4 resistance in H460 human lung carcinoma demonstrates distinctive alterations in beta-tubulin isotype expression. Anticancer Res 25(6B):3865-3870

    PubMed  CAS  Google Scholar 

  188. Chang JT, Chang GC, Ko JL et al (2006) Induction of tubulin by docetaxel is associated with p53 status in human non small cell lung cancer cell lines. Int J Cancer 118(2):317-325

    Article  PubMed  CAS  Google Scholar 

  189. Han EK, Gehrke L, Tahir SK et al (2000) Modulation of drug resistance by alpha-tubulin in paclitaxel-resistant human lung cancer cell lines. Eur J Cancer 36(12):1565-1571

    Article  PubMed  CAS  Google Scholar 

  190. Chan MW, Chiang CD, Song EJ, Yang VC (1998) Effects of cytoskeletal inhibitors on the accumulation of vincristine in a resistant human lung cancer cell line with high level of polymerized tubulin. Cancer Biochem Biophys 16(4):347-363

    PubMed  CAS  Google Scholar 

  191. Goncalves A, Braguer D, Kamath K et al (2001) Resistance to taxol in lung cancer-cells associated with increased microtubule dynamics. Proc Natl Acad Sci U S A 98(20):11737-11742

    Article  PubMed  CAS  Google Scholar 

  192. Ohta S, Nishio K, Kubota N et al (1994) Characterization of a taxol-resistant human small-cell lung cancer cell line. Jpn J Cancer Res 85(3):290-297

    Article  PubMed  CAS  Google Scholar 

  193. Gan PP, Pasquier E, Kavallaris M (2007) Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer Res 67(19):9356-9363

    Article  PubMed  CAS  Google Scholar 

  194. Nishio K, Arioka H, Ishida T et al (1995) Enhanced interaction between tubulin and microtubule-associated protein 2 via inhibition of MAP kinase and CDC2 kinase by paclitaxel. Int J Cancer 63(5):688-693

    Article  PubMed  CAS  Google Scholar 

  195. Kraus AC, Ferber I, Bachmann SO et al (2002) In vitro chemo- and radio-resistance in small cell lung cancer correlates with cell adhesion and constitutive activation of AKT and MAP kinase pathways. Oncogene 21(57):8683-8695

    Article  PubMed  CAS  Google Scholar 

  196. Zhou Q, Bai M, Su Y (2004) Effect of antisense RNA targeting polo-like kinase 1 on cell cycle and proliferation in A549 cells. Chin Med J (Engl) 117(11):1642-1649

    CAS  Google Scholar 

  197. Dumontet C, Isaac S, Souquet PJ et al (2005) Expression of class III beta tubulin in non-small cell lung cancer is correlated with resistance to taxane chemotherapy. Bull Cancer 92(2):E25-E30

    PubMed  Google Scholar 

  198. Tsurutani J, Komiya T, Uejima H et al (2002) Mutational analysis of the beta-tubulin gene in lung cancer. Lung Cancer 35(1):11-16

    Article  PubMed  Google Scholar 

  199. Rosell R, Felip E (2001) Predicting response to paclitaxel/carboplatin-based therapy in non-small cell lung cancer. Semin Oncol 28(4 Suppl 14):37-44

    Article  PubMed  CAS  Google Scholar 

  200. Seve P, Lai R, Ding K et al (2007) Class III beta-tubulin expression and benefit from adjuvant cisplatin/vinorelbine chemotherapy in operable non-small cell lung cancer: analysis of NCIC JBR.10. Clin Cancer Res 13(3):994-999

    Article  PubMed  CAS  Google Scholar 

  201. Seve P, Mackey J, Isaac S et al (2005) Class III beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther 4(12):2001-2007

    Article  PubMed  CAS  Google Scholar 

  202. Seve P, Isaac S, Tredan O et al (2005) Expression of class III β-tubulin is predictive of patient outcome in patients with non-small cell lung cancer receiving vinorelbine-based chemotherapy. Clin Cancer Res 11(15):5481-5486

    Article  PubMed  CAS  Google Scholar 

  203. Yamazaki K, Isobe H, Hanada T et al (1997) Topoisomerase II alpha content and topoisomerase II catalytic activity cannot explain drug sensitivities to topoisomerase II inhibitors in lung cancer cell lines. Cancer Chemother Pharmacol 39(3):192-198

    Article  PubMed  CAS  Google Scholar 

  204. Evans CD, Mirski SE, Danks MK, Cole SP (1994) Reduced levels of topoisomerase II alpha and II beta in a multidrug-resistant lung-cancer cell line. Cancer Chemother Pharmacol 34(3):242-248

    Article  PubMed  CAS  Google Scholar 

  205. Giaccone G, Gazdar AF, Beck H, Zunino F, Capranico G (1992) Multidrug sensitivity phenotype of human lung cancer cells associated with topoisomerase II expression. Cancer Res 52(7):1666-1674

    PubMed  CAS  Google Scholar 

  206. de Jong S, Zijlstra JG, de Vries EG, Mulder NH (1990) Reduced DNA topoisomerase II activity and drug-induced DNA cleavage activity in an adriamycin-resistant human small cell lung carcinoma cell line. Cancer Res 50(2):304-309

    PubMed  Google Scholar 

  207. de Lucio B, Manuel V, Barrera-Rodriguez R (2005) Characterization of human NSCLC cell line with innate etoposide-resistance mediated by cytoplasmic localization of topoisomerase II alpha. Cancer Sci 96(11):774-783

    Article  PubMed  CAS  Google Scholar 

  208. Wessel I, Jensen PB, Falck J, Mirski SE, Cole SP, Sehested M (1997) Loss of amino acids 1490Lys-Ser-Lys1492 in the COOH-terminal region of topoisomerase IIalpha in human small cell lung cancer cells selected for resistance to etoposide results in an extranuclear enzyme localization. Cancer Res 57(20):4451-4454

    PubMed  CAS  Google Scholar 

  209. Eijdems EW, de Haas M, Timmerman AJ et al (1995) Reduced topoisomerase II activity in multidrug-resistant human non-small cell lung cancer cell lines. Br J Cancer 71(1):40-47

    Article  PubMed  CAS  Google Scholar 

  210. Guinee DG Jr, Holden JA, Benfield JR et al (1996) Comparison of DNA topoisomerase II alpha expression in small cell and nonsmall cell carcinoma of the lung. In search of a mechanism of chemotherapeutic response. Cancer 78(4):729-735

    Article  PubMed  Google Scholar 

  211. Dingemans AM, Witlox MA, Stallaert RA, van der Valk P, Postmus PE, Giaccone G (1999) Expression of DNA topoisomerase IIalpha and topoisomerase IIbeta genes predicts survival and response to chemotherapy in patients with small cell lung cancer. Clin Cancer Res 5(8):2048-2058

    PubMed  CAS  Google Scholar 

  212. Tsai CM, Chang KT, Li L, Perng RP, Yang LY (2000) Interrelationships between cellular nucleotide excision repair, cisplatin cytotoxicity, HER-2/neu gene expression, and epidermal growth factor receptor level in non-small cell lung cancer cells. Jpn J Cancer Res 91(2):213-222

    Article  PubMed  CAS  Google Scholar 

  213. Takenaka T, Yoshino I, Kouso H et al (2007) Combined evaluation of Rad51 and ERCC1 expressions for sensitivity to platinum agents in non-small cell lung cancer. Int J Cancer 121(4):895-900

    Article  PubMed  CAS  Google Scholar 

  214. Shimizu J, Horio Y, Osada H et al (2008) mRNA expression of RRM1, ERCC1 and ERCC2 is not associated with chemosensitivity to cisplatin, carboplatin and gemcitabine in human lung cancer cell lines. Respirology 13(4):510-517

    Article  PubMed  Google Scholar 

  215. Olaussen KA, Dunant A, Fouret P et al (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355(10):983-991

    Article  PubMed  CAS  Google Scholar 

  216. Huang PY, Liang XM, Lin SX, Luo RZ, Hou JH, Zhang L (2004) Correlation analysis among expression of ERCC-1, metallothionein, p53 and platinum resistance and prognosis in advanced non-small cell lung cancer. Ai Zheng 23(7):845-850

    PubMed  CAS  Google Scholar 

  217. Hwang IG, Ahn MJ, Park BB et al (2008) ERCC1 expression as a prognostic marker in N2(+) nonsmall-cell lung cancer patients treated with platinum-based neoadjuvant concurrent chemoradiotherapy. Cancer 113(6):1379-1386

    Article  PubMed  CAS  Google Scholar 

  218. Wachters FM, Wong LS, Timens W, Kampinga HH, Groen HJ (2005) ERCC1, hRad51, and BRCA1 protein expression in relation to tumour response and survival of stage III/IV NSCLC patients treated with chemotherapy. Lung Cancer 50(2):211-219

    Article  PubMed  CAS  Google Scholar 

  219. Booton R, Ward T, Ashcroft L, Morris J, Heighway J, Thatcher N (2007) ERCC1 mRNA expression is not associated with response and survival after platinum-based chemotherapy regimens in advanced non-small cell lung cancer. J Thorac Oncol 2(10):902-906

    Article  PubMed  Google Scholar 

  220. Azuma K, Komohara Y, Sasada T et al (2007) Excision repair cross-complementation group 1 predicts progression-free and overall survival in non-small cell lung cancer patients treated with platinum-based chemotherapy. Cancer Sci 98(9):1336-1343

    Article  PubMed  CAS  Google Scholar 

  221. Lord RV, Brabender J, Gandara D et al (2002) Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 8(7):2286-2291

    PubMed  CAS  Google Scholar 

  222. Bepler G, Kusmartseva I, Sharma S et al (2006) RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer. J Clin Oncol 24(29):4731-4737

    Article  PubMed  CAS  Google Scholar 

  223. Ceppi P, Volante M, Novello S et al (2006) ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Ann Oncol 17(12):1818-1825

    Article  PubMed  CAS  Google Scholar 

  224. Fujii T, Toyooka S, Ichimura K et al (2008) ERCC1 protein expression predicts the response of cisplatin-based neoadjuvant chemotherapy in non-small-cell lung cancer. Lung Cancer 59(3):377-384

    Article  PubMed  Google Scholar 

  225. Cobo M, Isla D, Massuti B et al (2007) Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol 25(19):2747-2754

    Article  PubMed  CAS  Google Scholar 

  226. Su D, Ma S, Liu P et al (2007) Genetic polymorphisms and treatment response in advanced non-small cell lung cancer. Lung Cancer 56(2):281-288

    Article  PubMed  Google Scholar 

  227. Ryu JS, Hong YC, Han HS et al (2004) Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer 44(3):311-316

    Article  PubMed  Google Scholar 

  228. Park SY, Hong YC, Kim JH et al (2006) Effect of ERCC1 polymorphisms and the modification by smoking on the survival of non-small cell lung cancer patients. Med Oncol 23(4):489-498

    Article  PubMed  CAS  Google Scholar 

  229. Zhou W, Gurubhagavatula S, Liu G et al (2004) Excision repair cross-complementation group 1 polymorphism predicts overall survival in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res 10(15):4939-4943

    Article  PubMed  CAS  Google Scholar 

  230. Wu X, Lu C, Ye Y et al (2008) Germline genetic variations in drug action pathways predict clinical outcomes in advanced lung cancer treated with platinum-based chemotherapy. Pharmacogenet Genomics 18(11):955-965

    Article  PubMed  CAS  Google Scholar 

  231. Ceppi P, Longo M, Volante M et al (2008) Excision repair cross complementing-1 and topoisomerase IIalpha gene expression in small-cell lung cancer patients treated with platinum and etoposide: a retrospective study. J Thorac Oncol 3(6):583-589

    Article  PubMed  Google Scholar 

  232. Lee HW, Han JH, Kim JH et al (2008) Expression of excision repair cross-complementation group 1 protein predicts poor outcome in patients with small cell lung cancer. Lung Cancer 59(1):95-104

    Article  PubMed  Google Scholar 

  233. Fan W, Zhang HL, Wu XM (2005) Enhancement effect of nucleotide excision repair gene xeroderma pigmentosun group a antisense RNA on sensitivity of human lung adenocarcinoma cell line A549 to cisplatin. Ai Zheng 24(4):403-407

    PubMed  CAS  Google Scholar 

  234. Yuan P, Miao XP, Zhang XM et al (2005) Correlation of genetic polymorphisms in nucleotide excision repair system to sensitivity of advanced non-small cell lung cancer patients to platinum-based chemotherapy. Ai Zheng 24(12):1510-1513

    PubMed  CAS  Google Scholar 

  235. Gurubhagavatula S, Liu G, Park S et al (2004) XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol 22(13):2594-2601

    Article  PubMed  CAS  Google Scholar 

  236. Booton R, Ward T, Heighway J et al (2006) Xeroderma pigmentosum group D haplotype predicts for response, survival, and toxicity after platinum-based chemotherapy in advanced nonsmall cell lung cancer. Cancer 106(11):2421-2427

    Article  PubMed  CAS  Google Scholar 

  237. Yuan P, Miao XP, Zhang XM et al (2006) XRCC1 and XPD genetic polymorphisms predict clinical responses to platinum-based chemotherapy in advanced non-small cell lung cancer. Zhonghua Zhong Liu Za Zhi 28(3):196-199

    PubMed  CAS  Google Scholar 

  238. Giachino DF, Ghio P, Regazzoni S et al (2007) Prospective assessment of XPD Lys751Gln and XRCC1 Arg399Gln single nucleotide polymorphisms in lung cancer. Clin Cancer Res 13(10):2876-2881

    Article  PubMed  CAS  Google Scholar 

  239. Kwon WS, Rha SY, Choi YH et al (2006) Ribonucleotide reductase M1 (RRM1) 2464G > A polymorphism shows an association with gemcitabine chemosensitivity in cancer cell lines. Pharmacogenet Genomics 16(6):429-438

    Article  PubMed  CAS  Google Scholar 

  240. Tooker P, Yen WC, Ng SC, Negro-Vilar A, Hermann TW (2007) Bexarotene (LGD1069, Targretin), a selective retinoid X receptor agonist, prevents and reverses gemcitabine resistance in NSCLC cells by modulating gene amplification. Cancer Res 67(9):4425-4433

    Article  PubMed  CAS  Google Scholar 

  241. Rosell R, Felip E, Taron M et al (2004) Gene expression as a predictive marker of outcome in stage IIB-IIIA-IIIB non-small cell lung cancer after induction gemcitabine-based chemotherapy followed by resectional surgery. Clin Cancer Res 10(12 Pt 2):4215s-4219s

    Article  PubMed  CAS  Google Scholar 

  242. Souglakos J, Boukovinas I, Taron M et al (2008) Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine. Br J Cancer 98(10):1710-1715

    Article  PubMed  CAS  Google Scholar 

  243. Rosell R, Danenberg KD, Alberola V et al (2004) Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res 10(4):1318-1325

    Article  PubMed  CAS  Google Scholar 

  244. Kim SO, Jeong JY, Kim MR et al (2008) Efficacy of gemcitabine in patients with non-small cell lung cancer according to promoter polymorphisms of the ribonucleotide reductase M1 gene. Clin Cancer Res 14(10):3083-3088

    Article  PubMed  CAS  Google Scholar 

  245. Simon G, Sharma A, Li X et al (2007) Feasibility and efficacy of molecular analysis-directed individualized therapy in advanced non-small-cell lung cancer. J Clin Oncol 25(19):2741-2746

    Article  PubMed  CAS  Google Scholar 

  246. Hansen LT, Lundin C, Spang-Thomsen M, Petersen LN, Helleday T (2003) The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer. Int J Cancer 105(4):472-479

    Article  PubMed  CAS  Google Scholar 

  247. Ko JC, Ciou SC, Cheng CM et al (2008) Involvement of Rad51 in cytotoxicity induced by epidermal growth factor receptor inhibitor (gefitinib, IressaR) and chemotherapeutic agents in human lung cancer cells. Carcinogenesis 29(7):1448-1458

    Article  PubMed  CAS  Google Scholar 

  248. Rosell R, Cuello M, Cecere F et al (2006) Usefulness of predictive tests for cancer treatment. Bull Cancer 93(8):E101-E108

    PubMed  CAS  Google Scholar 

  249. Rosell R, Skrzypski M, Jassem E et al (2007) BRCA1: a novel prognostic factor in resected non-small-cell lung cancer. PLoS ONE 2(11):e1129

    Article  PubMed  CAS  Google Scholar 

  250. Taron M, Rosell R, Felip E et al (2004) BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer. Hum Mol Genet 13(20):2443-2449

    Article  PubMed  CAS  Google Scholar 

  251. Ferrer M, Span SW, Vischioni B et al (2005) FANCD2 expression in advanced non-small-cell lung cancer and response to platinum-based chemotherapy. Clin Lung Cancer 6(4):250-254

    Article  PubMed  CAS  Google Scholar 

  252. Ueda K, Kawashima H, Ohtani S et al (2006) The 3p21.3 tumor suppressor NPRL2 plays an important role in cisplatin-induced resistance in human non-small-cell lung cancer cells. Cancer Res 66(19):9682-9690

    Article  PubMed  CAS  Google Scholar 

  253. Scartozzi M, Franciosi V, Campanini N et al (2006) Mismatch repair system (MMR) status correlates with response and survival in non-small cell lung cancer (NSCLC) patients. Lung Cancer 53(1):103-109

    Article  PubMed  Google Scholar 

  254. Kinzel B, Hall J, Natt F, Weiler J, Cohen D (2002) Downregulation of Hus1 by antisense oligonucleotides enhances the sensitivity of human lung carcinoma cells to cisplatin. Cancer 94(6):1808-1814

    Article  PubMed  CAS  Google Scholar 

  255. Takizawa M, Kawakami K, Obata T et al (2006) In vitro sensitivity to platinum-derived drugs is associated with expression of thymidylate synthase and dihydropyrimidine dehydrogenase in human lung cancer. Oncol Rep 15(6):1533-1539

    PubMed  CAS  Google Scholar 

  256. Arioka H, Nishio K, Ishida T et al (1999) Enhancement of cisplatin sensitivity in high mobility group 2 cDNA-transfected human lung cancer cells. Jpn J Cancer Res 90(1):108-115

    Article  PubMed  CAS  Google Scholar 

  257. Andriani F, Perego P, Carenini N, Sozzi G, Roz L (2006) Increased sensitivity to cisplatin in non-small cell lung cancer cell lines after FHIT gene transfer. Neoplasia 8(1):9-17

    Article  PubMed  CAS  Google Scholar 

  258. Hu B, Wang H, Wang X et al (2005) Fhit and CHK1 have opposing effects on homologous recombination repair. Cancer Res 65(19):8613-8616

    Article  PubMed  CAS  Google Scholar 

  259. Almeida GM, Duarte TL, Farmer PB, Steward WP, Jones GD (2008) Multiple end-point analysis reveals cisplatin damage tolerance to be a chemoresistance mechanism in a NSCLC model: implications for predictive testing. Int J Cancer 122(8):1810-1819

    Article  PubMed  CAS  Google Scholar 

  260. Corn PG, El-Deiry WS (2007) Microarray analysis of p53-dependent gene expression in response to hypoxia and DNA damage. Cancer Biol Ther 6(12):1858-1866

    Article  PubMed  CAS  Google Scholar 

  261. Bergqvist M, Brattstrom D, Gullbo J, Hesselius P, Brodin O, Wagenius G (2003) p53 Status and its in vitro relationship to radiosensitivity and chemosensitivity in lung cancer. Anticancer Res 23(2B):1207-1212

    PubMed  Google Scholar 

  262. Wang T, Xu J, Zhong NS (2005) Relationship between the acquired multi-drug resistance of human large cell lung cancer cell line NCI-H460 by cisplatin selection and p53 mutation. Zhonghua Jie He He Hu Xi Za Zhi 28(2):102-107

    PubMed  Google Scholar 

  263. Brattstrom D, Bergqvist M, Lamberg K et al (1998) Complete sequence of p53 gene in 20 patients with lung cancer: comparison with chemosensitivity and immunohistochemistry. Med Oncol 15(4):255-261

    Article  PubMed  CAS  Google Scholar 

  264. Blandino G, Levine AJ, Oren M (1999) Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18(2):477-485

    Article  PubMed  CAS  Google Scholar 

  265. Lai SL, Perng RP, Hwang J (2000) p53 Gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci 7(1):64-70

    Article  PubMed  CAS  Google Scholar 

  266. Inoue A, Narumi K, Matsubara N et al (2000) Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett 157(1):105-112

    Article  PubMed  CAS  Google Scholar 

  267. Wang Y, Blandino G, Oren M, Givol D (1998) Induced p53 expression in lung cancer cell line promotes cell senescence and differentially modifies the cytotoxicity of anti-cancer drugs. Oncogene 17(15):1923-1930

    Article  PubMed  CAS  Google Scholar 

  268. Ling YH, Zou Y, Perez-Soler R (2000) Induction of senescence-like phenotype and loss of paclitaxel sensitivity after wild-type p53 gene transfection of p53-null human non-small cell lung cancer H358 cells. Anticancer Res 20(2A):693-702

    PubMed  CAS  Google Scholar 

  269. He Y, Fan SZ, Jiang YG et al (2004) Effect of p73 gene on chemosensitivity of human lung adenocarcinoma cells H1299. Ai Zheng 23(6):645-649

    PubMed  CAS  Google Scholar 

  270. Mori T, Okamoto H, Takahashi N, Ueda R, Okamoto T (2000) Aberrant overexpression of 53BP2 mRNA in lung cancer cell lines. FEBS Lett 465(2-3):124-128

    Article  PubMed  CAS  Google Scholar 

  271. Vogt U, Zaczek A, Klinke F, Granetzny A, Bielawski K, Falkiewicz B (2002) p53 Gene status in relation to ex vivo chemosensitivity of non-small cell lung cancer. J Cancer Res Clin Oncol 128(3):141-147

    Article  PubMed  CAS  Google Scholar 

  272. Tsai CM, Chang KT, Wu LH et al (1996) Correlations between intrinsic chemoresistance and HER-2/neu gene expression, p53 gene mutations, and cell proliferation characteristics in non-small cell lung cancer cell lines. Cancer Res 56(1):206-209

    PubMed  CAS  Google Scholar 

  273. Safran H, King T, Choy H et al (1996) p53 Mutations do not predict response to paclitaxel/radiation for nonsmall cell lung carcinoma. Cancer 78(6):1203-1210

    Article  PubMed  CAS  Google Scholar 

  274. Kandioler-Eckersberger D, Kappel S, Mittlbock M et al (1999) The TP53 genotype but not immunohistochemical result is predictive of response to cisplatin-based neoadjuvant therapy in stage III non-small cell lung cancer. J Thorac Cardiovasc Surg 117(4):744-750

    Article  PubMed  CAS  Google Scholar 

  275. d’Amato TA, Landreneau RJ, Ricketts W et al (2007) Chemotherapy resistance and oncogene expression in non-small cell lung cancer. J Thorac Cardiovasc Surg 133(2):352-363

    Article  PubMed  CAS  Google Scholar 

  276. Higashiyama M, Kodama K, Yokouchi H et al (1998) Immunohistochemical p53 protein status in nonsmall cell lung cancer is a promising indicator in determining in vitro chemosensitivity to some anticancer drugs. J Surg Oncol 68(1):19-24

    Article  PubMed  CAS  Google Scholar 

  277. Kandioler D, Stamatis G, Eberhardt W et al (2008) Growing clinical evidence for the interaction of the p53 genotype and response to induction chemotherapy in advanced non-small cell lung cancer. J Thorac Cardiovasc Surg 135(5):1036-1041

    Article  PubMed  CAS  Google Scholar 

  278. Gajra A, Tatum AH, Newman N et al (2002) The predictive value of neuroendocrine markers and p53 for response to chemotherapy and survival in patients with advanced non-small cell lung cancer. Lung Cancer 36(2):159-165

    Article  PubMed  Google Scholar 

  279. Rusch V, Klimstra D, Venkatraman E et al (1995) Aberrant p53 expression predicts clinical resistance to cisplatin-based chemotherapy in locally advanced non-small cell lung cancer. Cancer Res 55(21):5038-5042

    PubMed  CAS  Google Scholar 

  280. Higashiyama M, Miyoshi Y, Kodama K et al (2000) p53-Regulated GML gene expression in non-small cell lung cancer. A promising relationship to cisplatin chemosensitivity. Eur J Cancer 36(4):489-495

    Article  PubMed  CAS  Google Scholar 

  281. Fijolek J, Wiatr E, Rowinska-Zakrzewska E et al (2006) p53 and HER2/neu expression in relation to chemotherapy response in patients with non-small cell lung cancer. Int J Biol Markers 21(2):81-87

    PubMed  CAS  Google Scholar 

  282. Kawasaki M, Nakanishi Y, Kuwano K, Yatsunami J, Takayama K, Hara N (1997) The utility of p53 immunostaining of transbronchial biopsy specimens of lung cancer: p53 overexpression predicts poor prognosis and chemoresistance in advanced non-small cell lung cancer. Clin Cancer Res 3(7):1195-1200

    PubMed  CAS  Google Scholar 

  283. Yuan P, Miao XP, Zhang XM et al (2006) Association of the responsiveness of advanced non-small cell lung cancer to platinum-based chemotherapy with p53 and p73 polymorphisms. Zhonghua Zhong Liu Za Zhi 28(2):107-110

    PubMed  CAS  Google Scholar 

  284. Shih CM, Chen K, Wang YC, Lee PJ, Wang YC (2007) Elevated p53 and p21waf1 mRNA expression in blood lymphocytes from lung cancer patients with chemoresistance. Cancer Detect Prev 31(5):366-370

    Article  PubMed  CAS  Google Scholar 

  285. Schuler M, Herrmann R, De Greve JL et al (2001) Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer: results of a multicenter phase II study. J Clin Oncol 19(6):1750-1758

    PubMed  CAS  Google Scholar 

  286. Johnson EA, Klimstra DS, Herndon JE II et al (2002) Aberrant p53 staining does not predict cisplatin resistance in locally advanced non-small cell lung cancer. Cancer Invest 20(5-6):686-692

    Article  PubMed  CAS  Google Scholar 

  287. Graziano SL, Tatum A, Herndon JE II et al (2001) Use of neuroendocrine markers, p53, and HER2 to predict response to chemotherapy in patients with stage III non-small cell lung cancer: a Cancer and Leukemia Group B study. Lung Cancer 33(2-3):115-123

    Article  PubMed  CAS  Google Scholar 

  288. Berrieman HK, Cawkwell L, O’Kane SL, Smith L, Lind MJ (2006) Hsp27 may allow prediction of the response to single-agent vinorelbine chemotherapy in non-small cell lung cancer. Oncol Rep 15(1):283-286

    PubMed  Google Scholar 

  289. Gregorc V, Darwish S, Ludovini V et al (2003) The clinical relevance of Bcl-2, Rb and p53 expression in advanced non-small cell lung cancer. Lung Cancer 42(3):275-281

    Article  PubMed  Google Scholar 

  290. van de Vaart PJ, Belderbos J, de Jong D et al (2000) DNA-adduct levels as a predictor of outcome for NSCLC patients receiving daily cisplatin and radiotherapy. Int J Cancer 89(2):160-166

    Article  PubMed  Google Scholar 

  291. Oshita F, Nishio K, Kameda Y et al (2000) Increased expression levels of p53 correlate with good response to cisplatin-based chemotherapy in non-small cell lung cancer. Oncol Rep 7(6):1225-1228

    PubMed  CAS  Google Scholar 

  292. Oshita F, Kameda Y, Hamanaka N et al (2004) High expression of integrin beta1 and p53 is a greater poor prognostic factor than clinical stage in small-cell lung cancer. Am J Clin Oncol 27(3):215-219

    Article  PubMed  CAS  Google Scholar 

  293. Ferreira CG, Span SW, Peters GJ, Kruyt FA, Giaccone G (2000) Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res 60(24):7133-7141

    PubMed  CAS  Google Scholar 

  294. Okouoyo S, Herzer K, Ucur E et al (2004) Rescue of death receptor and mitochondrial apoptosis signaling in resistant human NSCLC in vivo. Int J Cancer 108(4):580-587

    Article  PubMed  CAS  Google Scholar 

  295. Herr I, Ucur E, Herzer K et al (2003) Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res 63(12):3112-3120

    PubMed  CAS  Google Scholar 

  296. Chattopadhyay S, Machado-Pinilla R, Manguan-Garcia C et al (2006) MKP1/CL100 controls tumor growth and sensitivity to cisplatin in non-small-cell lung cancer. Oncogene 25(23):3335-3345

    Article  PubMed  CAS  Google Scholar 

  297. Levresse V, Marek L, Blumberg D, Heasley LE (2002) Regulation of platinum-compound cytotoxicity by the c-Jun N-terminal kinase and c-Jun signaling pathway in small-cell lung cancer cells. Mol Pharmacol 62(3):689-697

    Article  PubMed  CAS  Google Scholar 

  298. Yoshida S, Kawaguchi H, Sato S, Ueda R, Furukawa K (2002) An anti-GD2 monoclonal antibody enhances apoptotic effects of anti-cancer drugs against small cell lung cancer cells via JNK (c-Jun terminal kinase) activation. Jpn J Cancer Res 93(7):816-824

    Article  PubMed  CAS  Google Scholar 

  299. Teraishi F, Zhang L, Guo W et al (2005) Activation of c-Jun NH2-terminal kinase is required for gemcitabine’s cytotoxic effect in human lung cancer H1299 cells. FEBS Lett 579(29):6681-6687

    Article  PubMed  CAS  Google Scholar 

  300. Joseph B, Ekedahl J, Lewensohn R, Marchetti P, Formstecher P, Zhivotovsky B (2001) Defective caspase-3 relocalization in non-small cell lung carcinoma. Oncogene 20(23):2877-2888

    Article  PubMed  CAS  Google Scholar 

  301. Ikuta K, Takemura K, Kihara M et al (2005) Defects in apoptotic signal transduction in cisplatin-resistant non-small cell lung cancer cells. Oncol Rep 13(6):1229-1234

    PubMed  CAS  Google Scholar 

  302. Deng WG, Wu G, Ueda K, Xu K, Roth JA, Ji L (2008) Enhancement of antitumor activity of cisplatin in human lung cancer cells by tumor suppressor FUS1. Cancer Gene Ther 15(1):29-39

    Article  PubMed  CAS  Google Scholar 

  303. Camps C, Sirera R, Bremnes RM et al (2006) Analysis of c-kit expression in small cell lung cancer: prevalence and prognostic implications. Lung Cancer 52(3):343-347

    Article  PubMed  Google Scholar 

  304. Soriano AF, Helfrich B, Chan DC, Heasley LE, Bunn PA Jr, Chou TC (1999) Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Cancer Res 59(24):6178-6184

    PubMed  CAS  Google Scholar 

  305. Duffy CP, Elliott CJ, O’Connor RA et al (1998) Enhancement of chemotherapeutic drug toxicity to human tumour cells in vitro by a subset of non-steroidal anti-inflammatory drugs (NSAIDs). Eur J Cancer 34(8):1250-1259

    Article  PubMed  CAS  Google Scholar 

  306. Hida T, Kozaki K, Muramatsu H et al (2000) Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res 6(5):2006-2011

    PubMed  CAS  Google Scholar 

  307. Hida T, Kozaki K, Ito H et al (2002) Significant growth inhibition of human lung cancer cells both in vitro and in vivo by the combined use of a selective cyclooxygenase 2 inhibitor, JTE-522, and conventional anticancer agents. Clin Cancer Res 8(7):2443-2447

    PubMed  CAS  Google Scholar 

  308. Chen XJ, Xiao W, Qu X, Zhou SY (2008) NS-398 enhances the efficacy of gemcitabine against lung adenocarcinoma through up-regulation of p21WAF1 and p27KIP1 protein. Neoplasma 55(3):200-204

    PubMed  CAS  Google Scholar 

  309. Edelman MJ, Watson D, Wang X et al (2008) Eicosanoid modulation in advanced lung cancer: cyclooxygenase-2 expression is a positive predictive factor for celecoxib + chemotherapy - Cancer and Leukemia Group B Trial 30203. J Clin Oncol 26(6):848-855

    Article  PubMed  CAS  Google Scholar 

  310. Gridelli C, Gallo C, Ceribelli A et al (2007) Factorial phase III randomised trial of rofecoxib and prolonged constant infusion of gemcitabine in advanced non-small-cell lung cancer: the GEmcitabine-COxib in NSCLC (GECO) study. Lancet Oncol 8(6):500-512

    Article  PubMed  CAS  Google Scholar 

  311. Gasparini G, Meo S, Comella G et al (2005) The combination of the selective cyclooxygenase-2 inhibitor celecoxib with weekly paclitaxel is a safe and active second-line therapy for non-small cell lung cancer: a phase II study with biological correlates. Cancer J 11(3):209-216

    Article  PubMed  CAS  Google Scholar 

  312. Misawa M, Tauchi T, Sashida G et al (2002) Inhibition of human telomerase enhances the effect of chemotherapeutic agents in lung cancer cells. Int J Oncol 21(5):1087-1092

    PubMed  CAS  Google Scholar 

  313. Tsurutani J, Soda H, Oka M et al (2003) Antiproliferative effects of the histone deacetylase inhibitor FR901228 on small-cell lung cancer lines and drug-resistant sublines. Int J Cancer 104(2):238-242

    Article  PubMed  CAS  Google Scholar 

  314. Sawai A, Chandarlapaty S, Greulich H et al (2008) Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel. Cancer Res 68(2):589-596

    Article  PubMed  CAS  Google Scholar 

  315. Ekedahl J, Joseph B, Marchetti P et al (2003) Heat shock protein 72 does not modulate ionizing radiation-induced apoptosis in U1810 non-small cell lung carcinoma cells. Cancer Biol Ther 2(6):663-669

    PubMed  CAS  Google Scholar 

  316. Yang CP, Galbiati F, Volonte D, Horwitz SB, Lisanti MP (1998) Upregulation of caveolin-1 and caveolae organelles in taxol-resistant A549 cells. FEBS Lett 439(3):368-372

    Article  PubMed  CAS  Google Scholar 

  317. Ho CC, Kuo SH, Huang PH, Huang HY, Yang CH, Yang PC (2008) Caveolin-1 expression is significantly associated with drug resistance and poor prognosis in advanced non-small cell lung cancer patients treated with gemcitabine-based chemotherapy. Lung Cancer 59(1):105-110

    Article  PubMed  Google Scholar 

  318. Cordes N, Beinke C, Plasswilm L, van Beuningen D (2004) Irradiation and various cytotoxic drugs enhance tyrosine phosphorylation and beta(1)-integrin clustering in human A549 lung cancer cells in a substratum-dependent manner in vitro. Strahlenther Onkol 180(3):157-164

    Article  PubMed  Google Scholar 

  319. Hodkinson PS, Mackinnon AC, Sethi T (2007) Extracellular matrix regulation of drug resistance in small-cell lung cancer. Int J Radiat Biol 83(11-12):733-741

    Article  PubMed  CAS  Google Scholar 

  320. Hodkinson PS, Elliott T, Wong WS et al (2006) ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase. Cell Death Differ 13(10):1776-1788

    Article  PubMed  CAS  Google Scholar 

  321. Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M (2005) CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 24(27):4462-4471

    Article  PubMed  CAS  Google Scholar 

  322. Rintoul RC, Sethi T (2002) Extracellular matrix regulation of drug resistance in small-cell lung cancer. Clin Sci (Lond) 102(4):417-424

    Article  CAS  Google Scholar 

  323. Zhao Y, El-Gabry M, Hei TK (2006) Loss of Betaig-h3 protein is frequent in primary lung carcinoma and related to tumorigenic phenotype in lung cancer cells. Mol Carcinog 45(2):84-92

    Article  PubMed  CAS  Google Scholar 

  324. Lei W, Mayotte JE, Levitt ML (1999) Enhancement of chemosensitivity and programmed cell death by tyrosine kinase inhibitors correlates with EGFR expression in non-small cell lung cancer cells. Anticancer Res 19(1A):221-228

    PubMed  CAS  Google Scholar 

  325. Ando K, Ohmori T, Inoue F et al (2005) Enhancement of sensitivity to tumor necrosis factor alpha in non-small cell lung cancer cells with acquired resistance to gefitinib. Clin Cancer Res 11(24 Pt 1):8872-8879

    Article  PubMed  CAS  Google Scholar 

  326. Van Schaeybroeck S, Kyula J, Kelly DM et al (2006) Chemotherapy-induced epidermal growth factor receptor activation determines response to combined gefitinib/chemotherapy treatment in non-small cell lung cancer cells. Mol Cancer Ther 5(5):1154-1165

    Article  PubMed  Google Scholar 

  327. Steiner P, Joynes C, Bassi R et al (2007) Tumor growth inhibition with cetuximab and chemotherapy in non-small cell lung cancer xenografts expressing wild-type and mutated epidermal growth factor receptor. Clin Cancer Res 13(5):1540-1551

    Article  PubMed  CAS  Google Scholar 

  328. Raben D, Helfrich B, Chan DC et al (2005) The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin Cancer Res 11(2 Pt 1):795-805

    PubMed  CAS  Google Scholar 

  329. Rosetti M, Zoli W, Tesei A et al (2007) Iressa strengthens the cytotoxic effect of docetaxel in NSCLC models that harbor specific molecular characteristics. J Cell Physiol 212(3):710-716

    Article  PubMed  CAS  Google Scholar 

  330. Mahaffey CM, Davies AM, Lara PN Jr et al (2007) Schedule-dependent apoptosis in K-ras mutant non-small-cell lung cancer cell lines treated with docetaxel and erlotinib: rationale for pharmacodynamic separation. Clin Lung Cancer 8(9):548-553

    Article  PubMed  CAS  Google Scholar 

  331. Giovannetti E, Lemos C, Tekle C et al (2008) Molecular mechanisms underlying the synergistic interaction of erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, with the multitargeted antifolate pemetrexed in non-small-cell lung cancer cells. Mol Pharmacol 73(4):1290-1300

    Article  PubMed  CAS  Google Scholar 

  332. Li T, Ling YH, Goldman ID, Perez-Soler R (2007) Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in human non-small cell lung cancer cells. Clin Cancer Res 13(11):3413-3422

    Article  PubMed  CAS  Google Scholar 

  333. Meert AP, Martin B, Delmotte P et al (2002) The role of EGF-R expression on patient survival in lung cancer: a systematic review with meta-analysis. Eur Respir J 20(4):975-981

    Article  PubMed  CAS  Google Scholar 

  334. Cappuzzo F, Ligorio C, Toschi L et al (2007) EGFR and HER2 gene copy number and response to first-line chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). J Thorac Oncol 2(5):423-429

    Article  PubMed  Google Scholar 

  335. Dziadziuszko R, Holm B, Skov BG et al (2007) Epidermal growth factor receptor gene copy number and protein level are not associated with outcome of non-small-cell lung cancer patients treated with chemotherapy. Ann Oncol 18(3):447-452

    Article  PubMed  CAS  Google Scholar 

  336. Eberhard DA, Johnson BE, Amler LC et al (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23(25):5900-5909

    Article  PubMed  CAS  Google Scholar 

  337. Lee KH, Han SW, Hwang PG et al (2006) Epidermal growth factor receptor mutations and response to chemotherapy in patients with non-small-cell lung cancer. Jpn J Clin Oncol 36(6):344-350

    Article  PubMed  Google Scholar 

  338. Gatzemeier U, Pluzanska A, Szczesna A et al (2007) Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J Clin Oncol 25(12):1545-1552

    Article  PubMed  CAS  Google Scholar 

  339. Herbst RS, Prager D, Hermann R et al (2005) TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 23(25):5892-5899

    Article  PubMed  CAS  Google Scholar 

  340. Bunn PA Jr, Helfrich B, Soriano AF et al (2001) Expression of Her-2/neu in human lung cancer cell lines by immunohistochemistry and fluorescence in situ hybridization and its relationship to in vitro cytotoxicity by trastuzumab and chemotherapeutic agents. Clin Cancer Res 7(10):3239-3250

    PubMed  CAS  Google Scholar 

  341. Tsai CM, Chang KT, Chen JY, Chen YM, Chen MH, Perng RP (1996) Cytotoxic effects of gemcitabine-containing regimens against human non-small cell lung cancer cell lines which express different levels of p185neu. Cancer Res 56(4):794-801

    PubMed  CAS  Google Scholar 

  342. Tsai CM, Chang KT, Perng RP et al (1993) Correlation of intrinsic chemoresistance of non-small-cell lung cancer cell lines with HER-2/neu gene expression but not with ras gene mutations. J Natl Cancer Inst 85(11):897-901

    Article  PubMed  CAS  Google Scholar 

  343. You XL, Yen L, Zeng-Rong N, Al Moustafa AE, Alaoui-Jamali MA (1998) Dual effect of erbB-2 depletion on the regulation of DNA repair and cell cycle mechanisms in non-small cell lung cancer cells. Oncogene 17(24):3177-3186

    Article  PubMed  CAS  Google Scholar 

  344. Zhang L, Hung MC (1996) Sensitization of HER-2/neu-overexpressing non-small cell lung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin. Oncogene 12(3):571-576

    PubMed  CAS  Google Scholar 

  345. Meert AP, Martin B, Paesmans M et al (2003) The role of HER-2/neu expression on the survival of patients with lung cancer: a systematic review of the literature. Br J Cancer 89(6):959-965

    Article  PubMed  CAS  Google Scholar 

  346. Graziano SL, Kern JA, Herndon JE et al (1998) Analysis of neuroendocrine markers, HER2 and CEA before and after chemotherapy in patients with stage IIIA non-small cell lung cancer: a Cancer and Leukemia Group B study. Lung Cancer 21(3):203-211

    Article  PubMed  CAS  Google Scholar 

  347. Junker K, Stachetzki U, Rademacher D et al (2005) HER2/neu expression and amplification in non-small cell lung cancer prior to and after neoadjuvant therapy. Lung Cancer 48(1):59-67

    Article  PubMed  Google Scholar 

  348. Morita M, Suyama H, Igishi T et al (2007) Dexamethasone inhibits paclitaxel-induced cytotoxic activity through retinoblastoma protein dephosphorylation in non-small cell lung cancer cells. Int J Oncol 30(1):187-192

    PubMed  CAS  Google Scholar 

  349. Lee MW, Kim DS, Min NY, Kim HT (2008) Akt1 inhibition by RNA interference sensitizes human non-small cell lung cancer cells to cisplatin. Int J Cancer 122(10):2380-2384

    Article  PubMed  CAS  Google Scholar 

  350. Brognard J, Dennis PA (2002) Variable apoptotic response of NSCLC cells to inhibition of the MEK/ERK pathway by small molecules or dominant negative mutants. Cell Death Differ 9(9):893-904

    Article  PubMed  CAS  Google Scholar 

  351. Krystal GW, Sulanke G, Litz J (2002) Inhibition of phosphatidylinositol 3-kinase-Akt signaling blocks growth, promotes apoptosis, and enhances sensitivity of small cell lung cancer cells to chemotherapy. Mol Cancer Ther 1(11):913-922

    PubMed  CAS  Google Scholar 

  352. Brognard J, Clark AS, Ni Y, Dennis PA (2001) Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 61(10):3986-3997

    PubMed  CAS  Google Scholar 

  353. Hemstrom TH, Sandstrom M, Zhivotovsky B (2006) Inhibitors of the PI3-kinase/Akt pathway induce mitotic catastrophe in non-small cell lung cancer cells. Int J Cancer 119(5):1028-1038

    Article  PubMed  CAS  Google Scholar 

  354. Yu K, Lucas J, Zhu T et al (2005) PWT-458, a novel pegylated-17-hydroxywortmannin, inhibits phosphatidylinositol 3-kinase signaling and suppresses growth of solid tumors. Cancer Biol Ther 4(5):538-545

    Article  PubMed  CAS  Google Scholar 

  355. Hovelmann S, Beckers TL, Schmidt M (2004) Molecular alterations in apoptotic pathways after PKB/Akt-mediated chemoresistance in NCI H460 cells. Br J Cancer 90(12):2370-2377

    PubMed  CAS  Google Scholar 

  356. Liu LZ, Zhou XD, Qian G, Shi X, Fang J, Jiang BH (2007) AKT1 amplification regulates cisplatin resistance in human lung cancer cells through the mammalian target of rapamycin/p70S6K1 pathway. Cancer Res 67(13):6325-6332

    Article  PubMed  CAS  Google Scholar 

  357. Tsurutani J, West KA, Sayyah J, Gills JJ, Dennis PA (2005) Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy. Cancer Res 65(18):8423-8432

    Article  PubMed  CAS  Google Scholar 

  358. Wu C, Wangpaichitr M, Feun L et al (2005) Overcoming cisplatin resistance by mTOR inhibitor in lung cancer. Mol Cancer 4(1):25

    Article  PubMed  CAS  Google Scholar 

  359. Hohla F, Schally AV, Szepeshazi K et al (2006) Synergistic inhibition of growth of lung carcinomas by antagonists of growth hormone-releasing hormone in combination with docetaxel. Proc Natl Acad Sci U S A 103(39):14513-14518

    Article  PubMed  CAS  Google Scholar 

  360. Dhar R, Basu A (2008) Constitutive activation of p70 S6 kinase is associated with intrinsic resistance to cisplatin. Int J Oncol 32(5):1133-1137

    PubMed  CAS  Google Scholar 

  361. Bartling B, Yang JY, Michod D, Widmann C, Lewensohn R, Zhivotovsky B (2004) RasGTPase-activating protein is a target of caspases in spontaneous apoptosis of lung carcinoma cells and in response to etoposide. Carcinogenesis 25(6):909-921

    Article  PubMed  CAS  Google Scholar 

  362. Rodenhuis S, Boerrigter L, Top B et al (1997) Mutational activation of the K-ras oncogene and the effect of chemotherapy in advanced adenocarcinoma of the lung: a prospective study. J Clin Oncol 15(1):285-291

    PubMed  CAS  Google Scholar 

  363. Mascaux C, Iannino N, Martin B et al (2005) The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 92(1):131-139

    Article  PubMed  CAS  Google Scholar 

  364. Rosell R, Gonzalez-Larriba JL, Alberola V et al (1995) Single-agent paclitaxel by 3-hour infusion in the treatment of non-small cell lung cancer: links between p53 and K-ras gene status and chemosensitivity. Semin Oncol 22(6 Suppl 14):12-18

    PubMed  CAS  Google Scholar 

  365. Tsao MS, Aviel-Ronen S, Ding K et al (2007) Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol 25(33):5240-5247

    Article  PubMed  Google Scholar 

  366. Schiller JH, Adak S, Feins RH et al (2001) Lack of prognostic significance of p53 and K-ras mutations in primary resected non-small-cell lung cancer on E4592: a Laboratory Ancillary Study on an Eastern Cooperative Oncology Group Prospective Randomized Trial of Postoperative Adjuvant Therapy. J Clin Oncol 19(2):448-457

    PubMed  CAS  Google Scholar 

  367. Kim ES, Kies MS, Fossella FV et al (2005) Phase II study of the farnesyltransferase inhibitor lonafarnib with paclitaxel in patients with taxane-refractory/resistant nonsmall cell lung carcinoma. Cancer 104(3):561-569

    Article  PubMed  CAS  Google Scholar 

  368. Ding L, Wang H, Lang W, Xiao L (2002) Protein kinase C-epsilon promotes survival of lung cancer cells by suppressing apoptosis through dysregulation of the mitochondrial caspase pathway. J Biol Chem 277(38):35305-35313

    Article  PubMed  CAS  Google Scholar 

  369. Pardo OE, Wellbrock C, Khanzada UK et al (2006) FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCepsilon, B-Raf and S6K2. EMBO J 25(13):3078-3088

    Article  PubMed  CAS  Google Scholar 

  370. Basu A, Weixel K, Saijo N (1996) Characterization of the protein kinase C signal transduction pathway in cisplatin-sensitive and -resistant human small cell lung carcinoma cells. Cell Growth Differ 7(11):1507-1512

    PubMed  CAS  Google Scholar 

  371. Wang XY, Liu HT (1998) Antisense expression of protein kinase C alpha improved sensitivity to anticancer drugs in human lung cancer LTEPa-2 cells. Zhongguo Yao Li Xue Bao 19(3):265-268

    PubMed  CAS  Google Scholar 

  372. Sonnemann J, Gekeler V, Ahlbrecht K et al (2004) Down-regulation of protein kinase Ceta by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel. Cancer Lett 209(2):177-185

    Article  PubMed  CAS  Google Scholar 

  373. Villalona-Calero MA, Ritch P, Figueroa JA et al (2004) A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-alpha, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. Clin Cancer Res 10(18 Pt 1):6086-6093

    Article  PubMed  CAS  Google Scholar 

  374. Paz-Ares L, Douillard JY, Koralewski P et al (2006) Phase III study of gemcitabine and cisplatin with or without aprinocarsen, a protein kinase C-alpha antisense oligonucleotide, in patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 24(9):1428-1434

    Article  PubMed  CAS  Google Scholar 

  375. Wang Z, Xu J, Zhou JY, Liu Y, Wu GS (2006) Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Res 66(17):8870-8877

    Article  PubMed  CAS  Google Scholar 

  376. Vicent S, Garayoa M, Lopez-Picazo JM et al (2004) Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res 10(11):3639-3649

    Article  PubMed  CAS  Google Scholar 

  377. Chanvorachote P, Nimmannit U, Stehlik C et al (2006) Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res 66(12):6353-6360

    Article  PubMed  CAS  Google Scholar 

  378. Zhang Y, Fujita N, Tsuruo T (1999) p21Waf1/Cip1 acts in synergy with bcl-2 to confer multidrug resistance in a camptothecin-selected human lung-cancer cell line. Int J Cancer 83(6):790-797

    Article  PubMed  CAS  Google Scholar 

  379. Linardopoulos S (2007) Aurora-A kinase regulates NF-kappaB activity: lessons from combination studies. J BUON 12(Suppl 1):S67-S70

    PubMed  Google Scholar 

  380. Losert D, Pratscher B, Soutschek J et al (2007) Bcl-2 downregulation sensitizes nonsmall cell lung cancer cells to cisplatin, but not to docetaxel. Anticancer Drugs 18(7):755-761

    Article  PubMed  CAS  Google Scholar 

  381. Hu Y, Bebb G, Tan S et al (2004) Antitumor efficacy of oblimersen Bcl-2 antisense oligonucleotide alone and in combination with vinorelbine in xenograft models of human non-small cell lung cancer. Clin Cancer Res 10(22):7662-7670

    Article  PubMed  CAS  Google Scholar 

  382. Zangemeister-Wittke U, Schenker T, Luedke GH, Stahel RA (1998) Synergistic cytotoxicity of bcl-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small-cell lung cancer cell lines. Br J Cancer 78(8):1035-1042

    Article  PubMed  CAS  Google Scholar 

  383. Kumar Biswas S, Huang J, Persaud S, Basu A (2004) Down-regulation of Bcl-2 is associated with cisplatin resistance in human small cell lung cancer H69 cells. Mol Cancer Ther 3(3):327-334

    PubMed  CAS  Google Scholar 

  384. Wang L, Chanvorachote P, Toledo D et al (2008) Peroxide is a key mediator of Bcl-2 down-regulation and apoptosis induction by cisplatin in human lung cancer cells. Mol Pharmacol 73(1):119-127

    Article  PubMed  CAS  Google Scholar 

  385. Mandziuk S, Dudzisz-Sledz M, Korszen-Pilecka I, Milanowski J, Wojcierowski J, Korobowicz E (2003) Expression of p21 and bcl-2 proteins in paraffin-embedded preparations of non-small cell lung cancer in stage IIIA after etoposide and cisplatin induced chemotherapy. Ann Univ Mariae Curie Sklodowska Med 58(1):149-153

    PubMed  Google Scholar 

  386. Krug LM, Miller VA, Filippa DA, Venkatraman E, Ng KK, Kris MG (2003) Bcl-2 and bax expression in advanced non-small cell lung cancer: lack of correlation with chemotherapy response or survival in patients treated with docetaxel plus vinorelbine. Lung Cancer 39(2):139-143

    Article  PubMed  Google Scholar 

  387. Martin B, Paesmans M, Berghmans T et al (2003) Role of Bcl-2 as a prognostic factor for survival in lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 89(1):55-64

    Article  PubMed  CAS  Google Scholar 

  388. Rudin CM, Salgia R, Wang X et al (2008) Randomized phase II Study of carboplatin and etoposide with or without the bcl-2 antisense oligonucleotide oblimersen for extensive-stage small-cell lung cancer: CALGB 30103. J Clin Oncol 26(6):870-876

    Article  PubMed  CAS  Google Scholar 

  389. Takemura A, Gemma A, Shibuya M et al (2007) Gemcitabine resistance in a highly metastatic subpopulation of a pulmonary adenocarcinoma cell line resistant to gefitinib. Int J Oncol 31(6):1325-1332

    PubMed  CAS  Google Scholar 

  390. Kurdow R, Schniewind B, Zoefelt S et al (2005) Apoptosis by gemcitabine in non-small cell lung cancer cell line KNS62 is induced downstream of caspase 8 and is profoundly blocked by Bcl-xL over-expression. Langenbecks Arch Surg 390(3):243-248

    Article  PubMed  CAS  Google Scholar 

  391. Lei X, Huang Z, Zhong M, Zhu B, Tang S, Liao D (2007) Bcl-XL small interfering RNA sensitizes cisplatin-resistant human lung adenocarcinoma cells. Acta Biochim Biophys Sin (Shanghai) 39(5):344-350

    Article  CAS  Google Scholar 

  392. Shoemaker AR, Oleksijew A, Bauch J et al (2006) A small-molecule inhibitor of Bcl-XL potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer Res 66(17):8731-8739

    Article  PubMed  CAS  Google Scholar 

  393. Hajji N, Wallenborg K, Vlachos P, Nyman U, Hermanson O, Joseph B (2008) Combinatorial action of the HDAC inhibitor trichostatin A and etoposide induces caspase-mediated AIF-dependent apoptotic cell death in non-small cell lung carcinoma cells. Oncogene 27(22):3134-3144

    Article  PubMed  CAS  Google Scholar 

  394. Song L, Coppola D, Livingston S, Cress D, Haura EB (2005) Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells. Cancer Biol Ther 4(3):267-276

    Article  PubMed  CAS  Google Scholar 

  395. Li J, Viallet J, Haura EB (2008) A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemother Pharmacol 61(3):525-534

    Article  PubMed  CAS  Google Scholar 

  396. Wesarg E, Hoffarth S, Wiewrodt R et al (2007) Targeting BCL-2 family proteins to overcome drug resistance in non-small cell lung cancer. Int J Cancer 121(11):2387-2394

    Article  PubMed  CAS  Google Scholar 

  397. Zhang MC, Hu CP, Chen Q (2006) Effect of down-regulation of survivin gene on apoptosis and cisplatin resistance in cisplatin resistant human lung adenocarcinoma A549/CDDP cells. Zhonghua Zhong Liu Za Zhi 28(6):408-412

    PubMed  CAS  Google Scholar 

  398. Zhang MC, Hu CP, Chen Q, Xia Y (2006) Experimental study of antisense oligodeoxynucleotide targeting survivin gene for cisplatin resistant human lung adeno-carcinoma xenograft in nude mice. Zhong Nan Da Xue Xue Bao Yi Xue Ban 31(5):717-722

    PubMed  CAS  Google Scholar 

  399. Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S (2006) Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci U S A 103(16):6332-6337

    Article  PubMed  CAS  Google Scholar 

  400. Bandala E, Espinosa M, Maldonado V, Melendez-Zajgla J (2001) Inhibitor of apoptosis-1 (IAP-1) expression and apoptosis in non-small-cell lung cancer cells exposed to gemcitabine. Biochem Pharmacol 62(1):13-19

    Article  PubMed  CAS  Google Scholar 

  401. Checinska A, Hoogeland BS, Rodriguez JA, Giaccone G, Kruyt FA (2007) Role of XIAP in inhibiting cisplatin-induced caspase activation in non-small cell lung cancer cells: a small molecule Smac mimic sensitizes for chemotherapy-induced apoptosis by enhancing caspase-3 activation. Exp Cell Res 313(6):1215-1224

    Article  PubMed  CAS  Google Scholar 

  402. Bartling B, Lewensohn R, Zhivotovsky B (2004) Endogenously released Smac is insufficient to mediate cell death of human lung carcinoma in response to etoposide. Exp Cell Res 298(1):83-95

    Article  PubMed  CAS  Google Scholar 

  403. Ekedahl J, Joseph B, Grigoriev MY et al (2002) Expression of inhibitor of apoptosis proteins in small- and non-small-cell lung carcinoma cells. Exp Cell Res 279(2):277-290

    Article  PubMed  CAS  Google Scholar 

  404. Crnkovic-Mertens I, Muley T, Meister M et al (2006) The anti-apoptotic livin gene is an important determinant for the apoptotic resistance of non-small cell lung cancer cells. Lung Cancer 54(2):135-142

    Article  PubMed  Google Scholar 

  405. Ohta T, Iijima K, Miyamoto M et al (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68(5):1303-1309

    Article  PubMed  CAS  Google Scholar 

  406. Kim HR, Kim S, Kim EJ et al (2008) Suppression of Nrf2-driven heme oxygenase-1 enhances the chemosensitivity of lung cancer A549 cells toward cisplatin. Lung Cancer 60(1):47-56

    Article  PubMed  Google Scholar 

  407. Morero JL, Poleri C, Martin C, Van Kooten M, Chacon R, Rosenberg M (2007) Influence of apoptosis and cell cycle regulator proteins on chemotherapy response and survival in stage IIIA/IIIB NSCLC patients. J Thorac Oncol 2(4):293-298

    Article  PubMed  Google Scholar 

  408. Kim HJ, Hwang JY, Kim HJ et al (2007) Expression of a peroxisome proliferator-activated receptor gamma 1 splice variant that was identified in human lung cancers suppresses cell death induced by cisplatin and oxidative stress. Clin Cancer Res 13(9):2577-2583

    Article  PubMed  CAS  Google Scholar 

  409. Kiura K, Watarai S, Ueoka H et al (1998) An alteration of ganglioside composition in cisplatin-resistant lung cancer cell line. Anticancer Res 18(4C):2957-2960

    PubMed  CAS  Google Scholar 

  410. Ikuta K, Takemura K, Kihara M et al (2005) Overexpression of constitutive signal transducer and activator of transcription 3 mRNA in cisplatin-resistant human non-small cell lung cancer cells. Oncol Rep 13(2):217-222

    PubMed  CAS  Google Scholar 

  411. Chen JT, Huang CY, Chiang YY et al (2008) HGF increases cisplatin resistance via down-regulation of AIF in lung cancer cells. Am J Respir Cell Mol Biol 38(5):559-565

    Article  PubMed  CAS  Google Scholar 

  412. Ohashi R, Takahashi F, Cui R et al (2007) Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell. Cancer Lett 252(2):225-234

    Article  PubMed  CAS  Google Scholar 

  413. Dong A, Kong M, Ma Z, Qian J, Cheng H, Xu X (2008) Knockdown of insulin-like growth factor 1 receptor enhances chemosensitivity to cisplatin in human lung adenocarcinoma A549 cells. Acta Biochim Biophys Sin (Shanghai) 40(6):497-504

    Article  CAS  Google Scholar 

  414. Warshamana-Greene GS, Litz J, Buchdunger E, Garcia-Echeverria C, Hofmann F, Krystal GW (2005) The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res 11(4):1563-1571

    Article  PubMed  CAS  Google Scholar 

  415. Mizushima Y, Kashii T, Kobayashi M (1996) Effect of cisplatin exposure on the degree of N-myc amplification in small cell lung carcinoma cell lines with N-myc amplification. Oncology 53(5):417-421

    Article  PubMed  CAS  Google Scholar 

  416. Van Waardenburg RC, Meijer C, Burger H et al (1997) Effects of an inducible anti-sense c-myc gene transfer in a drug-resistant human small-cell-lung-carcinoma cell line. Int J Cancer 73(4):544-550

    Article  PubMed  Google Scholar 

  417. Van Waardenburg RC, Prins J, Meijer C, Uges DR, De Vries EG, Mulder NH (1996) Effects of c-myc oncogene modulation on drug resistance in human small cell lung carcinoma cell lines. Anticancer Res 16(4A):1963-1970

    PubMed  Google Scholar 

  418. Zhang P, Gao WY, Turner S, Ducatman BS (2003) Gleevec (STI-571) inhibits lung cancer cell growth (A549) and potentiates the cisplatin effect in vitro. Mol Cancer 2:1

    Article  PubMed  Google Scholar 

  419. Hu Y, Feng FY, Chen SJ, Gao YN, Xiao T, Liu YN (2006) Correlation between the expression of PCDGF in serum and the chemotherapeutic sensitivity in NSCLC. Zhonghua Zhong Liu Za Zhi 28(8):603-605

    PubMed  CAS  Google Scholar 

  420. Liu X, Yue P, Khuri FR, Sun SY (2005) Decoy receptor 2 (DcR2) is a p53 target gene and regulates chemosensitivity. Cancer Res 65(20):9169-9175

    Article  PubMed  CAS  Google Scholar 

  421. Spalding AC, Jotte RM, Scheinman RI et al (2002) TRAIL and inhibitors of apoptosis are opposing determinants for NF-kappaB-dependent, genotoxin-induced apoptosis of cancer cells. Oncogene 21(2):260-271

    Article  PubMed  CAS  Google Scholar 

  422. Wang Q, Wang T, Wang Y et al (2007) VP-16 resistance in the NCI-H460 human lung cancer cell line is significantly associated with glucose-regulated protein78 (GRP78) induction. Anticancer Res 27(4B):2359-2364

    PubMed  CAS  Google Scholar 

  423. July LV, Beraldi E, So A et al (2004) Nucleotide-based therapies targeting clusterin chemosensitize human lung adenocarcinoma cells both in vitro and in vivo. Mol Cancer Ther 3(3):223-232

    PubMed  CAS  Google Scholar 

  424. Han EK, Tahir SK, Cherian SP, Collins N, Ng SC (2000) Modulation of paclitaxel resistance by annexin IV in human cancer cell lines. Br J Cancer 83(1):83-88

    Article  PubMed  CAS  Google Scholar 

  425. Demarcq C, Bastian G, Remvikos Y (1992) BrdUrd/DNA flow cytometry analysis demonstrates cis-diamminedichloroplatinum (II)-induced multiple cell-cycle modifications on human lung carcinoma cells. Cytometry 13(4):416-422

    Article  PubMed  CAS  Google Scholar 

  426. Holdaway KM, Finlay GJ, Baguley BC (1992) Relationship of cell cycle parameters to in vitro and in vivo chemosensitivity for a series of Lewis lung carcinoma lines. Eur J Cancer 28A(8-9):1427-1431

    Article  PubMed  CAS  Google Scholar 

  427. Prewitt TW, Matthews W, Chaudhri G, Pogrebniak HW, Pass HI (1994) Tumor necrosis factor induces doxorubicin resistance to lung cancer cells in vitro. J Thorac Cardiovasc Surg 107(1):43-49

    PubMed  CAS  Google Scholar 

  428. Wahl AF, Donaldson KL, Mixan BJ, Trail PA, Siegall CB (2001) Selective tumor sensitization to taxanes with the mAb-drug conjugate cBR96-doxorubicin. Int J Cancer 93(4):590-600

    Article  PubMed  CAS  Google Scholar 

  429. Chen JG, Yang CP, Cammer M, Horwitz SB (2003) Gene expression and mitotic exit induced by microtubule-stabilizing drugs. Cancer Res 63(22):7891-7899

    PubMed  CAS  Google Scholar 

  430. Chen JG, Horwitz SB (2002) Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. Cancer Res 62(7):1935-1938

    PubMed  CAS  Google Scholar 

  431. Reed MF, Zagorski WA, Knudsen ES (2007) RB activity alters checkpoint response and chemosensitivity in lung cancer lines. J Surg Res 142(2):364-372

    Article  PubMed  CAS  Google Scholar 

  432. Shimizu E, Coxon A, Otterson GA et al (1994) RB protein status and clinical correlation from 171 cell lines representing lung cancer, extrapulmonary small cell carcinoma, and mesothelioma. Oncogene 9(9):2441-2448

    PubMed  CAS  Google Scholar 

  433. Ishii T, Matsuse T, Masuda M, Teramoto S (2004) The effects of S-phase kinase-associated protein 2 (SKP2) on cell cycle status, viability, and chemoresistance in A549 lung adenocarcinoma cells. Exp Lung Res 30(8):687-703

    Article  PubMed  CAS  Google Scholar 

  434. Filipits M, Pirker R, Dunant A et al (2007) Cell cycle regulators and outcome of adjuvant cisplatin-based chemotherapy in completely resected non-small-cell lung cancer: the International Adjuvant Lung Cancer Trial Biologic Program. J Clin Oncol 25(19):2735-2740

    Article  PubMed  CAS  Google Scholar 

  435. Oshita F, Kameda Y, Nishio K et al (2000) Increased expression levels of cyclin-dependent kinase inhibitor p27 correlate with good responses to platinum-based chemotherapy in non-small cell lung cancer. Oncol Rep 7(3):491-495

    PubMed  CAS  Google Scholar 

  436. Ma Y, Freeman SN, Cress WD (2004) E2F4 deficiency promotes drug-induced apoptosis. Cancer Biol Ther 3(12):1262-1269

    Article  PubMed  CAS  Google Scholar 

  437. Zhang P, Wang J, Gao W, Yuan BZ, Rogers J, Reed E (2004) CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer. Mol Cancer 3:14

    Article  PubMed  Google Scholar 

  438. Masuda A, Maeno K, Nakagawa T, Saito H, Takahashi T (2003) Association between mitotic spindle checkpoint impairment and susceptibility to the induction of apoptosis by anti-microtubule agents in human lung cancers. Am J Pathol 163(3):1109-1116

    Article  PubMed  CAS  Google Scholar 

  439. Fan T, Li R, Todd NW et al (2007) Up-regulation of 14-3-3zeta in lung cancer and its implication as prognostic and therapeutic target. Cancer Res 67(16):7901-7906

    Article  PubMed  CAS  Google Scholar 

  440. Ramirez JL, Rosell R, Taron M et al (2005) 14-3-3sigma methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell lung cancer patients predicts survival: The Spanish Lung Cancer Group. J Clin Oncol 23(36):9105-9112

    Article  PubMed  CAS  Google Scholar 

  441. Roberson RS, Kussick SJ, Vallieres E, Chen SY, Wu DY (2005) Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 65(7):2795-2803

    Article  PubMed  CAS  Google Scholar 

  442. Gautschi O, Hugli B, Ziegler A et al (2006) Cyclin D1 (CCND1) A870G gene polymorphism modulates smoking-induced lung cancer risk and response to platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients. Lung Cancer 51(3):303-311

    Article  PubMed  Google Scholar 

  443. Saijo T, Ishii G, Ochiai A et al (2006) Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimitotic agents combined with platinum chemotherapy. Lung Cancer 54(2):217-225

    Article  PubMed  Google Scholar 

  444. Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH (2005) Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 65(15):6934-6942

    Article  PubMed  CAS  Google Scholar 

  445. Denlinger CE, Rundall BK, Keller MD, Jones DR (2004) Proteasome inhibition sensitizes non-small-cell lung cancer to gemcitabine-induced apoptosis. Ann Thorac Surg 78(4):1207-1214 discussion 1214

    Article  PubMed  Google Scholar 

  446. Ni J, Takayama K, Ushijima R et al (2008) Adenovirus-mediated inhibitor kappaB gene transfer improves the chemosensitivity to anticancer drugs in human lung cancer in vitro and in vivo. Anticancer Res 28(2A):601-608

    PubMed  CAS  Google Scholar 

  447. Oyaizu H, Adachi Y, Okumura T et al (2001) Proteasome inhibitor 1 enhances paclitaxel-induced apoptosis in human lung adenocarcinoma cell line. Oncol Rep 8(4):825-829

    PubMed  CAS  Google Scholar 

  448. Oguri T, Katoh O, Takahashi T et al (1998) The Kruppel-type zinc finger family gene, HKR1, is induced in lung cancer by exposure to platinum drugs. Gene 222(1):61-67

    Article  PubMed  CAS  Google Scholar 

  449. Zhuo WL, Wang Y, Zhuo XL, Zhang YS, Chen ZT (2008) Short interfering RNA directed against TWIST, a novel zinc finger transcription factor, increases A549 cell sensitivity to cisplatin via MAPK/mitochondrial pathway. Biochem Biophys Res Commun 369(4):1098-1102

    Article  PubMed  CAS  Google Scholar 

  450. Zhuo W, Wang Y, Zhuo X, Zhang Y, Ao X, Chen Z (2008) Knockdown of Snail, a novel zinc finger transcription factor, via RNA interference increases A549 cell sensitivity to cisplatin via JNK/mitochondrial pathway. Lung Cancer 62(1):8-14

    Article  PubMed  Google Scholar 

  451. Berghmans T, Paesmans M, Mascaux C et al (2006) Thyroid transcription factor 1 - a new prognostic factor in lung cancer: a meta-analysis. Ann Oncol 17(11):1673-1676

    Article  PubMed  CAS  Google Scholar 

  452. Igarashi T, Izumi H, Uchiumi T et al (2007) Clock and ATF4 transcription system regulates drug resistance in human cancer cell lines. Oncogene 26(33):4749-4760

    Article  PubMed  CAS  Google Scholar 

  453. Tanabe M, Izumi H, Ise T et al (2003) Activating transcription factor 4 increases the cisplatin resistance of human cancer cell lines. Cancer Res 63(24):8592-8595

    PubMed  CAS  Google Scholar 

  454. Miyamoto N, Izumi H, Noguchi T et al (2008) Tip60 is regulated by circadian transcription factor clock and is involved in cisplatin resistance. J Biol Chem 283(26):18218-18226

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stewart, D.J. (2010). Lung Cancer Resistance to Chemotherapy. In: Stewart, D. (eds) Lung Cancer. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-524-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-524-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-523-1

  • Online ISBN: 978-1-60761-524-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics