Skip to main content

HIV-1 Accessory Proteins: Crucial Elements for Virus-Host Interactions

  • Chapter
  • First Online:
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 726 Accesses

Abstract

The primary goal of a virus is the infection of host cells so it can replicate its genome and so it can produce progeny virions for the infection of new target cells. Some viruses cause long-lasting chronic infections while others replicate in fast, lytic cycles. However, replication of all viruses depends to a large degree on specific host factors from the recognition of specific cell surface receptors required for virus entry into a target cell to the packaging of cellular factors into virions. HIV penetrates target cells through fusion with the host plasma membrane. Penetration is followed by partial uncoating and reverse transcription of the viral RNA and subsequent integration of the double-stranded cDNA into the host genome. The integrated provirus then serves as template for the synthesis of viral proteins, which ultimately assemble into progeny virions that are released from the infected host cell. We are far from understanding all of the complex virus-cell interactions that take place during a single replication cycle; however, our current knowledge on the replication of HIV suggests that such interactions occur at virtually every step during the course of virus replication. Recent years have brought rapid progress in the identification and characterization of novel host factors supporting HIV replication. In particular, the recent identification of host restriction factors such as Trim-5α or APOBEC3G as well as the identification of Bst-2/Tetherin as a target of Vpu has significantly advanced our understanding of HIV cell tropism. The molecular mechanisms that dictate host restrictions and govern virus-host interactions, however, remain poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akari H, Bour S, Kao S & et al (2001) The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor kappaB-dependent expression of antiapoptotic factors, J Exp Med, 194 1299–1311

    Article  PubMed  CAS  Google Scholar 

  2. Akari H, Fujita M, Kao S & et al (2004) High level expression of human immunodeficiency virus type-1 Vif inhibits viral infectivity by modulating proteolytic processing of the Gag precursor at the p2/nucleocapsid processing site, J Biol Chem, 279 12355–12362

    Article  PubMed  CAS  Google Scholar 

  3. Badley A D, Pilon A A, Landay A & et al (2000) Mechanisms of HIV-associated lymphocyte apoptosis, Blood, 96 2951–2964

    PubMed  CAS  Google Scholar 

  4. Barkett M, & Gilmore T D (1999) Control of apoptosis by Rel/NF-kappaB transcription factors, Oncogene, 18, 6910–6924

    Article  PubMed  CAS  Google Scholar 

  5. Bartee E, McCormack A & Fruh K (2006) Quantitative membrane proteomics reveals new cellular targets of viral immune modulators, PLoS Pathog, 2, e107

    Article  PubMed  CAS  Google Scholar 

  6. Bishop K N, Holmes R K & Malim M H (2006) Antiviral potency of APOBEC proteins does not correlate with cytidine deamination, J Virol, 80, 8450–8458

    Article  PubMed  CAS  Google Scholar 

  7. Bogerd H P, Doehle B P, Wiegand H L & Cullen B R (2004). A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor, Proc Natl Acad Sci USA, 101, 3770–3774

    Article  PubMed  CAS  Google Scholar 

  8. Bour S, Boulerice F & Wainberg M A (1991) Inhibition of gp160 and CD4 maturation in U937 cells after both defective and productive infections by human immunodeficiency virus type 1, J Virol, 65, 6387–6396

    PubMed  CAS  Google Scholar 

  9. Bour S, Perrin C, Akari H & Strebel K (2001) The Human Immunodeficiency Virus Type 1 Vpu Protein Inhibits NF-kappa B Activation by Interfering with beta TrCP-mediated degradation of Ikappa B, J Biol Chem, 276, 15920–15928

    Article  PubMed  CAS  Google Scholar 

  10. Bour S, Schubert U, Peden K & Strebel K (1996) The envelope glycoprotein of human immunodeficiency virus type 2 enhances viral particle release: a Vpu-like factor? J Virol, 70, 820–829

    PubMed  CAS  Google Scholar 

  11. Bour S, Schubert U & Strebel K (1995) The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: implications for the mechanism of degradation, J Virol, 69, 1510–1520

    PubMed  CAS  Google Scholar 

  12. Bour S & Strebel K (1996) The human immunodeficiency virus (HIV) type 2 envelope protein is a functional complement to HIV type 1 Vpu that enhances particle release of heterologous retroviruses, J Virol, 70, 8285–8300

    PubMed  CAS  Google Scholar 

  13. Bour S & Strebel K (2000) HIV accessory proteins: multifunctional components of a complex system, Adv Pharmacol, 48, 75–120

    Article  PubMed  CAS  Google Scholar 

  14. Buonocore L & Rose J K (1990) Prevention of HIV-1 glycoprotein transport by soluble CD4 retained in the endoplasmic reticulum, Nature, 345, 625–628

    Article  PubMed  CAS  Google Scholar 

  15. Buonocore L & Rose J K (1993) Blockade of human immunodeficiency virus type 1 production in CD4+ T cells by an intracellular CD4 expressed under control of the viral long terminal repeat, Proc Natl Acad Sci USA, 90, 2695–2699

    Article  PubMed  CAS  Google Scholar 

  16. Callahan M A, Handley M A, Lee Y H & et al (1998) Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family, J Virol, 72, 5189–5197

    PubMed  CAS  Google Scholar 

  17. Casella C R, Rapaport E L & Finkel T H (1999) Vpu increases susceptibility of human immunodeficiency virus type 1-infected cells to fas killing, J Virol, 73, 92–100

    PubMed  CAS  Google Scholar 

  18. Chen M Y, Maldarelli F, Karczewski M K & et al (1993) Human immunodeficiency virus type 1 Vpu protein induces degradation of CD4 in vitro: the cytoplasmic domain of CD4 contributes to Vpu sensitivity, J Virol, 67, 3877–3884

    PubMed  CAS  Google Scholar 

  19. Chiu Y L, Soros V B, Kreisberg J F & et al (2005) Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells, Nature, 435, 108–114

    Article  PubMed  CAS  Google Scholar 

  20. Chiu Y L, Witkowska H E, Hall S C & et al (2006)High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition, Proc Natl Acad Sci USA, 103, 15588–15593

    Article  PubMed  CAS  Google Scholar 

  21. Conticello S G, Harris R S & Neuberger M S (2003) The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G, Curr Biol, 13, 2009–2013

    Article  PubMed  CAS  Google Scholar 

  22. Crise B, Buonocore L & Rose J K (1990) CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor, J Virol, 64, 5585–5593

    PubMed  CAS  Google Scholar 

  23. Ewart G D, Sutherland T, Gage P W & et al (1996) The Vpu protein of human immunodeficiency virus type 1 forms cation- selective ion channels, J Virol, 70, 7108–7115

    PubMed  CAS  Google Scholar 

  24. Gallois-Montbrun S, Kramer B, Swanson C M & et al (2007) Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules, J Virol, 81, 2165–2178

    Article  PubMed  CAS  Google Scholar 

  25. Giles K E, Caputi M & Beemon K L (2004). Packaging and reverse transcription of snRNAs by retroviruses may generate pseudogenes, RNA, 10, 299–307

    Article  PubMed  CAS  Google Scholar 

  26. Goila-Gaur R & Strebel K (2008) HIV-1 Vif, APOBEC, and intrinsic immunity, Retrovirology, 5, 51

    Article  PubMed  CAS  Google Scholar 

  27. Goto T, Kennel S J, Abe M & et al (1994) A novel membrane antigen selectively expressed on terminally differentiated human B cells, Blood, 84, 1922–1930

    PubMed  CAS  Google Scholar 

  28. Guo F, Cen S, Niu M & et al (2006) Inhibition of tRNA3Lys-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication, J Virol, 80, 11710–11722

    Article  PubMed  CAS  Google Scholar 

  29. Guo F, Cen S, Niu M & et al (2007) The interaction of APOBEC3G with human immunodeficiency virus type 1 nucleocapsid inhibits tRNA3Lys annealing to viral RNA, J Virol, 81, 11322–11331

    Article  PubMed  CAS  Google Scholar 

  30. Harila K, Prior I, Sjoberg M & et al (2006) Vpu and Tsg101 ­regulate intracellular targeting of the human immunodeficiency virus type 1 core protein precursor Pr55gag, J Virol, 80, 3765–3772

    Article  PubMed  CAS  Google Scholar 

  31. Harila K, Salminen A, Prior I & et al (2007) The Vpu-regulated endocytosis of HIV-1 Gag is clathrin-independent, Virology, 369, 299–308

    Article  PubMed  CAS  Google Scholar 

  32. Harris R S, Bishop K N, Sheehy A M & et al (2003) DNA deamination mediates innate immunity to retroviral infection, Cell, 113, 803–809

    Article  PubMed  CAS  Google Scholar 

  33. Hochstrasser M (1996). Protein degradation or regulation: Ub the judge, Cell, 84, 813–815

    Article  PubMed  CAS  Google Scholar 

  34. Holmes R K, Koning F A, Bishop KN & et al (2007) APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G, J Biol Chem, 282, 2587–2595

    Article  PubMed  CAS  Google Scholar 

  35. Hsu K, Seharaseyon J, Dong P & et al (2004) Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel, Mol Cell, 14, 259–267

    Article  PubMed  CAS  Google Scholar 

  36. Ishikawa J, Kaisho T, Tomizawa H & et al (1995) Molecular cloning and chromosomal mapping of a bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth, Genomics, 26, 527–534

    Article  PubMed  CAS  Google Scholar 

  37. Jabbar M A & Nayak D P (1990)Intracellular interaction of human immunodeficiency virus type 1 (ARV-2) envelope glycoprotein gp160 with CD4 blocks the movement and maturation of CD4 to the plasma membrane, J Virol, 64, 6297–6304

    PubMed  CAS  Google Scholar 

  38. Jarmuz, A., Chester, A., Bayliss, J., Gisbourne & et al (2002) An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22, Genomics, 79, 285–296

    Article  PubMed  CAS  Google Scholar 

  39. Kao S, Goila-Gaur R, Miyagi E & et al (2007). Production of infectious virus and degradation of APOBEC3G are separable functional properties of human immunodeficiency virus type 1 Vif, Virology, 369, 329–339

    Article  PubMed  CAS  Google Scholar 

  40. Kao S, Khan M A, Miyagi E & et al (2003) The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity, J Virol, 77, 11398–11407

    Article  PubMed  CAS  Google Scholar 

  41. Karczewski M K & Strebel K (1996) Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein, J Virol, 70, 494–507

    PubMed  CAS  Google Scholar 

  42. Khan M A, Aberham C, Kao S, Akari H & et al (2001) Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA, J Virol, 75, 7252–7265

    Article  PubMed  CAS  Google Scholar 

  43. Khan, M. A., Akari, H., Kao, S & et al (2002) Intravirion processing of the human immunodeficiency virus type 1 Vif protein by the viral protease may be correlated with Vif function, J Virol, 76, 9112–9123

    Article  PubMed  CAS  Google Scholar 

  44. Khan M A, Goila-Gaur R, Opi S & et al (2007). Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions, Retrovirology, 4, 48

    Article  PubMed  CAS  Google Scholar 

  45. Khan M A, Kao S, Miyagi E & et al (2005) Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes, J Virol, 79, 5870–5874

    Article  PubMed  CAS  Google Scholar 

  46. Klimkait T, Strebel K, Hoggan M D & et al (1990) The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release, J Virol, 64, 621–629

    PubMed  CAS  Google Scholar 

  47. Kozak S L, Marin M, Rose K M & et al (2006) The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules, J Biol Chem, 281, 29105–29119

    Article  PubMed  CAS  Google Scholar 

  48. Kupzig S, Korolchuk V, Rollason R & et al (2003) Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology, Traffic, 4, 694–709

    Article  PubMed  CAS  Google Scholar 

  49. Lau P P, Zhu H J, Baldini A & et al (1994) Dimeric structure of a human apolipoprotein B mRNA editing protein and cloning and chromosomal localization of its gene, Proc Natl Acad Sci USA, 91, 8522–8526

    Article  PubMed  CAS  Google Scholar 

  50. Lecossier D, Bouchonnet F, Clavel F & et al (2003) Hypermutation of HIV-1 DNA in the absence of the Vif protein, Science, 300, 1112

    Article  PubMed  CAS  Google Scholar 

  51. Li X Y, Guo F, Zhang L & et al (2007) APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription, J Biol Chem, 282, 32065–32074

    Article  PubMed  CAS  Google Scholar 

  52. Liddament M T, Brown W L, Schumacher A J & et al (2004) APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo, Curr Biol, 14, 1385–1391

    Article  PubMed  CAS  Google Scholar 

  53. Luo K, Wang T, Liu B & et al (2007) Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation, J Virol, 81, 7238–7248

    Article  PubMed  CAS  Google Scholar 

  54. Ma C, Marassi F M, Jones D H & et al (2002) Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1, Protein Sci, 11, 546–557

    Article  PubMed  CAS  Google Scholar 

  55. Mangeat B, Turelli P, Caron G & et al (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts, Nature, 424, 99–103

    Article  PubMed  CAS  Google Scholar 

  56. Mangeat B, Turelli P, Liao S & et al (2004) A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action, J Biol Chem, 279, 14481–14483

    Article  PubMed  CAS  Google Scholar 

  57. Marassi F M, Ma C, Gratkowski H & et al (1999 Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1, Proc Natl Acad Sci USA, 96, 336–14341

    Article  Google Scholar 

  58. Margottin F, Bour S P, Durand H & et al (1998) A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif, Mol Cell, 1, 565–574

    Article  PubMed  CAS  Google Scholar 

  59. Mariani R, Chen D, Schrofelbauer B & et al (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif, Cell, 114, 21–31

    Article  PubMed  CAS  Google Scholar 

  60. Marin M, Rose K M, Kozak S L & et al (2003) HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation, Nat Med, 9, 1398–1403

    Article  PubMed  CAS  Google Scholar 

  61. Mbisa J L, Barr R, Thomas J A & et al (2007). Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration, J Virol, 81, 7099–7110

    Article  PubMed  CAS  Google Scholar 

  62. Mehle A, Strack B, Ancuta P & et al (2004) Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway, J Biol Chem, 279, 7792–7798

    Article  PubMed  CAS  Google Scholar 

  63. Miyagi E, Andrew A J, Kao S & et al (2009) Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion, Proc Natl Acad Sci USA, (volume and pages are missing)

    Google Scholar 

  64. Miyagi E, Opi S, Takeuchi H & et al (2007) Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1 J Virol, 81, 13346–13353

    Article  PubMed  CAS  Google Scholar 

  65. Navarro F, Bollman B, Chen H & et al (2005) Complementary function of the two catalytic domains of APOBEC3G, Virology, 333, 374–386

    Article  PubMed  CAS  Google Scholar 

  66. Neil S J, Eastman S W, Jouvenet N & et al (2006) HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane, PLoS Pathog, 2, e39

    Article  PubMed  CAS  Google Scholar 

  67. Neil S J, Sandrin V, Sundquist W I & et al (2007) An interferon-alpha-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein, Cell Host Microbe, 2, 193–203

    Article  PubMed  CAS  Google Scholar 

  68. Neil S J, Zang T & Bieniasz P D (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu, Nature, 451, 425–430

    Article  PubMed  CAS  Google Scholar 

  69. Newman E N, Holmes R K, Craig H M & et al (2005) Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity, Curr Biol, 15, 166–170

    Article  PubMed  CAS  Google Scholar 

  70. Ohtomo T, Sugamata Y, Ozaki Y & et al (1999) Molecular cloning and characterization of a surface antigen preferentially overexpressed on multiple myeloma cells, Biochem Biophys Res Commun, 258, 583–591

    Article  PubMed  CAS  Google Scholar 

  71. Onafuwa-Nuga A A, King S R & Telesnitsky A (2005) Nonrandom packaging of host RNAs in moloney murine leukemia virus, J Virol, 79, 13528–13537

    Article  PubMed  CAS  Google Scholar 

  72. Onafuwa-Nuga A A, Telesnitsky A & King S R (2006) 7SL RNA, but not the 54-kd signal recognition particle protein, is an abundant component of both infectious HIV-1 and minimal virus-like particles, RNA, 12, 542–546

    Article  PubMed  CAS  Google Scholar 

  73. Opi S, Kao S, Goila-Gaur R & et al (2007) Human immunodeficiency virus type 1 Vif inhibits packaging and antiviral activity of a degradation-resistant APOBEC3G variant, J Virol, 81, 8236–8246

    Article  PubMed  CAS  Google Scholar 

  74. Opi S, Takeuchi H, Kao S & et al (2006) Monomeric APOBEC3G is catalytically active and has antiviral activity, J Virol, 80, 4673–4682

    Article  PubMed  CAS  Google Scholar 

  75. Pahl H L (1999) Activators and target genes of Rel/NF-kappaB transcription factors, Oncogene, 18, 6853–6866

    Article  PubMed  CAS  Google Scholar 

  76. Paul M & Jabbar M A (1997) Phosphorylation of both phosphoacceptor sites in the HIV-1 Vpu cytoplasmic domain is essential for Vpu-mediated ER degradation of CD4, Virology, 232, 207–216

    Article  PubMed  CAS  Google Scholar 

  77. Piller S C, Ewart G D, Premkumar A & et al (1996) Vpr protein of human immunodeficiency virus type 1 forms cation-selective channels in planar lipid bilayers, Proc Natl Acad Sci USA, 93, 111–115

    Article  PubMed  CAS  Google Scholar 

  78. Ritter G D, Yamshchikov G, Cohen S J 7& et al (1996) Human immunodeficiency virus type 2 glycoprotein enhancement of particle budding: role of the cytoplasmic domain, J Virol, 70, 2669–2673

    PubMed  CAS  Google Scholar 

  79. Rulli S J, Jr, Hibbert C S, Mirro J & et al (2007) Selective and nonselective packaging of cellular RNAs in retrovirus particles, J Virol, 81, 6623–6631

    Article  PubMed  CAS  Google Scholar 

  80. Sakai H, Tokunaga K, Kawamura M & et al (1995) Function of human immunodeficiency virus type 1 Vpu protein in various cell types, J Gen Virol, 76 (Part 11), 2717–2722

    Article  PubMed  CAS  Google Scholar 

  81. Schrofelbauer B, Chen D & Landau N R (2004) A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif), Proc Natl Acad Sci USA, 101, 3927–3932

    Article  PubMed  CAS  Google Scholar 

  82. Schubert U, Bour S, Ferrer-Montiel A V & et al (1996) The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains, J Virol, 70:809–819

    PubMed  CAS  Google Scholar 

  83. Schubert U, Bour B, Willey R L & et al (1999) Regulation of virus release by the macrophage-tropic human immunodeficiency virus type 1 AD8 isolate is redundant and can be controlled by either Vpu or Env, J Virol, 73, 887–896

    PubMed  CAS  Google Scholar 

  84. Schubert U, Ferrer-Montiel A V, Oblatt-Montal M & et al (1996) Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells, FEBS Lett., 398, 12–18

    Article  PubMed  CAS  Google Scholar 

  85. Schubert U & Strebel K (1994) Differential activities of the human immunodeficiency virus type 1-encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments, J Virol, 68, 2260–2271

    PubMed  CAS  Google Scholar 

  86. Sheehy A M, Gaddis N C, Choi J D & et al (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein, Nature, 418, 646–650

    Article  PubMed  CAS  Google Scholar 

  87. Sheehy A M, Gaddis N C & et al (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif, Nat Med, 9, 1404–1407

    Article  PubMed  CAS  Google Scholar 

  88. Shindo K, Takaori-Kondo A, Kobayashi M & et al (2003) The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity, J Biol Chem, 278, 44412–44416

    Article  PubMed  CAS  Google Scholar 

  89. Skowyra D, Koepp D M, Kamura T & et al (1999) Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1, Science, 284, 662–665

    Article  PubMed  CAS  Google Scholar 

  90. Stopak K, de Noronha C, Yonemoto W & et al (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability, Mol Cell, 12, 591–601

    Article  PubMed  CAS  Google Scholar 

  91. Strebel K (2007) HIV Accessory Genes Vif and Vpu, Adv Pharmacol, 55, 199–232

    Article  PubMed  CAS  Google Scholar 

  92. Strebel K, Daugherty D, Clouse K & et al (1987) The HIV ‘A’ (sor) gene product is essential for virus infectivity, Nature, 328, 728–730

    Article  PubMed  CAS  Google Scholar 

  93. Strebel K, Klimkait T, Maldarelli F & et al (1989) Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein, J Virol, 63, 3784–3791

    PubMed  CAS  Google Scholar 

  94. Strebel K, Klimkait T & Martin M A (1988) A novel gene of HIV-1, vpu, and its 16-kilodalton product, Science, 241, 1221–1223

    Article  PubMed  CAS  Google Scholar 

  95. Svarovskaia E S, Xu H, Mbisa J L & et al (2004) Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs, J Biol Chem, 279, 35822–35828

    Article  PubMed  CAS  Google Scholar 

  96. Takeuchi H, Kao S, Miyagi E & et al (2005) Production of infectious SIVagm from human cells requires functional inactivation but not viral exclusion of human APOBEC3G, J Biol Chem, 280, 375–382

    Article  PubMed  CAS  Google Scholar 

  97. Terwilliger E F, Cohen E A, Lu Y C & et al (1989) Functional role of human immunodeficiency virus type 1 vpu, Proc Natl Acad Sci USA, 86, 5163–5167

    Article  PubMed  CAS  Google Scholar 

  98. Van Damme N, Goff D, Katsura C & et al (2008) The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein, Cell Host Microbe, 3, 245–252

    Article  PubMed  CAS  Google Scholar 

  99. Van Damme N & Guatelli J (2008) HIV-1 Vpu inhibits accumulation of the envelope glycoprotein within clathrin-coated, Gag-containing endosomes, Cell Microbiol, 10, 1040–1057

    Article  PubMed  CAS  Google Scholar 

  100. Varthakavi V, Heimann-Nichols E, Smith R M & et al (2008) Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu, Nat Med, 14, 641–647

    Article  PubMed  CAS  Google Scholar 

  101. Varthakavi V, Smith R M, Bour S P & et al (2003) Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production, Proc Natl Acad Sci USA, 100, 15154–15159

    Article  PubMed  CAS  Google Scholar 

  102. Wichroski M J, Ichiyama K & Rana T M (2005) Analysis of HIV-1 viral infectivity factor-mediated proteasome-dependent depletion of APOBEC3G: correlating function and subcellular localization, J Biol Chem, 280, 8387–8396

    Article  PubMed  CAS  Google Scholar 

  103. Wiegand H L, Doehle B P, Bogerd H P & et al (2004) A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins, EMBO J, 23, 2451–2458

    Article  PubMed  CAS  Google Scholar 

  104. Willey R L, Maldarelli F, Martin M A & et al (1992) Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes, J Virol, 66, 226–234

    PubMed  CAS  Google Scholar 

  105. Willey R L, Maldarelli F, Martin M A & et al (1992) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4, J Virol, 66, 7193–7200

    PubMed  CAS  Google Scholar 

  106. Xu H, Svarovskaia E S, Barr R & et al (2004) A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion, Proc Natl Acad Sci USA, 101, 5652–5657

    Article  PubMed  CAS  Google Scholar 

  107. Yu Q, Konig R, Pillai S & et al (2004) Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome, Nat Struct Mol Biol, 11, 435–442

    Article  PubMed  CAS  Google Scholar 

  108. Yu X, Yu Y, Liu B & et al (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex, Science, 302, 1056–1060

    Article  PubMed  CAS  Google Scholar 

  109. Yu Y, Xiao Z, Ehrlich E S & et al (2004) Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines, Genes Dev, 18, 2867–2872

    Article  PubMed  CAS  Google Scholar 

  110. Zhang H, Yang B, Pomerantz R J & et al (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA, Nature, 424, 94–98

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Strebel, K. (2010). HIV-1 Accessory Proteins: Crucial Elements for Virus-Host Interactions. In: Georgiev, V. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-512-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-512-5_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-511-8

  • Online ISBN: 978-1-60761-512-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics