Skip to main content

Role of the NKG2D Receptor in Health and Disease

  • Chapter
  • First Online:
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 732 Accesses

Abstract

Natural-killer (NK) cells are inflammatory cytokine-producing and/or cytotoxic lymphocytes that comprise a major component of the innate immune system. NK cells express a large variety of activating receptors dedicated to accomplishing this task, one of which is NKG2D. This receptor is also expressed on subsets of T cells, where it functions to transmit co-stimulatory signals. The fact that viruses and tumors have evolved strategies to evade NKG2D-mediated immune recognition highlights the importance of this receptor in immunity. This article describes the molecular properties of NKG2D; the diverse array of ligands with which it interacts; the biological mechanisms that regulate its cell-surface expression and, very importantly, the role that NKG2D plays in a variety of disease pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burgess,S J, Maasho K, Masilamani M et al (2008) The NKG2D receptor: immunobiology and clinical implications, Immunol Res 40: 18–34

    Article  PubMed  CAS  Google Scholar 

  2. Groh V, Rhinehart R, Randolph-Habecker J et al (2001) Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells, Nat Immunol 2: 255–260

    Article  PubMed  CAS  Google Scholar 

  3. Bauer S, Groh V, Wu, J et al. (1999) Activation of NK cells and T cells by NKG2D, a receptor for stressinducible MICA, Science 285: 727–729

    Article  PubMed  CAS  Google Scholar 

  4. Maasho K, Opoku-Anane J, Marusina A I et al (2005) NKG2D is a costimulatory receptor for human naive CD8+ T cells, J Immunol 174: 4480–4484

    PubMed  CAS  Google Scholar 

  5. Garrity D, Call M E, Feng J et al (2005) The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure, Proc Natl Acad Sci USA. 102: 7641–7646

    Article  PubMed  CAS  Google Scholar 

  6. Gilfillan S, Ho E L, Cella M et al (2002) NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation, Nat Immunol 3: 1150–1155

    Article  PubMed  CAS  Google Scholar 

  7. Wu J, Song, Y, Bakker A B et al (1999) An activating immunoreceptor complex formed by NKG2D and DAP10, Science 285: 730–732

    Article  PubMed  CAS  Google Scholar 

  8. Carr W H., Rosen D B, Arase H et al (2007) Cutting Edge: KIR3DS1, a gene implicated in resistance to progression to AIDS, encodes a DAP12-associated receptor expressed on NK cells that triggers NK cell activation, J Immunol 178: 647–651

    PubMed  CAS  Google Scholar 

  9. Lanier L L, Corliss,B, Wu J et al (1998) Association of DAP12 with activating CD94/NKG2C NK cell receptors, Immunity 8: 693–701

    Article  PubMed  CAS  Google Scholar 

  10. Raulet D H (2003) Roles of the NKG2D immunoreceptor and its ligands, Nat. Rev. Immunol. 3: 781–790

    Article  PubMed  CAS  Google Scholar 

  11. Lazetic S, Chang C, Houchins J P et al (1996) Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits, J Immunol 157: 4741–4745

    PubMed  CAS  Google Scholar 

  12. Diefenbach A, Tomasello A E, Lucas M et al. (2002) Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D, Nat Immunol 3: 1142–1149

    Article  PubMed  CAS  Google Scholar 

  13. Rosen, D B, Araki M, Hamerman J A et al (2004) A structural basis for the association of DAP12 with mouse, but not human, NKG2D, J Immunol 173: 2470–2478

    PubMed  CAS  Google Scholar 

  14. Upshaw J L, Arneson L N, Schoon R A et al (2006) NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3-kinase in human natural killer cells, Nat Immunol 7: 524–532

    Article  PubMed  CAS  Google Scholar 

  15. MacFarlane A W & Campbell K S (2006) Signal transduction in natural killer cells, Curr Top Microbiol Immunol 298: 23–57

    Article  PubMed  Google Scholar 

  16. Gonzalez S, Lopez-Soto A, Suarez-Alvarez B et al (2008) NKG2D ligands: key targets of the immune response, Trends Immunol 29: 397–403

    Article  PubMed  CAS  Google Scholar 

  17. Bahram S, Mizuki N, Inoko H et al (1996) Nucleotide sequence of the human MHC class I MICA gene, Immunogenetics 44: 80–81

    Article  PubMed  CAS  Google Scholar 

  18. Bahram S (2000) MIC genes: from genetics to biology, Adv Immunol 76: 1–60

    Article  PubMed  CAS  Google Scholar 

  19. Cerwenka A & Lanier L L (2003) NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer, Tissue Antigens 61: 335–343

    Article  PubMed  CAS  Google Scholar 

  20. Groh V, Bahram S, Bauer S et al (1996) Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium, Proc. Natl Acad Sci USA. 93: 12445–12450

    Article  PubMed  CAS  Google Scholar 

  21. Perez-Rodriguez,M, Arguello J R, Fischer G et al. (2002) Further polymorphism of the MICA gene, Eur J Immunogenet. 29: 35–46

    Article  PubMed  CAS  Google Scholar 

  22. Hughes E H, Collins R W, Kondeatis E et al (2005) Associations of major histocompatibility complex class I chain-related molecule polymorphisms with Behcet’s disease in Caucasian patients, Tissue Antigens 66: 195–199

    Article  PubMed  CAS  Google Scholar 

  23. Martinez-Borra, J, Gonzalez S, Lopez-Vazquez A et al (2000) HLA-B27 alone rather than B27-related class I haplotypes contributes to ankylosing spondylitis susceptibility, Hum Immunol 61: 131–139

    Article  PubMed  CAS  Google Scholar 

  24. Gonzalez S, Brautbar C, Martinez-Borra J et al. (2001) Polymorphism in MICA rather than HLA-B/C genes is associated with psoriatic arthritis in the Jewish population, Hum Immunol 62: 632–638

    Article  PubMed  CAS  Google Scholar 

  25. Gonzalez S, Martinez-Borra J, Lopez-Vazquez A et al (2002) MICA rather than MICB, TNFA, or HLA-DRB1 is associated with susceptibility to psoriatic arthritis, Rheumatol 29: 973–978

    CAS  Google Scholar 

  26. Huang Y, Lee M Y J, Chen R et al (2000) Polymorphism of transmembrane region of MICA gene and Kawasaki disease, Exp Clin Immunogenet 17: 130–137

    Article  PubMed  CAS  Google Scholar 

  27. Stern-Ginossar N, Gur C, Biton M et al (2008) Human microRNAs regulate stress induced immune responses mediated by the receptor NKG2D, Nat Immunol 9: 1065–1073

    Article  PubMed  CAS  Google Scholar 

  28. Yadav D, Ngolab J, Lim R S et al (2009) Cutting edge: Down-regulation of MHC class I-related chain A on tumor cells by IFN-gamma-induced microRNA, J Immunol 182: 39–43

    PubMed  CAS  Google Scholar 

  29. Spies T (2008) Regulation of NKG2D ligands: a purposeful but delicate affair, Nat Immunol 9: 1013–1015

    Article  PubMed  CAS  Google Scholar 

  30. Cosman D, Mullberg J, Sutherland C L et al (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor, Immunity 14: 123–133

    Article  PubMed  CAS  Google Scholar 

  31. Kubin M, Cassiano L, Chalupny J et al (2001) ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells, Eur J Immunol 31: 1428–1437

    Article  PubMed  CAS  Google Scholar 

  32. Jan Chalupny N, Sutherland C L, Lawrence W A et al (2003) ULBP4 is a novel ligand for human NKG2D, Biochem Biophys Res Commun 305: 129–135

    Article  PubMed  CAS  Google Scholar 

  33. Cao W, Xi X, Wang Z et al. (2008) Four novel ULBP splice variants are ligands for human NKG2D, Int Immunol 20: 981–991

    Article  PubMed  CAS  Google Scholar 

  34. Zou Z, Nomura M, Takihara Y et al (1996) Isolation and characterization of retinoic acid-inducible cDNA clones in F9 cells: a novel cDNA family encodes cell surface proteins sharing partial homology with MHC class I molecules, J Biochem (Tokyo) 119: 319–328

    Article  CAS  Google Scholar 

  35. Diefenbach A, Jensen E R, Jamieson A M et al (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity, Nature 413: 165–171

    Article  PubMed  CAS  Google Scholar 

  36. Takada A, Yoshida S, Kajikawa, M et al (2008) Two novel NKG2D ligands of the mouse H60 family with differential expression patterns and binding affinities to NKG2D, J Immunol 180: 1678–1685

    PubMed  CAS  Google Scholar 

  37. Cerwenka A, Bakker A B, McClanahan T et al (2000) Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice, Immunity 12: 721–727

    Article  PubMed  CAS  Google Scholar 

  38. Carayannopoulos L N, Naidenko O V, Fremont D H et al (2002) Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D, J Immunol 169: 4079–4083

    PubMed  CAS  Google Scholar 

  39. Billadeau D D, Upshaw J L, Schoon R A et al (2003) NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk independent regulatory pathway, Nat Immunol 4: 557–564

    Article  PubMed  CAS  Google Scholar 

  40. Ward S G (1996) CD28: a signalling perspective, Biochem J 318(Pt 2): 361–377

    PubMed  CAS  Google Scholar 

  41. Hornstein I, Alcover A, Katzav S (2004) Vav proteins, masters of the world of cytoskeleton organization, Cell Signal 16: 1–11

    Article  PubMed  CAS  Google Scholar 

  42. Bustelo X R (2001) Vav proteins, adaptors and cell signaling, Oncogene 20: 6372–6381

    Article  PubMed  CAS  Google Scholar 

  43. Cella M, Fujikawa K, Tassi I et al (2004) Differential requirements for Vav proteins in DAP10- and ITAM-mediated NK cell cytotoxicity, J Exp Med 200: 817–823

    Article  PubMed  CAS  Google Scholar 

  44. Meresse B, Chen Z, Ciszewski C et al (2004) Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease, Immunity 21: 357–366

    Article  PubMed  CAS  Google Scholar 

  45. Sutherland C L, Chalupny N J, Schooley K et al (2002) UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells, J. Immunol 168: 671–679

    PubMed  CAS  Google Scholar 

  46. Khurana D, Arneson L N, Schoon R A et al (2007) Differential regulation of human NK cell-mediated cytotoxicity by the tyrosine kinase Itk, J Immunol 178: 3575–3582

    PubMed  CAS  Google Scholar 

  47. Giurisato E, Cella M, Takai et al[first initial?] (2007) Phosphatidylinositol 3-kinase activation is required to form the NKG2D immunological synapse, Mol Cell Biol 27: 8583–8599

    Article  PubMed  CAS  Google Scholar 

  48. Andre P, Castriconi R, Espeli M et al (2004) Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors, Eur J Immunol 34: 961–971

    Article  PubMed  CAS  Google Scholar 

  49. Bryceson Y T, March M E, Ljunggren H G et al (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion, Blood 107: 159–166

    Article  PubMed  CAS  Google Scholar 

  50. Jamieson A M, Diefenbach A, McMahon C W et al (2002) The role of the NKG2D immunoreceptor in immune cell activation and natural killing, Immunity 17: 19–29

    Article  PubMed  CAS  Google Scholar 

  51. Zompi S, Hamerman J A, Ogasawara K et al (2003) NKG2D triggers cytotoxicity in mouse NK cells lacking DAP12 or Syk family kinases, Nat Immunol 4: 565–572

    Article  PubMed  CAS  Google Scholar 

  52. Diefenbach A, Jamieson A M, Liu S D et al (2000) Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages, Nat Immunol 1: 119–126

    Article  PubMed  CAS  Google Scholar 

  53. Chaix J, Tessmer M S, Hoebe K et al (2008) Cutting edge: Priming of NK cells by IL-18, J Immunol 181: 1627–1631

    PubMed  CAS  Google Scholar 

  54. Lucas M, Schachterle W, Oberle K et al (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin 15, Immunity 26: 503–517

    Article  PubMed  CAS  Google Scholar 

  55. Horng T, Bezbradica J S, Medzhitov R (2007) NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway, Nat Immunol 8: 1345–1352

    Article  PubMed  CAS  Google Scholar 

  56. Masilamani M, Nguyen C, Kabat J et al (2006) CD94/NKG2A inhibits NK cell activation by disrupting the actin network at the immunological synapse, J Immunol 177: 3590–3596

    PubMed  CAS  Google Scholar 

  57. Regunathan J, Chen Y, Wang D et al (2005) NKG2D receptor-mediated NK cell function is regulated by inhibitory Ly49 receptors, Blood 105: 233–240

    Article  PubMed  CAS  Google Scholar 

  58. Cerwenka A, Baron J L, Lanier L L (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo, Proc Natl Acad Sci USA 98: 11521–11526

    Article  PubMed  CAS  Google Scholar 

  59. Moretta L & Moretta A (2004) Unravelling natural killer cell function: triggering and inhibitory human NK receptors, EMBO J 23: 255–259

    Article  PubMed  CAS  Google Scholar 

  60. Gonzalez S, Groh V, Spies T (2006) Immunobiology of human NKG2D and its ligands, Curr Top Microbiol Immunol 298: 121–138

    Article  PubMed  CAS  Google Scholar 

  61. Houchins J P, Yabe T, McSherry C et al (1991) DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells, J Exp Med 173: 1017–1020

    Article  PubMed  CAS  Google Scholar 

  62. Plougastel B & Trowsdale J (1997) Cloning of NKG2-F, a new member of the NKG2 family of human natural killer cell receptor genes, Eur J Immunol 27: 2835–2839

    Article  PubMed  CAS  Google Scholar 

  63. Lieto L D, Borrego F, You C H et al (2003) Human CD94 gene expression: dual promoters differing in responsiveness to IL-2 or IL-15, J Immunol 171: 5277–5286

    PubMed  CAS  Google Scholar 

  64. Marusina A I, Kim D K, Lieto L D et al (2005) GATA-3 is an important transcription factor for regulating human NKG2A gene expression, J Immunol 174: 2152–2159

    PubMed  CAS  Google Scholar 

  65. Yim D, Jie H B, Sotiriadis J et al (2001) Molecular cloning and characterization of pig immunoreceptor DAP10 and NKG2D, Immunogenetics 53: 243–249

    Article  PubMed  CAS  Google Scholar 

  66. Marusina A I, Burgess S J, Pathmanathan I et al (2008) Regulation of human DAP10 gene expression in NK and T cells by Ap-1 transcription factors, J Immunol 180: 409–417

    PubMed  CAS  Google Scholar 

  67. Dhanji S & Teh H S (2003) IL-2-activated CD8+ CD44 high cells express both adaptive and innate immune system receptors and demonstrate specificity for syngeneic tumor cells, J Immunol 171: 3442–3450

    PubMed  CAS  Google Scholar 

  68. Verneris M R, Karami M, Baker J et al (2004) Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells, Blood 103: 3065–3072

    Article  PubMed  CAS  Google Scholar 

  69. Dann S M, Wang H C, Gambarin K J et al (2005) Interleukin-15 activates human natural killer cells to clear the intestinal protozoan cryptosporidium, J Infect Dis 192: 1294–1302

    Article  PubMed  CAS  Google Scholar 

  70. Roberts A I, Lee L, Schwarz E et al (2001) NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment, J Immunol 167: 5527–5530

    PubMed  CAS  Google Scholar 

  71. Groh V, Bruhl A, El-Gabalawy H et al (2003) Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis, Proc Natl Acad Sci USA 100: 9452–9457

    Article  PubMed  CAS  Google Scholar 

  72. Zhang C, Zhang J, Niu J et al (2008) Interleukin-12 improves cytotoxicity of natural killer cells via upregulated expression of NKG2D, Hum Immunol 69: 490–500

    Article  PubMed  CAS  Google Scholar 

  73. de Rham C, Ferrari-Lacraz S, Jendly S et al (2007) The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors, Arthritis Res Ther 9: R125

    Article  PubMed  CAS  Google Scholar 

  74. Zhang H, Snyder K M, Suhoski M M et al (2007) 4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy, J Immunol 179: 4910–4918

    PubMed  CAS  Google Scholar 

  75. Takaki R, Hayakawa Y, Nelson A et al (2005) IL-21 enhances tumor rejection through a NKG2D dependent mechanism, J Immunol 175: 2167–2173

    PubMed  CAS  Google Scholar 

  76. Burgess S J, Marusina A I, Pathmanathan et al (2006) IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells, J Immunol 176: 1490–1497

    PubMed  CAS  Google Scholar 

  77. Zhang C Z, Tian G, Zhang J et al (2004) [The negative regulatory effect of IFN-gamma on cognitive function of human natural killer cells], Zhonghua Zhong Liu Za Zhi 26: 324–327

    PubMed  CAS  Google Scholar 

  78. Castriconi R, Cantoni C, Della Chiesa M et al (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells, Proc Natl Acad Sci USA 100: 4120–4125

    Article  PubMed  CAS  Google Scholar 

  79. Lee J C, Lee K M, Kim D W et al (2004) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients, J Immunol 172: 7335–7340

    PubMed  CAS  Google Scholar 

  80. Dasgupta S, Bhattacharya-Chatterjee M, O’Malley B W, Jr. et al (2005) Inhibition of NK cell activity through TGF-{beta}1 by down-regulation of NKG2D in a murine model of head and neck cancer, J Immunol 175: 5541–5550

    PubMed  CAS  Google Scholar 

  81. Ghiringhelli F, Menard C, Terme M et al (2005) CD4+ CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner, J Exp Med 202: 1075–1085

    Article  PubMed  CAS  Google Scholar 

  82. Friese M A, Wischhusen J, Wick W et al (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo, Cancer Res 64: 7596–7603

    Article  PubMed  CAS  Google Scholar 

  83. Song H, Hur D Y, Kim K E et al (2006) IL-2/IL-18 prevent the down-modulation of NKG2D by TGF7 beta in NK cells via the c-Jun N-terminal kinase (JNK) pathway, Cell Immunol 242; 39–45

    Article  PubMed  CAS  Google Scholar 

  84. Kim Y J, Han M K, Broxmeyer H E (2008) 4-1BB regulates NKG2D costimulation in human cord blood CD8+ T cells, Blood 111: 1378–1386

    Article  PubMed  CAS  Google Scholar 

  85. Krockenberger M, Dombrowski Y, Weidler C et al (2008) Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D, J Immunol 180: 7338–7348

    PubMed  CAS  Google Scholar 

  86. Chiesa M D, Carlomagno S, Frumento G et al (2006) The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function, Blood 108: 4118–412.

    Article  PubMed  CAS  Google Scholar 

  87. Groh V, Wu J, Yee C et al (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T -cell activation, Nature 419: 734–738

    Article  PubMed  CAS  Google Scholar 

  88. Raffaghello L, Prigione I, Airoldi I et al (2004) Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma, Neoplasia 6: 558–568

    Article  PubMed  CAS  Google Scholar 

  89. Holdenrieder S, Stieber P, Peterfi A et al (2006) Soluble MICA in malignant diseases, Int J Cancer 118: 684–687

    Article  PubMed  CAS  Google Scholar 

  90. Salih H R, Rammensee H G, Steinle A (2002) Cutting edge: downregulation of MICA on human tumors by proteolytic shedding, J Immunol 169: 4098–4102

    PubMed  CAS  Google Scholar 

  91. Groh V, Smythe K, Dai Z et al (2006) Fas ligand-mediated paracrine T cell regulation by the receptor NKG2D in tumor immunity, Nat Immunol 7: 755–762

    Article  PubMed  CAS  Google Scholar 

  92. Mincheva-Nilsson L, Nagaeva O, Chen T et al (2006) Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: a possible novel immune escape mechanism for fetal survival, J Immunol. 176: 3585–3592

    PubMed  CAS  Google Scholar 

  93. Salih H R, Holdenrieder S, Steinle A (2008) Soluble NKG2D ligands: prevalence, release, and functional impact, Front Biosci 13: 3448–3456

    Article  PubMed  CAS  Google Scholar 

  94. Oppenheim D E, Roberts S J, Clarke S L et al (2005) Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance, Nat Immunol 6: 928–937

    Article  PubMed  CAS  Google Scholar 

  95. Coudert J D, Zimmer J, Tomasello E et al (2005) Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells, Blood 106: 1711–1717

    Article  PubMed  CAS  Google Scholar 

  96. Moretta A, Marcenaro E, Parolini S et al (2008) NK cells at the interface between innate and adaptive immunity, Cell Death Differ 15: 226–233

    Article  PubMed  CAS  Google Scholar 

  97. Lunemann A, Lunemann J D, Roberts S et al (2008) Human NK cells kill resting but not activated microglia via NKG2D- and NKp46-mediated recognition, J Immunol 181: 6170–6177

    PubMed  CAS  Google Scholar 

  98. Nedvetzki S, Sowinski S, Eagle R A et al (2007) Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses, Blood 109: 3776–3785

    Article  PubMed  CAS  Google Scholar 

  99. Kloss M, Decker P, Baltz K M et al (2008) Interaction of monocytes with NK cells upon Toll-like receptor-induced expression of the NKG2D ligand MICA, J Immunol 181: 6711–6719

    PubMed  CAS  Google Scholar 

  100. Basu S, Eriksson M, Pioli P A et al (2009) Human uterine NK cells interact with uterine macrophages via NKG2D upon stimulation with PAMPs, Am J Reprod Immunol 61: 52–61

    Article  PubMed  Google Scholar 

  101. Nausch N, Galani I E, Schlecker E et al (2008) Mononuclear myeloid-derived ”suppressor” cells express RAE-1 and activate natural killer cells, Blood 112: 4080–4089

    Article  PubMed  CAS  Google Scholar 

  102. Hayakawa Y & Smyth M J (2006) Innate immune recognition and suppression of tumors, Adv Cancer Res 95: 293–322

    Article  PubMed  CAS  Google Scholar 

  103. Verhoeven D H, de Hooge A S, Mooiman E C et al (2008) NK cells recognize and lyse Ewing sarcoma cells through NKG2D and DNAM-1 receptor dependent pathways, Mol Immunol 45: 3917–3925

    Article  PubMed  CAS  Google Scholar 

  104. Fuertes M B, Girart M V, Molinero L L et al (2008) Intracellular retention of the NKG2D ligand MHC class I chain-related gene A in human melanomas confers immune privilege and prevents NK cell-mediated cytotoxicity, J Immunol 180: 4606–4614

    PubMed  CAS  Google Scholar 

  105. Strid J, Roberts S J, Filler R B et al (2008) Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis, Nat Immunol 9: 146–154

    Article  PubMed  CAS  Google Scholar 

  106. Guerra N, Tan Y X, Joncker N T et al (2008) NKG2D deficient mice are defective in tumor surveillance in models of spontaneous malignancy, Immunity 28: 571–580

    Article  PubMed  CAS  Google Scholar 

  107. Hyka-Nouspikel N, Lucian L, Murphy E et al (2007) DAP10 deficiency breaks the immune tolerance against transplantable syng J. H. eneic melanoma, J. Immunol 179: 3763–3771

    CAS  Google Scholar 

  108. Salih H R, Antropius H, Gieseke F et al (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia, Blood 102: 1389–1396

    Article  PubMed  CAS  Google Scholar 

  109. Kohga K, Takehara T, Tatsumi T et al (2008) Serum levels of soluble major histocompatibility complex (MHC) class I-related chain A in patients with chronic liver diseases and changes during transcatheter arterial embolization for hepatocellular carcinoma, Cancer Sci 99: 1643–1649

    Article  PubMed  CAS  Google Scholar 

  110. Arreygue-Garcia N A, Daneri-Navarro A, del Toro-Arreola A et al (2008) Augmented serum level of major histocompatibility complex class I-related chain A (MICA) protein and reduced NKG2D expression on NK and T cells in patients with cervical cancer and precursor lesions, BMC Cancer 8: 16

    Article  PubMed  CAS  Google Scholar 

  111. Le Maux Chansac B, Misse D, Richon C et al (2008) Potentiation of NK cell mediated cytotoxicity in human lung adenocarcinoma: role of NKG2D- dependent pathway, Int Immunol 20: 801–810

    Article  PubMed  CAS  Google Scholar 

  112. Kaiser B K, Yim D, Chow I T et al (2007) Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands, Nature 447: 482–486

    Article  PubMed  CAS  Google Scholar 

  113. Clayton A, Mitchell J P, Court J et al (2008) Human tumor-derived exosomes down-modulate NKG2D expression, J Immunol 180: 7249–7258

    PubMed  CAS  Google Scholar 

  114. Coudert J D, Scarpellino L, Gros F et al (2008) Sustained NKG2D engagement induces cross-tolerance of multiple distinct NK cell activation pathways, Blood 111: 3571–3578

    Article  PubMed  CAS  Google Scholar 

  115. Jinushi M, Hodi F S, Dranoff G (2006) Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity, Proc Natl Acad Sci USA 103: 9190–9195

    Article  PubMed  CAS  Google Scholar 

  116. Barber A, Zhang T, Sentman C L (2008) Immunotherapy with chimeric NKG2D receptors leads to long-term tumor-free survival and development of host antitumor immunity in murine ovarian cancer, J Immunol 180: 7278

    Google Scholar 

  117. Nausch N & Cerwenka A (2008) NKG2D ligands in tumor immunity, Oncogene 27: 5944–5958

    Article  PubMed  CAS  Google Scholar 

  118. Waldhauer I & Steinle A (2008) NK cells and cancer immunosurveillance, Oncogene 27: 5932–5943

    Article  PubMed  CAS  Google Scholar 

  119. Hue S, Mention J J, Monteiro R C et al (2004) A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease, Immunity 21: 367–377

    Article  PubMed  Google Scholar 

  120. Caillat-Zucman S (2006) How NKG2D ligands trigger autoimmunity? Hum Immunol 67: 204–207

    Article  PubMed  CAS  Google Scholar 

  121. Goronzy J J & Weyand C M (2004) T-cell regulation in rheumatoid arthritis, Curr Opin Rheumatol 16: 212–217

    Article  PubMed  CAS  Google Scholar 

  122. Allez M, Tieng V, Nakazawa A et al (2007) CD4+NKG2D+ T cells in Crohn’s disease mediate inflammatory and cytotoxic responses through MICA interactions, Gastroenterology 132: 2346–2358

    Article  PubMed  CAS  Google Scholar 

  123. Ogasawara K, Hamerman J A, Ehrlich L R et al (2004) NKG2D blockade prevents autoimmune diabetes in NOD mice, Immunity 20: 757–767

    Article  PubMed  CAS  Google Scholar 

  124. Wicker L S, Todd J A, Peterson L B (1995) Genetic control of autoimmune diabetes in the NOD mouse, Annu Rev Immunol 13: 179–200

    Article  PubMed  CAS  Google Scholar 

  125. Rogner U C, Boitard C, Morin J et al (2001) Three loci on mouse chromosome 6 influence onset and final incidence of type I diabetes in NOD.C3H congenic strains, Genomics 74: 163–171

    Article  PubMed  CAS  Google Scholar 

  126. Cerwenka A & Lanier L L (2001) Natural killer cells, viruses and cancer, Nat Rev Immunol 1: 41–49

    Article  PubMed  CAS  Google Scholar 

  127. Fang M, Lanier L L, Sigal L J (2008) A role for NKG2D in NK cell mediated resistance to poxvirus disease, PLoS Pathog 4: e30

    Article  PubMed  CAS  Google Scholar 

  128. Walsh K B, Lodoen M B, Edwards R A et al (2008) Evidence for differential roles for NKG2D receptor signaling in innate host defense against coronavirus-induced neurological and liver disease, J Virol 82: 3021–3030

    Article  PubMed  CAS  Google Scholar 

  129. Vilarinho S, Ogasawara K, Nishimura S et al (2007) Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus, Proc Natl Acad Sci USA 104: 18187–18192

    Article  PubMed  CAS  Google Scholar 

  130. Thomas M, Boname J M, Field S et al (2008) Down-regulation of NKG2D and NKp80 ligands by Kaposi’s sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity, Proc Natl Acad Sci USA 105: 1656–1661

    Article  PubMed  CAS  Google Scholar 

  131. Lenac T, Budt M, Arapovic J et al (2006) The herpesviral Fc receptor fcr-1 down-regulates the NKG2D ligands MULT-1 and H60, J Exp Med 203: 1843–1850

    Article  PubMed  CAS  Google Scholar 

  132. Dunn C, Chalupny N J, Sutherland C L et al (2003) Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity, J Exp Med 197: 1427–1439

    Article  PubMed  CAS  Google Scholar 

  133. Welte S A, Sinzger C, Lutz S Z et al (2003) Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein, Eur. J Immunol 33: 194–203

    Article  PubMed  CAS  Google Scholar 

  134. Rolle A, Mousavi-Jazi M, Eriksson M et al. (2003) Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein, J Immunol 171: 902–908

    PubMed  Google Scholar 

  135. Chalupny N J, Rein-Weston A, Dosch S et al (2006) Downregulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142, Biochem Biophys Res Commun 346; 175–181

    Article  PubMed  CAS  Google Scholar 

  136. Lodoen M, Ogasawara K, Hamerman J A et al (2003) NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules, J Exp Med 197: 1245–1253

    Article  PubMed  CAS  Google Scholar 

  137. Krmpotic A, Busch D H, Bubic I et al (2002) MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo, Nat Immunol 3: 529–535

    Article  PubMed  CAS  Google Scholar 

  138. Hasan M, Krmpotic A, Ruzsics Z et al (2005) Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein, J Virol 79: 2920–2930

    Article  PubMed  CAS  Google Scholar 

  139. Krmpotic A, Hasan M, Loewendorf A et al (2005) NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145, J Exp Med 201: 211–220

    Article  PubMed  CAS  Google Scholar 

  140. Stern-Ginossar N, Elefant N, Zimmermann A et al (2007) Host immune system gene targeting by a viral miRNA, Science 317: 376–381

    Article  PubMed  CAS  Google Scholar 

  141. Budt M, Reinhard H, Bigl A et al (2004) Herpesviral Fcgamma receptors: culprits attenuating antiviral IgG? Int Immunopharmacol 4: 1135–1148

    Article  PubMed  CAS  Google Scholar 

  142. Thale R, Lucin P, Schneider K et al (1994) Identification and expression of a murine cytomegalovirus early gene coding for an Fc receptor, J Virol 68: 7757–7765

    PubMed  CAS  Google Scholar 

  143. Campbell J A, Trossman D S, Yokoyama W M et al (2007) Zoonotic orthopoxviruses encode a high-affinity antagonist of NKG2D, J Exp Med 204: 1311–1317

    Article  PubMed  CAS  Google Scholar 

  144. Borchers M T, Harris N L, Wesselkamper S C et al (2006) The NKG2D-activating receptor mediates pulmonary clearance of Pseudomonas aeruginosa, Infect Immun 74: 2578–2586

    Article  PubMed  CAS  Google Scholar 

  145. Wesselkamper S C, Eppert B L, Motz G T et al (2008) NKG2D is critical for NK cell activation in host defense against Pseudomonas aeruginosa respiratory infection, J Immunol 181: 5481–5489

    PubMed  CAS  Google Scholar 

  146. Collins R W (2004) Human MHC class I chain related (MIC) genes: their biological function and relevance to disease and transplantation, Eur J Immunogenet 31: 105–114

    Article  PubMed  CAS  Google Scholar 

  147. Mizutani K, Terasaki P, Bignon J D et al (2006) Association of kidney transplant failure and antibodies against MICA, Hum Immunol 67: 683–691

    Article  PubMed  CAS  Google Scholar 

  148. Suarez-Alvarez B, Lopez-Vazquez A, Diaz-Molina B et al C. (2006) The predictive value of soluble major histocompatibility complex class I chain-related molecule A (MICA) levels on heart allograft rejection, Transplantation 82: 354–361

    Article  PubMed  CAS  Google Scholar 

  149. Ogasawara K, Benjamin J, Takaki R et al (2005) Function of NKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts, Nat Immunol 6: 938–945

    Article  PubMed  CAS  Google Scholar 

  150. Seiler M, Brabcova I, Viklicky O et al (2007) Heightened expression of the cytotoxicity receptor NKG2D correlates with acute and chronic nephropathy after kidney transplantation, Am J Transplant 7: 423–433

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burgess, S.J., Narayanan, S., Borrego, F., Coligan, J.E. (2010). Role of the NKG2D Receptor in Health and Disease. In: Georgiev, V. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-512-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-512-5_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-511-8

  • Online ISBN: 978-1-60761-512-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics