Skip to main content

The Evolution of Gammaretrovirus Restriction Factors in the Mouse

  • Chapter
  • First Online:
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 719 Accesses

Abstract

Mice exposed to infectious retroviruses are subject to virus-induced disease or virus-induced genetic mutations. While mice are protected by the innate and acquired immune systems, they have also evolved numerous constitutively expressed antiviral factors that target various stages of the retroviral life cycle, and these factors have been identified largely in studies with gammaretroviruses, specifically the mouse leukaemia viruses (MLVs). The factors responsible for this intrinsic immunity can block or interfere with different stages in the viral life cycle, namely virus entry, uncoating and reverse transcription, integration, assembly, or release. These host resistance factors can also select for the outgrowth of virus variants able to circumvent those blocks. These evolutionary pressures result in a ratchet-like pattern of sequential mutations in host and virus that, in the critical regions of the responsible genes, generate substantial polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanger J J, Bromham, L D, McKee, J J & et al (2000). The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to Gibbon ape leukemia virus, J Virol, 74, 4264–4272

    Article  PubMed  CAS  Google Scholar 

  2. Lieber M M, Sherr C J, Todaro G J & et al (1975). Isolation from the Asian mouse Mus caroli of an endogenous type C virus related to infectious primate type C viruses, Proc Natl Acad Sci U.S.A., 72, 2315–2319

    Article  PubMed  CAS  Google Scholar 

  3. Tarlinton R E, Meers J & Young P R (2006). Retroviral invasion of the koala Genome, Nature, 442, 79–81

    Article  PubMed  CAS  Google Scholar 

  4. Dong B, Kim S, Hong S & et al (2007). An infectious retrovirus susceptible to an IFN antiviral pathway from human prostate tumors, Proc Natl Acad Sci U.S.A., 104, 655–1660

    Google Scholar 

  5. Schlaberg R, Choe D J, Brown K R & et al. (2009). XMRV is present in malignant prostatic epithelium and is associated with prostate cancer, especially high-grade tumors, Proc Natl Acad Sci USA, 106, 16351–16356

    Article  PubMed  CAS  Google Scholar 

  6. Lombardi V C, Ruscetti F W, Sas Gupta J & et al (2009). Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome, Science, 326, 585–589.

    CAS  Google Scholar 

  7. Stocking C & Kozak C A (2008). Murine endogenous retroviruses, Cell Mol Life Sci, 65, 3383–98

    Article  PubMed  CAS  Google Scholar 

  8. Albritton L M, Kim J W, Tseng L & et al (1993). Envelope- binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses, J Virol, 67, 2091–2096

    PubMed  CAS  Google Scholar 

  9. Eiden M V, Farrell K, Warsowe J & et al (1993). Characterization of a naturally occurring ecotropic receptor that does not facilitate entry of all ecotropic murine retroviruses, J Virol, 67, 4056–4061

    PubMed  CAS  Google Scholar 

  10. Yan Y, Knoper R C & Kozak C A (2007). Wild mouse variants of envelope genes of xenotropic/polytropic mouse gammaretroviruses and their XPR1 receptors elucidate receptor determinants of virus entry, J Virol, 81, 10550–10557

    Article  PubMed  CAS  Google Scholar 

  11. Yan Y, Liu Q, & Kozak C A (2009). Six host range variants of the xenotropic/polytropic gammaretroviruses define determinants for entry in the XPR1 receptor. Retrovirology, 6, 87

    Article  PubMed  Google Scholar 

  12. Marin M, Tailor C S, Nouri A & et al (1999). Polymorphisms of the cell surface receptor control mouse susceptibilities to xenotropic and polytropic leukemia viruses, J Virol, 73, 9362–9368

    PubMed  CAS  Google Scholar 

  13. Levy J A & Pincus, T (1970). Demonstration of biological activity of a murine leukemia virus of New Zealand black mice, Science, 170, 326–327

    Article  PubMed  CAS  Google Scholar 

  14. Fischinger P J, Nomura S, & Bolognesi, D P (1975). A novel murine oncornavirus with dual eco- and xenotropic properties, Proc Natl Acad Sci U.S.A., 72, 5150–5155

    Article  PubMed  CAS  Google Scholar 

  15. Hartley J W, Wolford N K, Old L J & et al (1977). A new class of murine leukemia virus associated with development of spontaneous lymphomas, Proc Natl Acad Sci U.S.A., 74, 789–792

    Article  PubMed  CAS  Google Scholar 

  16. O’Neill R R, Khan A S, Hoggan M D & et al (1986). Specific hybridization probes demonstrate fewer xenotropic than mink cell focus-forming murine leukemia virus env-related sequences in DNAs from inbred laboratory mice, J Virol, 58, 359–366

    PubMed  Google Scholar 

  17. Kozak C A & O’Neill R R (1987). Diverse wild mouse origins of xenotropic, mink cell focus-forming, and two types of ecotropic proviral genes, J Virol, 61, 3082–3088

    PubMed  CAS  Google Scholar 

  18. Ch’ang, L-Y, Yang W K, Myer F E & et al (1989). Specific sequence deletions in two classes of murine leukemia virus-related proviruses in the mouse genome, Virology, 168, 245–255

    Article  PubMed  Google Scholar 

  19. Boursot P, Auffray J-C, Britton-Davidian J & et al (1993). The evolution of house mice, Annu Rev Ecol Syst, 24, 119–152

    Article  Google Scholar 

  20. Guenet J-L & Bonhomme, F (2003). Wild mice: an ever-increasing contribution to a popular mammalian model, Trends Genet, 19, 24–31

    Article  PubMed  CAS  Google Scholar 

  21. Yang H, Bell T A, Churchill G A & et al (2007) On the subspecific origin of the laboratory mouse, Nature Genet, 39, 1100–1107

    Article  PubMed  CAS  Google Scholar 

  22. Kozak C A, Hartley, J W & Morse III H C (1984). Laboratory and wild-derived mice with multiple loci for production of xenotropic murine leukemia virus, J Virol, 51, 77–80

    PubMed  CAS  Google Scholar 

  23. Khan A S, Rowe W P & Martin M A (1982). Cloning of endogenous murine leukemia virus-related sequences from chromosomal DNA of BALB/c and AKR/J mice: identification of an env progenitor of AKR-247 mink cell focus-forming proviral DNA, J Virol, 44, 625–636

    PubMed  CAS  Google Scholar 

  24. Lyu, M S & Kozak C A (1996). Genetic basis for resistance to polytropic murine leukemia viruses in the wild mouse species Mus castaneus, J Virol, 70, 830–833

    PubMed  CAS  Google Scholar 

  25. Kozak C A (1985). Susceptibility of wild mouse cells to exogenous infection with xenotropic leukemia viruses: control by a single dominant locus on chromosome 1, J Virol, 55, 690–695

    PubMed  CAS  Google Scholar 

  26. Peebles P T (1975). An in vitro focus-induction assay for xenotropic murine leukemia virus, feline leukemia virus C, and the feline-primate viruses RD-114/CCC/M-7, Virology, 67, 288–291

    Article  PubMed  CAS  Google Scholar 

  27. Cloyd M W, Thompson M M & Hartley J W (1985). Host range of mink cell focus-inducing viruses, Virology, 140, 239–248

    Article  PubMed  CAS  Google Scholar 

  28. Tailor C S, Nouri A, Lee C G & et al (1999). Cloning and characteri­zation of a cell surface receptor for xenotropic and polytropic murine leukemia viruses, Proc Natl Acad Sci U.S.A., 96, 927–932

    Article  PubMed  CAS  Google Scholar 

  29. Yang Y-L, Guo L, Xu S & et al (1999). Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1, Nature Genet, 21, 216–219

    Article  PubMed  Google Scholar 

  30. Battini J L, Rasko J E J & Miller A D (1999). A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction, Proc Natl Acad Sci U.S.A., 96, 1385–1390

    Article  PubMed  CAS  Google Scholar 

  31. Van Hoeven N S & Miller A D (2005). Use of different but overlapping determinants in a retrovirus receptor accounts for non-reciprocal interference between xenotropic and polytropic murine leukemia viruses, Retrovirology, 2, 76

    Article  PubMed  Google Scholar 

  32. Tailor C S, Lavillette D, Marin M & et al (2003). Cell surface receptors for gammaretroviruses, Curr Top Microbiol Immunol, 281, 29–106

    Article  PubMed  CAS  Google Scholar 

  33. Brown J K, Fung C & Tailor C S (2006). Comprehensive mapping of receptor-functioning domains in feline leukemia virus subgroup C receptor FLVCR1, J Virol, 80, 1742–1751

    Article  PubMed  CAS  Google Scholar 

  34. Battini J-L, Heard J M & Danos O (1992). Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses, J Virol, 66, 1468–1475

    PubMed  CAS  Google Scholar 

  35. Wu T, Yan Y & Kozak C A (2005). Rmcf2, a xenotropic provirus in the Asian mouse species Mus castaneus, blocks infection by polytropic mouse gammaretroviruses, J Virol, 79, 9677–9684

    Article  PubMed  CAS  Google Scholar 

  36. Jung Y T, Lyu M S, Buckler-White A & et al (2002). Characterization of a polytropic murine leukemia virus proviral sequence associated with the virus resistance gene Rmcf of DBA/2 mice, J Virol, 76, 8218–8224

    Article  PubMed  CAS  Google Scholar 

  37. Ikeda H, Laigret F, Martin M A & Repaske R (1985). Characterization of a molecularly cloned retroviral sequence associated with Fv-4 resistance, J Virol, 55, 768–777

    PubMed  CAS  Google Scholar 

  38. Taylor G M, Gao Y & Sanders D A (2001). Fv-4: Identification of the defect in Env and the mechanism of resistance to ecotropic murine leukemia virus, J Virol, 75, 11244–11248

    Article  PubMed  CAS  Google Scholar 

  39. Hartley J W, Yetter R A & Morse III H C (1983). A mouse gene on chromosome 5 that restricts infectivity of mink cell focus-forming recombinant murine leukemia viruses, J Exp Med, 158, 16–24

    Article  PubMed  CAS  Google Scholar 

  40. Bassin R H, Ruscetti S, Ali I & et al (1982). Normal DBA/2 mouse cells synthesize a glycoprotein which interferes with MCF virus Infection, Virology, 123, 139–151

    Article  PubMed  CAS  Google Scholar 

  41. Ruscetti S, Davis L, Field J & et al (1981). Friend murine leukemia virus-induced leukemia is associated with the formation of mink cell focus-inducing viruses and is blocked in mice expressing endogenous mink cell focus-inducing xenotropic viral envelope genes, J Exp Med, 154, 907–920

    Article  PubMed  CAS  Google Scholar 

  42. Ruscetti S, Matthai R & Potter M (1985). Susceptibility of BALB/c mice carrying various DBA/2 genes to development of Friend murine leukemia virus- induced erythroleukemia, J Exp Med, 162, 1579–1587

    Article  PubMed  CAS  Google Scholar 

  43. Lyu M S, Nihrane A & Kozak C A (1999). Receptor-mediated interference mechanism responsible for resistance to polytropic leukemia viruses in Mus castaneus, J Virol, 73, 3733–3736

    PubMed  CAS  Google Scholar 

  44. Robinson H L, Astrin S M, Senior A M & et al (1981). Host susceptibility to endogenous viruses: defective, glycoprotein-expressing proviruses interfere with infections, J Virol, 40, 745–751

    PubMed  CAS  Google Scholar 

  45. McDougall A S, Terry A, Tzavaras T & et al (1994). Defective endogenous proviruses are expressed in feline lymphoid cells: evidence for a role in natural resistance to subgroup B feline leukemia viruses, J Virol, 68, 2151–2160

    PubMed  CAS  Google Scholar 

  46. Spencer T E, Mura M, Gray C A & et al (2003). Receptor usage and fetal expression of ovine endogenous betaretroviruses: implications for coevolution of endogenous and exogenous retroviruses, J Virol, 77, 749–753

    Article  PubMed  CAS  Google Scholar 

  47. Chattopadhyay S K, Oliff A I, Linemeyer D L & et al (1981). Genomes of murine leukemia viruses isolated from wild mice, J Virol, 39, 777–791

    PubMed  CAS  Google Scholar 

  48. Inaguma Y, Miyashita N, Moriwaki K & et al (1991). Acquisition of two endogenous ecotropic murine leukemia viruses in distinct Asian wild mouse populations, J Virol, 65, 1796–1802

    PubMed  CAS  Google Scholar 

  49. Ikeda H, Kato K, Kitani H & et al (2001). Virological properties and nucleotide sequences of Cas-E-type endogenous ecotropic murine leukemia viruses in South Asian wild mice, Mus musculus castaneus, J Virol, 75, 5049–5058

    Article  PubMed  CAS  Google Scholar 

  50. Qi C-F, Bonhomme F, Buckler-White A, Buckler C & et al (1998). Molecular phylogeny of Fv1, Mamm Genome, 9, 1049–1055

    Article  PubMed  CAS  Google Scholar 

  51. Pincus T, Hartley J W & Rowe W P (1971). A major genetic locus affecting resistance to infection with murine leukemia viruses. I. Tissue culture studies of naturally occurring viruses, J Exp Med, 133, 1219–1233

    Article  PubMed  CAS  Google Scholar 

  52. Hartley J W, Rowe W P & Huebner R J (1970). Host-range restrictions of murine leukemia viruses in mouse embryo cell cultures, J Virol, 5, 221–225

    PubMed  CAS  Google Scholar 

  53. Kozak C A (1985). Analysis of wild-derived mice for the Fv-1 and Fv-2 murine leukemia virus restriction loci: a novel wild mouse Fv-1 allele responsible for lack of host range restriction, J Virol, 55, 281–285

    PubMed  CAS  Google Scholar 

  54. Jung Y T & Kozak C A (2000). A single amino acid change in the murine leukemia virus capsid gene responsible for the Fv1 nr phenotype, J Virol, 74, 5385– 5387

    Article  PubMed  CAS  Google Scholar 

  55. Hartley J W & Rowe W P (1975). Clonal cell lines from a feral mouse embryo which lack host-range restrictions for murine leukemia viruses, Virology, 65, 128– 134

    Article  PubMed  CAS  Google Scholar 

  56. Lander M R & Chattopadhyay S K (1984). A Mus dunni cell line that lacks sequences closely related to endogenous murine leukemia viruses and can be infected by ecotropic, amphotropic, xenotropic, and mink cell focus-forming viruses, J Virol, 52, 695–698

    PubMed  CAS  Google Scholar 

  57. Kozak C A & Chakraborti A (1996). Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance, Virology, 225, 300–305

    Article  PubMed  CAS  Google Scholar 

  58. Benit L, De Parseval N, Casella J-F & et al (1997). Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene, J Virol, 71, 5652–5657

    PubMed  CAS  Google Scholar 

  59. Sveda M M & Soeiro R (1976). Host restriction of Friend leukemia virus: synthesis and integration of the provirus, Proc Natl Acad Sci U.S.A., 73, 2356–2360

    Article  PubMed  CAS  Google Scholar 

  60. Stevens A, Bock M, Ellis S & et al (2004). Retroviral capsid determinants of Fv1 NB and NR Tropism, J Virol, 78, 9592–9598

    Article  PubMed  CAS  Google Scholar 

  61. Yap M W, Nisole S, Lynch C & et al (2004). Trim5αprotein restricts both HIV-1 and murine leukemia virus, Proc Natl Acad Sci U.S.A., 101, 10786–10791

    Article  PubMed  CAS  Google Scholar 

  62. Yan Y & Kozak C A (2008). Novel postentry resistance to AKV ecotropic mouse gammaretroviruses in the African pygmy mouse, Mus minutoides, J Virol, 82, 6120–6129

    Article  PubMed  CAS  Google Scholar 

  63. Yan Y, Buckler-White A, Wollenberg K & et al (2009). Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus, Proc Natl Acad Sci U.S.A., 106, 3259–3263

    Article  PubMed  CAS  Google Scholar 

  64. Bishop K N, Bock M, Towers G & et al (2001). Identification of the regions of Fv1 necessary for murine leukemia virus restriction, J Virol, 75, 5182–5188

    Article  PubMed  CAS  Google Scholar 

  65. Yang Z (1997). PAML: a program package for phylogenetic analysis by maximum Likelihood, Comput Appl Biosci, 13, 555–556

    PubMed  CAS  Google Scholar 

  66. Yang Z, Wong W S W & Nielsen R (2005). Bayes empirical Bayes inference of amino acid sites under positive selection, Mol Bio Evol, 22, 1107–1118

    Article  CAS  Google Scholar 

  67. Alin K & Goff S P (1996). Mutational analysis of interactions between the Gag precursor proteins of murine leukemia viruses, Virology, 216, 418–424

    Article  PubMed  CAS  Google Scholar 

  68. Alin K & Goff S P (1996). Amino acid substitutions in the CA protein of Moloney murine leukemia virus that block early events in infection, Virology, 222, 339–351

    Article  PubMed  CAS  Google Scholar 

  69. Gamble T R, Yoo S, Vajdos F F & et al (1997). Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein, Science, 278, 849–853

    Article  PubMed  CAS  Google Scholar 

  70. Strambio-de-Castilla C & Hunter E (1992). Mutational analysis of the major homology region of Mason-Pfizer monkey virus by use of saturation mutagenesis, J Virol, 66, 7021–7032

    Google Scholar 

  71. Orlinsky K J, Gu J, Hoyt M & et al (1996). Mutations in the Ty3 major homology region affect multiple steps in Ty3 Retro­transposition, J Virol, 70, 3440–3448

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kozak, C.A. (2010). The Evolution of Gammaretrovirus Restriction Factors in the Mouse. In: Georgiev, V. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-512-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-512-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-511-8

  • Online ISBN: 978-1-60761-512-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics