Skip to main content

Ca2+ Oscillations Regulate Contraction Of Intrapulmonary Smooth Muscle Cells

  • Conference paper
  • First Online:
Book cover Membrane Receptors, Channels and Transporters in Pulmonary Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 661))

Abstract

Pulmonary blood pressure is a function of the resistance of the intrapulmonary blood vessels. Consequently, the mechanisms controlling blood vessel smooth muscle cell (SMC) contraction serve as potential sites for hypertension therapy. To explore these mechanisms, access to the intrapulmonary vessels is required and this is provided by the observation of a unique lung slice preparation with microscopy. There are 2 major processes that determine SMC tone; the intracellular Ca2+ concentration and the sensitivity of the SMCs to Ca2+. Agonist-induced increases in Ca2+ occur in the form of propagating Ca2+ oscillations that predominately utilize internal Ca2+ stores and inositol trisphosphate receptors. The frequency of these Ca2+ oscillations correlates with contraction. Agonists also increase Ca2+ sensitivity of SMCs to enhance contraction. Changes in membrane potential mediated by KCl also stimulate contraction via slow Ca2+ oscillations and increased sensitivity. However, these slow Ca2+ oscillations rely on Ca2+ influx to drive the cyclic release of over-filled Ca2+ stores via the ryanodine receptor. The relaxation of SMC tone can be induced by the reduction of the frequency of the Ca2+ oscillations and the Ca2+ sensitivity by b2-adrenergic agonists or nitric oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V, Ward JPT (2006) Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol 570:53-58

    Article  PubMed  CAS  Google Scholar 

  2. Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. J Appl Physiol 98:390-403

    Article  PubMed  CAS  Google Scholar 

  3. Held HD, Martin C, Uhlig S (1999) Characterization of airway and vascular responses in murine lungs. Br J Pharmacol 126:1191-1199

    Article  PubMed  CAS  Google Scholar 

  4. Perez JF, Sanderson MJ (2005) The contraction of smooth muscle cells of intrapulmonary arterioles is determined by the frequency of Ca2+ oscillations induced by 5-HT and KCl. J Gen Physiol 125:555-567

    Article  PubMed  CAS  Google Scholar 

  5. Martin C, Uhlig S, Ullrich V (1996) Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur Respir J 9:2479-2487

    Article  PubMed  CAS  Google Scholar 

  6. Martin C, Uhlig SU, V (1996) Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur Respir J 9:2479-2487

    Article  PubMed  CAS  Google Scholar 

  7. Bai Y, Sanderson MJ (2009) The contribution of Ca2+ signaling and Ca2+ sensitivity to the regulation of airway smooth muscle contraction is different in rats and mice. Am J Physiol Lung Cell Mol Physiol 296:L947-L958

    Article  Google Scholar 

  8. Ressmeyer AR, Larsson AK, Vollmer E, Dahlen SE, Uhlig S, Martin C (2006) Characterisation of guinea pig precision-cut lung slices: comparison with human tissues. Eur Respir J 28:603-611

    Article  PubMed  CAS  Google Scholar 

  9. Bai Y, Zhang M, Sanderson MJ (2007) Contractility and Ca2+ signaling of smooth muscle cells in different generations of mouse airways. Am J Respir Cell Mol Biol 36:122-130

    Article  PubMed  CAS  Google Scholar 

  10. Perez JF, Sanderson MJ (2005) The frequency of calcium oscillations induced by 5-HT, ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. J Gen Physiol 125:535-553

    Article  PubMed  CAS  Google Scholar 

  11. Bai Y, Sanderson MJ (2006) Modulation of the Ca2+ sensitivity of airway smooth muscle cells in murine lung slices. Am J Physiol Lung Cell Mol Physiol 291:L208-L221

    Article  PubMed  CAS  Google Scholar 

  12. Perez-Zoghbi JF, Sanderson MJ (2007) Endothelin-induced contraction of bronchiole and pulmonary arteriole smooth muscle cells is regulated by intracellular Ca2+ oscillations and Ca2+ sensitization. Am J Physiol Lung Cell Mol Physiol 293:L1000-L1011

    Article  PubMed  CAS  Google Scholar 

  13. Wier WG, Morgan KG (2003) 1α-Adrenergic signaling mechanisms in contraction of resistance arteries. Rev Physiol Biochem Pharmacol 150:91-139

    Article  PubMed  CAS  Google Scholar 

  14. Bai Y, Sanderson MJ (2006) Airway smooth muscle relaxation results from a reduction in the frequency of Ca2+ oscillations induced by a cAMP-mediated inhibition of the IP3 receptor. Respir Res 7:34

    Article  PubMed  Google Scholar 

  15. Sneyd J, Tsaneva-Atanasova K, Reznikov V, Bai Y, Sanderson MJ, Yule DI (2006) A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. Proc Natl Acad Sci U S A 103:1675-1679

    Article  PubMed  CAS  Google Scholar 

  16. Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586:5047-5061

    Article  PubMed  CAS  Google Scholar 

  17. Zhuge R, Fogarty KE, Baker SP, McCarron JG, Tuft RA, Lifshitz LM, Walsh JV Jr (2004) Ca2+ spark sites in smooth muscle cells are numerous and differ in number of ryanodine receptors, large-conductance K+ channels, and coupling ratio between them. Am J Physiol Cell Physiol 287:C1577-C1588

    Article  PubMed  CAS  Google Scholar 

  18. Mueller-Hoecker J, Beitinger F, Fernandez B, Bahlmann O, Assmann G, Troidl C, Dimomeletis I, Kaab S, Deindl E (2008) Of rodents and humans: a light microscopic and ultrastructural study on cardiomyocytes in pulmonary veins. Int J Med Sci 5:152-158

    Article  PubMed  Google Scholar 

  19. Jaggar JH, Porter VA, Lederer WJ, Nelson MT (2000) Calcium sparks in smooth muscle. Am J Physiol Cell Physiol 278:C235-C256

    PubMed  CAS  Google Scholar 

  20. Janssen LJ (2002) Ionic mechanisms and Ca2+ regulation in airway smooth muscle contraction: do the data contradict dogma? Am J Physiol Lung Cell Mol Physiol 282:L1161-L1178

    PubMed  CAS  Google Scholar 

  21. Lamont C, Wier WG (2004) Different roles of ryanodine receptors and inositol (1,4,5)-trisphosphate receptors in adrenergically stimulated contractions of small arteries. Am J Physiol Heart Circ Physiol 287:H617-H625

    Article  PubMed  CAS  Google Scholar 

  22. MacMillan D, Chalmers S, Muir TC, McCarron JG (2005) IP3-mediated Ca2+ increases do not involve the ryanodine receptor, but ryanodine receptor antagonists reduce IP3-mediated Ca2+ increases in guinea-pig colonic smooth muscle cells. J Physiol 569:533-544

    Article  PubMed  CAS  Google Scholar 

  23. Jude JA, Wylam ME, Walseth TF, Kannan MS (2008) Calcium signaling in airway smooth muscle. Proc Am Thorac Soc 5:15-22

    Article  PubMed  CAS  Google Scholar 

  24. Dupont G, Houart G, De Koninck P (2003) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model. Cell Calcium 34:485-497

    Article  PubMed  CAS  Google Scholar 

  25. Wang I, Politi AZ, Tania N, Bai Y, Sanderson MJ, Sneyd J (2008) A mathematical model of airway and pulmonary arteriole smooth muscle. Biophys J 94:2053-2064

    Article  PubMed  CAS  Google Scholar 

  26. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757-810

    Article  PubMed  CAS  Google Scholar 

  27. Delmotte P, Sanderson MJ (2008) Effects of albuterol isomers on the contraction and Ca2+ signaling of small airways in mouse lung slices. Am J Respir Cell Mol Biol 38:524-531

    Article  PubMed  CAS  Google Scholar 

  28. Perez-Zoghbi JF, Sanderson MJ (2007) cGMP-mediated relaxation of bronchioles occur though inhibition of the Ca2+ oscillations without affecting the Ca2+ sensitivity. Am J Resp Crit Care Med 175:A524

    Google Scholar 

  29. Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase I β.Nature 404:197-201

    Article  PubMed  CAS  Google Scholar 

  30. Sneyd J, Tsaneva-Atanasova K, Yule DI, Thompson JL, Shuttleworth TJ (2004) Control of calcium oscillations by membrane fluxes. Proc Natl Acad Sci U S A 101:1392-1396

    Article  PubMed  CAS  Google Scholar 

  31. Putney JW, Bird GS (2008) Cytoplasmic calcium oscillations and store-operated calcium influx. J Physiol 586:3055-3059

    Article  PubMed  CAS  Google Scholar 

  32. Firth AL, Remillard CV, Yuan JX-J (2007) TRP channels in hypertension. Biochim Biophys Acta 1772:895-906

    Article  PubMed  CAS  Google Scholar 

  33. Ressmeyer AR, Bai Y, Delmotte P, Uy KF, Thistlethwaite P, Fraire A, Sato O, Ikebe M, Sanderson MJ (2009) Human airway contraction and formoterol-induced relaxation is determined by Ca2+ oscillations and Ca2+ sensitivity. Am J Respir Cell Mol Biol. Sep 18. [Epub ahead of print]

    Google Scholar 

  34. Bai Y, Edelmann M, Sanderson MJ (2009) The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca(2+) signaling of airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 297:L347-L361

    Article  PubMed  CAS  Google Scholar 

  35. Delmotte P, Sanderson MJ ( 2009) Effects of formoterol on contraction and Ca2+ signaling of mouse airway smooth muscle cells. Am J Respir Cell Mol Biol. Jun 5. [Epub ahead of print]

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health grants HL71930 and HL087401 to M.J. Sanderson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sanderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Sanderson, M.J., Bai, Y., Perez-Zoghbi, J. (2010). Ca2+ Oscillations Regulate Contraction Of Intrapulmonary Smooth Muscle Cells. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_5

Download citation

Publish with us

Policies and ethics