Skip to main content

Pharmacological Targets for Pulmonary Vascular Disease: Vasodilation versus Anti-Remodelling

  • Conference paper
  • First Online:
Book cover Membrane Receptors, Channels and Transporters in Pulmonary Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 661))

Abstract

Two gross mechanisms of pathology are central to pulmonary arterial hypertension - increased pulmonary vascular tone and remodelling of the pulmonary arteries. These pathologies can be caused by a variety of aberrant processes, and combine to cause an increase in pulmonary vascular resistance and consequent right ventricular hypertrophy, eventually leading to dysfunction and death. Current therapeutic strategies have focused on altering the vasoconstrictive elements of the disease. Whilst improvements in life expectancy have been observed, current therapies have not managed to halt or reverse progression of the disease. Here we discuss said unmet medical need and postulate as to the impact on disease anti-remodelling therapy might provide. The mechanisms of remodelling in pulmonary arterial hypertension are reviewed, and leading examples of potential targets within such mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colson P, Saussine M, Séguin JR, Cuchet D, Chaptal PA, Roquefeuil B (1992) Hemodynamic effects of anesthesia in patients chronically treated with angiotensin-converting enzyme inhibitors. Anesth Analg 74:805-808

    PubMed  CAS  Google Scholar 

  2. Narine L, Hague LK, Walker JH et al (2005) Cost-minimization analysis of treprostinil vs. epoprostenol as an alternate to oral therapy non-responders for the treatment of pulmonary arterial hypertension. Curr Med Res Opin 21:2007-2016

    Article  PubMed  CAS  Google Scholar 

  3. Kenyon KW, Nappi JM (2003) Bosentan for the treatment of pulmonary arterial hypertension. Ann Pharmacother 37:1055-1062

    Article  PubMed  CAS  Google Scholar 

  4. Gilbert C, Brown MCJ, Cappelleri JC, Carlsson M, McKenna SP (2009) Estimating a minimally important difference in pulmonary arterial hypertension following treatment with sildenafil. Chest 135:137-142

    Article  PubMed  CAS  Google Scholar 

  5. Teichert-Kuliszewska K, Kutryk MJB, Kuliszewski MA et al (2006) Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 98:209-217

    Article  PubMed  CAS  Google Scholar 

  6. Yang J, Davies RJ, Southwood M et al (2008) Mutations in bone morphogenetic protein type II receptor cause dysregulation of Id gene expression in pulmonary artery smooth muscle cells: implications for familial pulmonary arterial hypertension. Circ Res 102:1212-1221

    Article  PubMed  CAS  Google Scholar 

  7. Bonnet S, Rochefort G, Sutendra G et al (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A 104:11418-11423

    Article  PubMed  CAS  Google Scholar 

  8. Merklinger SL, Jones PL, Martinez EC, Rabinovitch M (2005) Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112:423-431

    Article  PubMed  CAS  Google Scholar 

  9. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF (2005) Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J 19:1178-1180

    PubMed  CAS  Google Scholar 

  10. Arciniegas E, Frid MG, Douglas IS, Stenmark KR (2007) Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293:L1-L8

    Article  PubMed  CAS  Google Scholar 

  11. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283-1316

    PubMed  CAS  Google Scholar 

  12. Balasubramaniam V, Le Cras TD, Ivy DD, Grover TR, Kinsella JP, Abman SH (2003) Role of platelet-derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 284:L826-L833

    PubMed  CAS  Google Scholar 

  13. Perros F, Montani D, Dorfmuller P et al (2008) Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 178:81-88

    Article  PubMed  CAS  Google Scholar 

  14. Schermuly RT, Dony E, Ghofrani HA et al (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811-2821

    Article  PubMed  CAS  Google Scholar 

  15. Barst RJ (2005) PDGF signaling in pulmonary arterial hypertension. J Clin Invest 115:2691-2694

    Article  PubMed  CAS  Google Scholar 

  16. Wang S, Wilkes MC, Leof EB, Hirschberg R (2005) Imatinib mesylate blocks a non-Smad TGF-β pathway and reduces renal fibrogenesis in vivo. FASEB J 19:1-11

    Article  PubMed  Google Scholar 

  17. Nagaoka T, Fagan KA, Gebb SA et al (2005) Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 171:494-499

    Article  PubMed  Google Scholar 

  18. Kataoka C, Egashira K, Ishibashi M et al (2004) Novel anti-inflammatory actions of amlodipine in a rat model of arteriosclerosis induced by long-term inhibition of nitric oxide synthesis. Am J Physiol Heart Circ Physiol 286:H768-H774

    Article  PubMed  CAS  Google Scholar 

  19. Watts KL, Spiteri MA (2004) Connective tissue growth factor expression and induction by transforming growth factor-β is abrogated by simvastatin via a Rho signaling mechanism. Am J Physiol Lung Cell Mol Physiol 287:L1323-L1332

    Article  PubMed  CAS  Google Scholar 

  20. Jiang BHM, Tawara SM, Abe KM, Takaki AP, Fukumoto YM, Shimokawa HM (2007) Acute vasodilator effect of fasudil, a Rho-kinase inhibitor, in monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol 49:85-89

    Article  PubMed  CAS  Google Scholar 

  21. Oka M, Fagan KA, Jones PL, McMurtry IF (2008) Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol 155:444-454

    Article  PubMed  CAS  Google Scholar 

  22. Chapados R, Abe K, Ihida-Stansbury K et al (2006) ROK controls matrix synthesis in vascular smooth muscle cells: coupling vasoconstriction to vascular remodeling. Circ Res 99:837-844

    Article  PubMed  CAS  Google Scholar 

  23. Tawara SM, Fukumoto YM, Shimokawa HM (2007) Effects of combined therapy with a Rho-kinase inhibitor and prostacyclin on monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol 50:195-200

    Article  PubMed  CAS  Google Scholar 

  24. Kao PN (2005) Simvastatin treatment of pulmonary hypertension: an observational case series. Chest 127:1446-1452

    Article  PubMed  CAS  Google Scholar 

  25. Frid MG, Brunetti JA, Burke DL et al (2006) Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 168:659-669

    Article  PubMed  CAS  Google Scholar 

  26. Gillespie MN, Goldblum SE, Cohen DA, McClain CJ (1988) Interleukin 1 bioactivity in the lungs of rats with monocrotaline-induced pulmonary hypertension. Proc Soc Exp Biol Med 187:26-32

    PubMed  CAS  Google Scholar 

  27. Perkett EA, Lyons RM, Moses HL, Brigham KL, Meyrick B (1990) Transforming growth factor-β activity in sheep lung lymph during the development of pulmonary hypertension. J Clin Invest 86:1459-1464

    Article  PubMed  CAS  Google Scholar 

  28. Tuder RM, Groves B, Badesch DB, Voelkel NF (1994) Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 144:275-285

    PubMed  CAS  Google Scholar 

  29. Dorfmuller P, Perros F, Balabanian K, Humbert M (2003) Inflammation in pulmonary arterial hypertension. Eur Respir J 22:358-363

    Article  PubMed  CAS  Google Scholar 

  30. Balabanian K, Foussat A, Dorfmuller P et al (2002) CX3C Chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med 165:1419-1425

    Article  PubMed  Google Scholar 

  31. Daley E, Emson C, Guignabert C et al (2008) Pulmonary arterial remodeling induced by a Th2 immune response. J Exp Med 205:361-372

    Article  PubMed  CAS  Google Scholar 

  32. Ulrich S, Nicolls MR, Taraseviciene L, Speich R, Voelkel N (2008) Increased regulatory and decreased CD8+ cytotoxic T cells in the blood of patients with idiopathic pulmonary arterial hypertension. Respiration 75:272-280

    Article  PubMed  CAS  Google Scholar 

  33. Taraseviciene-Stewart L, Nicolls MR, Kraskauskas D et al (2007) Absence of T cells confers increased pulmonary arterial hypertension and vascular remodeling. Am J Respir Crit Care Med 175:1280-1289

    Article  PubMed  CAS  Google Scholar 

  34. Zhang TT, Okkenhaug K, Nashed BF et al (2008) Genetic or pharmaceutical blockade of p110δ phosphoinositide 3-kinase enhances IgE production. J Allergy Clin Immunol 122:811-819

    Article  PubMed  CAS  Google Scholar 

  35. Hagen M, Fagan K, Steudel W, Carr M, Lane K, Rodman DM, West J (2007) Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle. Am J Physiol Lung Cell Mol Physiol 292:L1473-L1479

    Article  PubMed  CAS  Google Scholar 

  36. Song Y, Coleman L, Shi J et al (2008) Inflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice. Am J Physiol Heart Circ Physiol 295:H677-H90

    Article  PubMed  CAS  Google Scholar 

  37. Yuan XJ (1995) Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circ Res 77:370-378

    Article  PubMed  CAS  Google Scholar 

  38. Archer SL, Souil E, Dinh-Xuan AT et al (1998) Molecular identification of the role of voltage-gated K+ channels, KV1.5 and KV2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest 101:2319-2330

    Article  PubMed  CAS  Google Scholar 

  39. Cogolludo A, Moreno L, Bosca L, Tamargo J, Perez-Vizcaino F (2003) Thromboxane A2-induced inhibition of voltage-gated K+ channels and pulmonary vasoconstriction: role of protein kinase Cς. Circ Res 93:656-663

    Article  PubMed  CAS  Google Scholar 

  40. Shimoda LA, Sylvester JT, Sham JSK (1998) Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1. Am J Physiol Lung Cell Mol Physiol 274:L842-L853

    CAS  Google Scholar 

  41. Weir EK, Reeve HL, Huang JMC, Michelakis E, Nelson DP, Hampl V, Archer SL (1996) Anorexic agents aminorex, fenfluramine, and dexfenfluramine inhibit potassium current in rat pulmonary vascular smooth muscle and cause pulmonary vasoconstriction. Circulation 94:2216-2220

    Article  PubMed  CAS  Google Scholar 

  42. Remillard CV, Tigno DD, Platoshyn O et al (2007) Function of KV1.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 292:C1837-C1853

    Article  PubMed  CAS  Google Scholar 

  43. Pozeg ZI, Michelakis ED, McMurtry MS et al (2003) In vivo gene transfer of the O2-sensitive potassium channel KV1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107:2037-2044

    Article  PubMed  CAS  Google Scholar 

  44. Cogolludo A, Moreno L, Lodi F, Frazziano G, Cobeno L, Tamargo J, Perez-Vizcaino F (2006) Serotonin inhibits voltage-gated K+ currents in pulmonary artery smooth muscle cells: role of 5-HT2A receptors, caveolin-1, and KV1.5 channel internalization. Circ Res 98:931-938

    Article  PubMed  CAS  Google Scholar 

  45. Ekhterae D, Platoshyn O, Zhang S, Remillard CV, Yuan JX-J (2003) Apoptosis repressor with caspase domain inhibits cardiomyocyte apoptosis by reducing K+ currents. Am J Physiol Cell Physiol 284:C1405-C1410

    PubMed  CAS  Google Scholar 

  46. McMurtry MS, Bonnet S, Wu X, Dyck JRB, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830-840

    Article  PubMed  CAS  Google Scholar 

  47. Kaufmann P, Engelstad K, Wei Y et al (2006) Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology 66:324-330

    Article  PubMed  CAS  Google Scholar 

  48. Harper JA, Yuan JS, Tan JB, Visan I, Guidos CJ (2003) Notch signaling in development and disease. Clin Genet 64:461-472

    Article  PubMed  CAS  Google Scholar 

  49. Domenga V, Fardoux P, Lacombe P et al (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18:2730-2735

    Article  PubMed  CAS  Google Scholar 

  50. Campos AH, Wang W, Pollman MJ, Gibbons GH (2002) Determinants of Notch-3 receptor expression and signaling in vascular smooth muscle cells: implications in cell-cycle regulation. Circ Res 91:999-1006

    Article  PubMed  CAS  Google Scholar 

  51. Lilly B, Kennard S (2009) Differential gene expression in a coculture model of angiogenesis reveals modulation of select pathways and a role for Notch signaling. Physiol Genomics 36:69-78

    PubMed  CAS  Google Scholar 

  52. Belin de Chantemele EJ, Retailleau K, Pinaud F et al (2008) Notch3 is a major regulator of vascular tone in cerebral and tail resistance arteries. Arterioscler Thromb Vasc Biol 28:2216-2224

    Article  PubMed  CAS  Google Scholar 

  53. Bellavia D, Checquolo S, Campese AF, Felli MP, Gulino A, Screpanti I (2008) Notch3: from subtle structural differences to functional diversity. Oncogene 27:5092-5098

    Article  PubMed  CAS  Google Scholar 

  54. Hervé P, Launay JM, Scrobohaci ML et al (1995) Increased plasma serotonin in primary pulmonary hypertension. Am J Med 99:249-254

    Article  PubMed  Google Scholar 

  55. MacLean MR, Hervé P, Eddahibi S, Adnot S (2000). 5-Hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br J Pharmacol 131:161-168

    Article  PubMed  CAS  Google Scholar 

  56. Willers ED, Newman JH, Loyd JE et al (2006) Serotonin transporter polymorphisms in familial and idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 173:798-802

    Article  PubMed  CAS  Google Scholar 

  57. Guignabert C, Izikki M, Tu LI et al (2006) Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension. Circ Res 98:1323-1330

    Article  PubMed  CAS  Google Scholar 

  58. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533-554

    Article  PubMed  CAS  Google Scholar 

  59. Eddahibi S, Guignabert C, Barlier-Mur AM et al (2006) Cross talk between endothelial and smooth muscle cells in pulmonary hypertension: critical role for serotonin-induced smooth muscle hyperplasia. Circulation 113:1857-1864

    Article  PubMed  CAS  Google Scholar 

  60. Morecroft I, Dempsie Y, Bader M et al (2007) Effect of tryptophan hydroxylase 1 deficiency on the development of hypoxia-induced pulmonary hypertension. Hypertension 49:232-236

    Article  PubMed  CAS  Google Scholar 

  61. Kay JM, Keane PM, Suyama KL (1985) Pulmonary hypertension induced in rats by monocrotaline and chronic hypoxia is reduced by p-chlorophenylalanine. Respiration 47:48-56

    Article  PubMed  CAS  Google Scholar 

  62. Pissarnitski D (2007) Advances in gamma-secretase modulation. Curr Opin Drug Discov Dev 10:392-402

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Thomas, M. (2010). Pharmacological Targets for Pulmonary Vascular Disease: Vasodilation versus Anti-Remodelling. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_31

Download citation

Publish with us

Policies and ethics