Skip to main content

Reactive Oxygen Species and RhoA Signaling in Vascular Smooth Muscle: Role in Chronic Hypoxia-Induced Pulmonary Hypertension

  • Conference paper
  • First Online:
Membrane Receptors, Channels and Transporters in Pulmonary Circulation

Abstract

Increases in myofilament Ca2+ sensitivity resulting from stimulation of RhoA and Rho kinase represent a primary mechanism of vasoconstriction and associated pulmonary hypertension resulting from chronic hypoxia (CH). This chapter summarizes recent advances in the understanding of RhoA/Rho kinase signaling mechanisms in pulmonary vascular smooth muscle (VSM) that increase the sensitivity of the contractile apparatus to Ca2+ and contribute to vasoconstriction in this setting. Such advances include the discovery of myogenic tone in small pulmonary arteries from CH rats that contributes to vasoconstriction through a mechanism inherent to the VSM, dependent on Rho kinase-induced Ca2+ sensitization but independent of L-type voltage-gated Ca2+ channels. Additional studies have revealed an important contribution of superoxide anion (O2-)-induced RhoA activation to both receptor-mediated and membrane depolarization-induced myofilament Ca2+ sensitization in hypertensive pulmonary arteries. Xanthine oxidase and NADPH oxidase isoforms are potential sources of O2- that mediate RhoA-dependent vasoconstriction and associated pulmonary hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMurtry IF, Petrun MD, Reeves JT (1978) Lungs from chronically hypoxic rats have decreased pressor response to acute hypoxia. Am J Physiol 235:H104-H109

    PubMed  CAS  Google Scholar 

  2. Resta TC, Chicoine LG, Omdahl JL, Walker BR (1999) Maintained upregulation of pulmonary eNOS gene and protein expression during recovery from chronic hypoxia. Am J Physiol 276:H699-H708

    PubMed  CAS  Google Scholar 

  3. Walker BR, Resta TC, Nelin LD (2000) Nitric oxide-dependent pulmonary vasodilation in polycythemic rats. Am J Physiol Heart Circ Physiol 279:H2382-H2389

    PubMed  CAS  Google Scholar 

  4. Hyvelin JM, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P (2005) Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 97:185-191

    Article  PubMed  CAS  Google Scholar 

  5. Nagaoka T, Morio Y, Casanova N et al (2004) Rho/Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 287:L665-L672

    Article  PubMed  CAS  Google Scholar 

  6. Weigand L, Sylvester JT, Shimoda LA (2006) Mechanisms of endothelin-1-induced contraction in pulmonary arteries from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 290:L284-L290

    Article  PubMed  CAS  Google Scholar 

  7. Shimoda LA, Sham JSK, Shimoda TH, Sylvester JT (2000) L-type Ca2+ channels, resting [Ca2+]i, and ET-1-induced responses in chronically hypoxic pulmonary myocytes. Am J Physiol Lung Cell Mol Physiol 279:L884-L894

    PubMed  CAS  Google Scholar 

  8. Nagaoka T, Fagan KA, Gebb SA et al (2005) Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 171:494-499

    Article  PubMed  Google Scholar 

  9. Jernigan NL, Walker BR, Resta TC (2004) Chronic hypoxia augments protein kinase G-mediated Ca2+ desensitization in pulmonary vascular smooth muscle through inhibition of RhoA/Rho kinase signaling. Am J Physiol Lung Cell Mol Physiol 287:L1220-L1229

    Article  PubMed  CAS  Google Scholar 

  10. Jernigan NL, Walker BR, Resta TC (2008) Reactive oxygen species mediate RhoA/Rho kinase-induced Ca2+ sensitization in pulmonary vascular smooth muscle following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 295:L515-L529

    Article  PubMed  CAS  Google Scholar 

  11. Broughton BR, Walker BR, Resta TC (2008) Chronic hypoxia induces Rho kinase-dependent myogenic tone in small pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 294:L797-L806

    Article  PubMed  CAS  Google Scholar 

  12. Barman SA (2007) Vasoconstrictor effect of endothelin-1 on hypertensive pulmonary arterial smooth muscle involves Rho-kinase and protein kinase C. Am J Physiol Lung Cell Mol Physiol 293:L472-L479

    Article  PubMed  CAS  Google Scholar 

  13. Oka M, Fagan KA, Jones PL, McMurtry IF (2008) Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol 155:444-454

    Article  PubMed  CAS  Google Scholar 

  14. Fukumoto Y, Tawara S, Shimokawa H (2007) Recent progress in the treatment of pulmonary arterial hypertension: expectation for rho-kinase inhibitors. Tohoku J Exp Med 211:309-320

    Article  PubMed  CAS  Google Scholar 

  15. Abman SH (2007) Recent advances in the pathogenesis and treatment of persistent pulmonary hypertension of the newborn. Neonatology 91:283-290

    Article  PubMed  CAS  Google Scholar 

  16. Hirano K (2007) Current topics in the regulatory mechanism underlying the Ca2+ sensitization of the contractile apparatus in vascular smooth muscle. J Pharmacol Sci 104:109-115

    Article  PubMed  CAS  Google Scholar 

  17. Sauzeau V, Rolli-Derkinderen M, Lehoux S, Loirand G, Pacaud P (2003) Sildenafil prevents change in RhoA expression induced by chronic hypoxia in rat pulmonary artery. Circ Res 93:630-637

    Article  PubMed  CAS  Google Scholar 

  18. Nagaoka T, Gebb SA, Karoor V et al (2006) Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat. J Appl Physiol 100:996-1002

    Article  PubMed  CAS  Google Scholar 

  19. Liao JK, Seto M, Noma K (2007) Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol 50:17-24

    Article  PubMed  CAS  Google Scholar 

  20. Urban NH, Berg KM, Ratz PH (2003) K+ depolarization induces RhoA kinase translocation to caveolae and Ca2+ sensitization of arterial muscle. Am J Physiol Cell Physiol 285:C1377-C1385

    PubMed  CAS  Google Scholar 

  21. Sakurada S, Takuwa N, Sugimoto N et al (2003) Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ Res 93:548-556

    Article  PubMed  CAS  Google Scholar 

  22. Mita M, Yanagihara H, Hishinuma S, Saito M, Walsh MP (2002) Membrane depolarization-induced contraction of rat caudal arterial smooth muscle involves Rho-associated kinase. Biochem J 364:431-440

    Article  PubMed  CAS  Google Scholar 

  23. Woodsome TP, Polzin A, Kitazawa K, Eto M, Kitazawa T (2006) Agonist- and depolarization-induced signals for myosin light chain phosphorylation and force generation of cultured vascular smooth muscle cells. J Cell Sci 119:1769-1780

    Article  PubMed  CAS  Google Scholar 

  24. Szaszi K, Sirokmany G, Ciano-Oliveira C, Rotstein OD, Kapus A (2005) Depolarization induces Rho-Rho kinase-mediated myosin light chain phosphorylation in kidney tubular cells. Am J Physiol Cell Physiol 289:C673-C685

    Article  PubMed  CAS  Google Scholar 

  25. Broughton BR, Jernigan NL, Walker BR, Resta TC (2007) Superoxide anion mediates enhanced membrane depolarization-induced myofilament calcium-sensitization in small pulmonary arteries following chronic hypoxia. Microcirculation 14:490

    Google Scholar 

  26. Broughton BR, Walker BR, Resta TC (2007) Chronic hypoxia augments membrane depolarization-induced myofilament Ca2+-sensitization through stimulation of Rho kinase in small pulmonary arteries. FASEB J 21:A1437

    Google Scholar 

  27. Fagan KA, Oka M, Bauer NR et al (2004) Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287:L656-L664

    Article  PubMed  CAS  Google Scholar 

  28. Kataoka C, Egashira K, Inoue S et al (2002) Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 39:245-250

    Article  PubMed  CAS  Google Scholar 

  29. McNamara PJ, Murthy P, Kantores C et al (2008) Acute vasodilator effects of Rho-kinase inhibitors in neonatal rats with pulmonary hypertension unresponsive to nitric oxide. Am J Physiol Lung Cell Mol Physiol 294:L205-L213

    Article  PubMed  CAS  Google Scholar 

  30. Laufs U, Liao JK (1998) Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 273:24266-24271

    Article  PubMed  CAS  Google Scholar 

  31. Abe K, Tawara S, Oi K et al (2006) Long-term inhibition of Rho-kinase ameliorates hypoxia-induced pulmonary hypertension in mice. J Cardiovasc Pharmacol 48:280-285

    Article  PubMed  CAS  Google Scholar 

  32. Gien J, Seedorf GJ, Balasubramaniam V, Tseng N, Markham N, Abman SH (2008) Chronic intrauterine pulmonary hypertension increases endothelial cell Rho kinase activity and impairs angiogenesis in vitro. Am J Physiol Lung Cell Mol Physiol 295:L680-L687

    Article  PubMed  CAS  Google Scholar 

  33. Ghisdal P, Vandenberg G, Morel N (2003) Rho-dependent kinase is involved in agonist-activated calcium entry in rat arteries. J Physiol 551:855-867

    Article  PubMed  CAS  Google Scholar 

  34. Ito S, Kume H, Yamaki K et al (2002) Regulation of capacitative and noncapacitative receptor-operated Ca2+ entry by rho-kinase in tracheal smooth muscle. Am J Respir Cell Mol Biol 26:491-498

    PubMed  CAS  Google Scholar 

  35. Luykenaar KD, Brett SE, Wu BN, Wiehler WB, Welsh DG (2004) Pyrimidine nucleotides suppress KDR currents and depolarize rat cerebral arteries by activating Rho kinase. Am J Physiol Heart Circ Physiol 286:H1088-H1100

    Article  PubMed  CAS  Google Scholar 

  36. Mehta D, Ahmmed GU, Paria BC et al (2003) RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 278:33492-33500

    Article  PubMed  CAS  Google Scholar 

  37. Takizawa S, Hori M, Ozaki H, Karaki H (1993) Effects of isoquinoline derivatives, HA1077 and H-7, on cytosolic Ca2+ level and contraction in vascular smooth muscle. Eur J Pharmacol 250:431-437

    Article  PubMed  CAS  Google Scholar 

  38. Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528-1537

    Article  PubMed  CAS  Google Scholar 

  39. Lin MJ, Leung GP, Zhang WM et al (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496-505

    Article  PubMed  CAS  Google Scholar 

  40. Harder DR (1984) Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ Res 55:197-202

    Article  PubMed  CAS  Google Scholar 

  41. Schubert R, Lidington D, Bolz SS (2008) The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasoconstriction. Cardiovasc Res 77:8-18

    PubMed  CAS  Google Scholar 

  42. Belik J (1995) The myogenic response of arterial vessels is increased in fetal pulmonary hypertension. Pediatr Res 37:196-201

    Article  PubMed  CAS  Google Scholar 

  43. Belik J (1994) Myogenic response in large pulmonary arteries and its ontogenesis. Pediatr Res 36:34-40

    Article  PubMed  CAS  Google Scholar 

  44. Parker TA, Grover TR, Kinsella JP, Falck JR, Abman SH (2005) Inhibition of 20-HETE abolishes the myogenic response during NOS antagonism in the ovine fetal pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 289:L261-L267

    Article  PubMed  CAS  Google Scholar 

  45. Tourneux P, Chester M, Grover T, Abman SH (2008) Fasudil inhibits the myogenic response in the fetal pulmonary circulation. Am J Physiol Heart Circ Physiol 295:H1505-H1513

    Article  PubMed  CAS  Google Scholar 

  46. Davis MJ, Gilmore JP, Joyner WL (1981) Responses of pulmonary allograft and cheek pouch arterioles in the hamster to alterations in extravascular pressure in different oxygen environments. Circ Res 49:133-140

    Article  PubMed  CAS  Google Scholar 

  47. Naik JS, Earley S, Resta TC, Walker BR (2005) Pressure-induced smooth muscle cell depolarization in pulmonary arteries from control and chronically hypoxic rats does not cause myogenic vasoconstriction. J Appl Physiol 98:1119-1124

    Article  PubMed  CAS  Google Scholar 

  48. Maclean MR (1999) Endothelin-1 and serotonin: mediators of primary and secondary pulmonary hypertension? J Lab Clin Med 134:105-114

    Article  PubMed  CAS  Google Scholar 

  49. Muramatsu M, Rodman DM, Oka M, McMurtry IF (1997) Endothelin-1 mediates nitro-L-arginine vasoconstriction of hypertensive rat lungs. Am J Physiol 272:L807-L812

    PubMed  CAS  Google Scholar 

  50. Bonvallet ST, Zamora MR, Hasunuma K et al (1994) BQ123, an ETA-receptor antagonist, attenuates hypoxic pulmonary hypertension in rats. Am J Physiol 266:H1327-H1331

    PubMed  CAS  Google Scholar 

  51. Dempsie Y, Maclean MR (2008) Pulmonary hypertension: therapeutic targets within the serotonin system. Br J Pharmacol 155:455-462

    Article  PubMed  CAS  Google Scholar 

  52. Fike CD, Zhang Y, Kaplowitz MR (2005) Thromboxane inhibition reduces an early stage of chronic hypoxia-induced pulmonary hypertension in piglets. J Appl Physiol 99:670-676

    Article  PubMed  CAS  Google Scholar 

  53. Shimoda LA, Sham JSK, Sylvester JT (2000) Altered pulmonary vasoreactivity in the chronically hypoxic lung. Physiol Res 49:549-560

    PubMed  CAS  Google Scholar 

  54. Maclean MR, Morecroft I (2001) Increased contractile response to 5-hydroxytryptamine1-receptor stimulation in pulmonary arteries from chronic hypoxic rats: role of pharmacological synergy. Br J Pharmacol 134:614-620

    Article  PubMed  CAS  Google Scholar 

  55. Janssen LJ, Lu-Chao H, Netherton S (2001) Excitation-contraction coupling in pulmonary vascular smooth muscle involves tyrosine kinase and Rho kinase. Am J Physiol Lung Cell Mol Physiol 280:L666-L674

    PubMed  CAS  Google Scholar 

  56. Nishikawa Y, Doi M, Koji T et al (2003) The role of Rho and Rho-dependent kinase in serotonin-induced contraction observed in bovine middle cerebral artery. Tohoku J Exp Med 201:239-249

    Article  PubMed  CAS  Google Scholar 

  57. Sakurada S, Okamoto H, Takuwa N, Sugimoto N, Takuwa Y (2001) Rho activation in excitatory agonist-stimulated vascular smooth muscle. Am J Physiol Cell Physiol 281:C571-C578

    PubMed  CAS  Google Scholar 

  58. Homma N, Nagaoka T, Morio Y et al (2007) Endothelin-1 and serotonin are involved in activation of RhoA/Rho kinase signaling in the chronically hypoxic hypertensive rat pulmonary circulation. J Cardiovasc Pharmacol 50:697-702

    Article  PubMed  CAS  Google Scholar 

  59. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245-313

    Article  PubMed  CAS  Google Scholar 

  60. Wedgwood S, Dettman RW, Black SM (2001) ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 281:L1058-L1067

    PubMed  CAS  Google Scholar 

  61. Liu Q, Sham JSK, Shimoda LA, Sylvester JT (2001) Hypoxic constriction of porcine distal pulmonary arteries: endothelium and endothelin dependence. Am J Physiol Lung Cell Mol Physiol 280:L856-L865

    PubMed  CAS  Google Scholar 

  62. Liu JQ, Folz RJ (2004) Extracellular superoxide enhances 5-HT-induced murine pulmonary artery vasoconstriction. Am J Physiol Lung Cell Mol Physiol 287:L111-L118

    Article  PubMed  CAS  Google Scholar 

  63. Reeve HL, Michelakis E, Nelson DP, Weir EK, Archer SL (2001) Alterations in a redox oxygen sensing mechanism in chronic hypoxia. J Appl Physiol 90:2249-2256

    PubMed  CAS  Google Scholar 

  64. Elmedal B, de Dam MY, Mulvany MJ, Simonsen U (2004) The superoxide dismutase mimetic, tempol, blunts right ventricular hypertrophy in chronic hypoxic rats. Br J Pharmacol 141:105-113

    Article  PubMed  CAS  Google Scholar 

  65. Matsui H, Shimosawa T, Itakura K, Guanqun X, Ando K, Fujita T (2004) Adrenomedullin can protect against pulmonary vascular remodeling induced by hypoxia. Circulation 109:2246-2251

    Article  PubMed  CAS  Google Scholar 

  66. Liu JQ, Zelko IN, Erbynn EM, Sham JS, Folz RJ (2006) Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 290:L2-L10

    Article  PubMed  CAS  Google Scholar 

  67. Grobe AC, Wells SM, Benavidez E et al (2006) Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am J Physiol Lung Cell Mol Physiol 290:L1069-L1077

    Article  PubMed  CAS  Google Scholar 

  68. Fresquet F, Pourageaud F, Leblais V et al (2006) Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. Br J Pharmacol 148:714-723

    Article  PubMed  CAS  Google Scholar 

  69. Brennan LA, Steinhorn RH, Wedgwood S et al (2003) Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase. Circ Res 92:683-691

    Article  PubMed  CAS  Google Scholar 

  70. Fike CD, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL (2008) Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295:L881-L888

    Article  PubMed  CAS  Google Scholar 

  71. Hoshikawa Y, Ono S, Suzuki S et al (2001) Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia. J Appl Physiol 90:1299-1306

    PubMed  CAS  Google Scholar 

  72. Jankov RP, Kantores C, Pan J, Belik J (2008) Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. Am J Physiol Lung Cell Mol Physiol 294:L233-L245

    Article  PubMed  CAS  Google Scholar 

  73. Lyle AN, Griendling KK (2006) Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology 21:269-280

    Article  PubMed  CAS  Google Scholar 

  74. Frey RS, Ushio-Fukai M, Malik A (2009) NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal 11(4):791-810

    Google Scholar 

  75. Jay DB, Papaharalambus CA, Seidel-Rogol B, Dikalova AE, Lassegue B, Griendling KK (2008) Nox5 mediates PDGF-induced proliferation in human aortic smooth muscle cells. Free Radic Biol Med 45:329-335

    Article  PubMed  CAS  Google Scholar 

  76. Guzik TJ, Chen W, Gongora MC et al (2008) Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol 52:1803-1809

    Article  PubMed  CAS  Google Scholar 

  77. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK (2004) Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:677-683

    Article  PubMed  CAS  Google Scholar 

  78. Clempus RE, Sorescu D, Dikalova AE et al (2007) Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 27:42-48

    Article  PubMed  CAS  Google Scholar 

  79. Mittal M, Roth M, Konig P et al (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101:258-267

    Article  PubMed  CAS  Google Scholar 

  80. Nisbet RE, Graves AS, Kleinhenz DJ et al (2009) The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. Am J Respir Cell Mol Biol 40(5):601-609

    Article  PubMed  CAS  Google Scholar 

  81. Jin L, Ying Z, Webb RC (2004) Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am J Physiol Heart Circ Physiol 287:H1495-H1500

    Article  PubMed  CAS  Google Scholar 

  82. Al Mehdi AB, Zhao G, Dodia C et al (1998) Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ Res 83:730-737

    Article  PubMed  CAS  Google Scholar 

  83. Liu R, Garvin JL, Ren Y, Pagano PJ, Carretero OA (2007) Depolarization of the macula densa induces superoxide production via NAD(P)H oxidase. Am J Physiol Renal Physiol 292:F1867-F1872

    Article  PubMed  CAS  Google Scholar 

  84. Sohn HY, Keller M, Gloe T, Morawietz H, Rueckschloss U, Pohl U (2000) The small G-protein Rac mediates depolarization-induced superoxide formation in human endothelial cells. J Biol Chem 275:18745-18750

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Resta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Resta, T.C., Broughton, B.R.S., Jernigan, N.L. (2010). Reactive Oxygen Species and RhoA Signaling in Vascular Smooth Muscle: Role in Chronic Hypoxia-Induced Pulmonary Hypertension. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_23

Download citation

Publish with us

Policies and ethics