Skip to main content

Notch Signaling in Pulmonary Hypertension

  • Conference paper
  • First Online:
Membrane Receptors, Channels and Transporters in Pulmonary Circulation

Abstract

Proteins of the Notch receptor family are cell surface receptors that transduce signals between neighboring cells. The Notch signaling pathway is highly evolutionarily conserved and critical for cell fate determination during embryogenesis and early postnatal life, including many aspects of vascular development. The interaction of Notch receptor with its membrane-bound ligands leads to cleavage of the receptor into an intracellular domain that translocates to the nucleus and activates the transcription factor, C-promoter binding factor 1 (CBF1; also known as Recombination signal-binding protein for immunoglobulin κ J region, RBPJ). To date, four Notch receptors have been characterized in humans. Of these, Notch3 is expressed only in arterial smooth muscle cells in the human. The functional importance of Notch3 signaling in human vascular smooth muscle cells has been recognized. Notch3 receptor signaling has been shown in several model systems to control vascular smooth muscle cell proliferation and maintain smooth muscle cells in an undifferentiated state. This review focuses on recent findings of the role of Notch3 in regulating vascular smooth muscle cell behavior and phenotype and discusses the potential role of Notch3 signaling in the genesis of pulmonary arterial hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle differentiation in development and disease. Physiol Rev 84:767-801

    Article  PubMed  CAS  Google Scholar 

  2. Yuan JX-J, Rubin LJ (2005) Pathogenesis of pulmonary arterial hypertension: the need for multiple hits. Circulation 111:534-538

    Article  PubMed  Google Scholar 

  3. Hyduk A, Croft JB, Ayala C et al (2005) Pulmonary hypertension surveillance - United States, 1980-2002. 54(SS05):1-28. http://www.cic.gov.mmwr/preview/mmwrhtml/ss5405a1.htm

  4. Simonneau G, Galiè N, Rubin LJ et al (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43:5S-12S

    Article  PubMed  Google Scholar 

  5. Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21:2511-2524

    Article  PubMed  CAS  Google Scholar 

  6. Bray SJ (2006) Notch signaling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678-689

    Article  PubMed  CAS  Google Scholar 

  7. Fleming RJ (1998) Structural conservation of Notch receptors and ligands. Semin Cell Dev Biol 9:599-607

    Article  PubMed  CAS  Google Scholar 

  8. Lubman OY, Korolev SV, Kopan R (2004) Anchoring notch genetics and biochemistry: structural analysis of the ankyrin domain sheds light on existing data. Mol Cell 13:619-626

    Article  PubMed  CAS  Google Scholar 

  9. Lissemore JL, Starmer WT (1999) Phylogenetic analysis of vertebrate and invertebrate Delta;Serrate/LAG-2 (DSL) proteins. Mol Phylogenet Evol 11:308-319

    Article  PubMed  CAS  Google Scholar 

  10. Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131:965-973

    Article  PubMed  CAS  Google Scholar 

  11. High FA, Lu MM, Pear WS, Loomes KM, Kaestner KH, Epstein JA (2008) Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proc Natl Acad Sci U S A 105:1955-1959

    Article  PubMed  CAS  Google Scholar 

  12. Shutter JR, Scully S, Fan W et al (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14:1313-1318

    PubMed  CAS  Google Scholar 

  13. Gridley T (2007) Notch signaling in vascular development and physiology. Development 134:2709-2718

    Article  PubMed  CAS  Google Scholar 

  14. Morrow D, Scheller A, Birney YA et al (2005) Notch-mediated CBF-1/RBP-Jkappa-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell Physiol 289:C1188-C1196

    Article  PubMed  CAS  Google Scholar 

  15. Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237-255

    Article  PubMed  CAS  Google Scholar 

  16. de la Pompa JL, Wakeham A, Correia KM et al (1997) Conservation of the Notch signaling pathway in mammalian neurogenesis. Development 124:1139-1148

    PubMed  Google Scholar 

  17. Kopan R, Nye JS, Weintraub H (1994) The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120:2385-2396

    PubMed  CAS  Google Scholar 

  18. Proweller A, Pear WS, Parmacek MS (2005) Notch signaling represses myocardin-induced smooth muscle differentiation. J Biol Chem 280:8994-9004

    Article  PubMed  CAS  Google Scholar 

  19. Havrda MC, Johnson MJ, O’Neill CF, Liaw L (2006) A novel mechanism of transcriptional repression of p27kip1 through Notch/HRT2 signaling in vascular smooth muscle cells. Thromb Haemost 96:361-370

    PubMed  CAS  Google Scholar 

  20. Wang W, Prince CZ, Hu X, Pollman MJ (2003) HRT1 modulates vascular smooth muscle cell proliferation and apoptosis. Biochem Biophys Res Commun 308:596-601

    Article  PubMed  CAS  Google Scholar 

  21. Jin S, Hansson EM, Tikka S et al (2008) Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells. Circ Res 102:1448-1450

    Article  Google Scholar 

  22. Krebs LT, Xue Y, Norton CR et al (2003) Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis 37:139-143

    Article  PubMed  CAS  Google Scholar 

  23. Kitamoto T, Takahashi K, Takimoto H et al (2005) Functional redundancy of the Notch gene family during mouse embryogenesis: analysis of Notch gene expression in Notch3-deficient mice. Biochem Biophys Res Commun 331:1154-1162

    Article  PubMed  CAS  Google Scholar 

  24. Domenga V, Fardoux P, Lacombe R et al (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18:2730-2735

    Article  PubMed  CAS  Google Scholar 

  25. van der Loop FT, Gabbiani G, Kohnen G, Ramaekers FC, van Eys GJ (1997) Differentiation of smooth muscle cells in human blood vessels as defined by smoothelin, a novel marker for the contractile phenotype. Arterioscler Thromb Vasc Biol 17:665-671

    Article  PubMed  Google Scholar 

  26. Moessler H, Mericskay M, Li Z, Nagl S, Paulin D, Small JV (1996) The SM 22 promoter directs tissue-specific expression in arterial but not in venous or visceral smooth muscle cells in transgenic mice. Development 122:2415-2425

    PubMed  CAS  Google Scholar 

  27. Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Weinmaster G (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108:161-164

    Article  PubMed  CAS  Google Scholar 

  28. Campos AH, Wang W, Pollman MJ, Gibbons GH (2002) Determinants of Notch-3 receptor expression and signaling in vascular smooth muscle cells: implications in cell-cycle regulation. Circ Res 91:999-1006

    Article  PubMed  CAS  Google Scholar 

  29. Sweeney C, Morrow D, Birney YA et al (2004) Notch1 and 3 receptor signaling modulates vascular smooth muscle cell growth, apoptosis, and migration via a CBF-1/RBP-Jκ-dependent pathway. FASEB J 18:1421-1423

    PubMed  CAS  Google Scholar 

  30. Sakata Y, Zhiping X, Yoriko C et al (2004) Transcription factor CHF1/Hey2 regulates neointimal formation in vivo and vascular smooth muscle proliferation and migration in vitro. Arterioscler Thromb Vasc Biol 24:2069-2074

    Article  PubMed  CAS  Google Scholar 

  31. Wang T, Baron M, Trump D (2008) An overview of Notch3 function in vascular smooth muscle cells. Prog Biophys Mol Biol 96:499-509

    Article  PubMed  CAS  Google Scholar 

  32. Joutel A, Andreux F, Gaulis S et al (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105:597-605

    Article  PubMed  CAS  Google Scholar 

  33. Oda T, Elkahloun AG, Pike BL et al (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16:235-242

    Article  PubMed  CAS  Google Scholar 

  34. Li X, Leathers R, Makino A, Huang C, Parsa P, Macias J, Yuan JX, Jamieson SW, Thistlethwaite PA. Notch3 signaling promotes the development of pulmonary arterial hypertension. Nat Med 2009 Oct 25, epub ahead of print.

    Google Scholar 

  35. Hellstrom M, Phng LK, Hofmann JJ et al (2007) Dll4 signaling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776-780

    Article  PubMed  Google Scholar 

  36. Deng Z, Morse JH, Slager SL et al (2000) Familial primary pulmonary hypetension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67:737-744

    Article  PubMed  CAS  Google Scholar 

  37. Lane KB, Machado RD, Pauciulo MW et al (2000) Heterozygous germline mutations in BMPR2, encoding TGF-β receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nat Genet 26:81-84

    Article  PubMed  CAS  Google Scholar 

  38. Blokzijl A, Dahlqvist C, Reissmann E et al (2003) Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 163:723-728

    Article  PubMed  CAS  Google Scholar 

  39. Dahlqvist C, Blokzijl A, Chapman G et al (2003) Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 130:6089-6099

    Article  PubMed  CAS  Google Scholar 

  40. Kluppel M, Wrana JL (2005) Turning it up a notch: cross-talk between TGF-β and notch signaling. Bioessays 27:115-118

    Article  PubMed  Google Scholar 

  41. Lin Q, Lee YJ, Yun Z (2006) Differentiation arrest by hypoxia. J Biol Chem 281:30678-30683

    Article  PubMed  CAS  Google Scholar 

  42. Gustafsson MV, Zheng X, Pereira T et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9:617-628

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. Thistlethwaite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Thistlethwaite, P.A., Li, X., Zhang, X. (2010). Notch Signaling in Pulmonary Hypertension. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_18

Download citation

Publish with us

Policies and ethics