Skip to main content

Hypoxic Regulation of Ion Channels and Transporters in Pulmonary Vascular Smooth Muscle

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 661))

Abstract Exposure to prolonged alveolar hypoxia, as occurs with many chronic lung diseases or residence at high altitude, results in the development of pulmonary hypertension, significantly worsening patient prognosis. While the structural and functional changes that occur in the pulmonary vasculature in response to chronic hypoxia have been well characterized, less is known regarding the cellular mechanisms underlying this process. The use of animals models of hypoxic pulmonary hypertension have provided important insights into the changes that occur in the pulmonary vascular smooth muscle cells and some of the mediators involved. In this chapter, the effect of chronic hypoxia on various pulmonary arterial smooth muscle cell ion channels and transporters, and the role of the transcription factor, hypoxia-inducible factor 1, in regulating these changes, will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Davies P, Maddalo F, Reid L (1985) Effects of chronic hypoxia on structure and reactivity of rat lung microvessels. J Appl Physiol 58:795-801

    PubMed  CAS  Google Scholar 

  2. Meyrick B, Reid L (1978) The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study. Lab Invest 38:188-200

    PubMed  CAS  Google Scholar 

  3. Nagaoka T, Fagan KA, Gebb SA et al (2005) Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 171:494-499

    Article  PubMed  Google Scholar 

  4. Jones K, Higenbottam T, Wallwork J (1989) Pulmonary vasodilation with prostacyclin in primary and secondary pulmonary hypertension. Chest 96:784-789

    Article  PubMed  CAS  Google Scholar 

  5. Archer SL, Souil E, Dinh-Xuan AT et al (1998) Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest 101:2319-2330

    Article  PubMed  CAS  Google Scholar 

  6. Yuan XJ (1995) Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circ Res 77:370-378

    Article  PubMed  CAS  Google Scholar 

  7. McMurtry IF, Davidson AB, Reeves JT, Grover RF (1976) Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res 38:99-104

    Article  PubMed  CAS  Google Scholar 

  8. Rodman DM, Yamaguchi T, O’Brien RF, McMurtry IF (1989) Hypoxic contraction of isolated rat pulmonary artery. J Pharmacol Exp Ther 248:952-959

    PubMed  CAS  Google Scholar 

  9. Salvaterra CG, Goldman WF (1993) Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes. Am J Physiol 264:L323-L328

    PubMed  CAS  Google Scholar 

  10. Golovina VA, Platoshyn O, Bailey CL et al (2001) Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746-H755

    PubMed  CAS  Google Scholar 

  11. Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX-J (2002) Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283:L144-L155

    PubMed  CAS  Google Scholar 

  12. Kruse HJ, Bauriedel G, Heimerl J, Hofling B, Weber PC (1994) Role of L-type calcium channels on stimulated calcium influx and on proliferative activity of human coronary smooth muscle cells. J Cardiovasc Pharmacol 24:328-335

    PubMed  CAS  Google Scholar 

  13. Suzuki H, Twarog BM (1982) Membrane properties of smooth muscle cells in pulmonary hypertensive rats. Am J Physiol 242:H907-H915

    PubMed  CAS  Google Scholar 

  14. Smirnov SV, Robertson TP, Ward JP, Aaronson PI (1994) Chronic hypoxia is associated with reduced delayed rectifier K+ current in rat pulmonary artery muscle cells. Am J Physiol 266:H365-H370

    PubMed  CAS  Google Scholar 

  15. Wang J, Juhaszova M, Rubin LJ, Yuan XJ (1997) Hypoxia inhibits gene expression of voltage-gated K+ channel α-subunits in pulmonary artery smooth muscle cells. J Clin Invest 100:2347-2353

    Article  PubMed  CAS  Google Scholar 

  16. Pozeg ZI, Michelakis ED McMurtry MS et al (2003) In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107:2037-2044

    Article  PubMed  CAS  Google Scholar 

  17. Hong Z, Weir EK, Nelson DP, Olschewski A (2004) Subacute hypoxia decreases voltage-activated potassium channel expression and function in pulmonary artery myocytes. Am J Respir Cell Mol Biol 31:337-343

    Article  PubMed  CAS  Google Scholar 

  18. Wang J, Weigand L, Wang W, Sylvester JT, Shimoda LA (2005) Chronic hypoxia inhibits Kv channel gene expression in rat distal pulmonary artery. Am J Physiol Lung Cell Mol Physiol 288:L1049-L1058

    Article  PubMed  CAS  Google Scholar 

  19. Weigand L, Foxson J, Wang J, Shimoda LA, Sylvester JT (2005) Inhibition of hypoxic pulmonary vasoconstriction by antagonists of store-operated Ca2+ and nonselective cation channels. Am J Physiol Lung Cell Mol Physiol 289:L5-L13

    Article  PubMed  CAS  Google Scholar 

  20. Johnson DC, Joshi RC, Mehta R, Cunnington AR (1986) Acute and long term effect of nifedipine on pulmonary hypertension secondary to chronic obstructive airways disease. Eur J Respir Dis Suppl 146:495-502

    PubMed  CAS  Google Scholar 

  21. Moinard J, Manier G, Pillet O, Castaing Y (1994) Effect of inhaled nitric oxide on hemodynamics and VA/Q inequalities in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 149:1482-1487

    PubMed  CAS  Google Scholar 

  22. Shimoda LA, Sham JS, Shimoda TH, Sylvester JT (2000) L-type Ca2+ channels, resting [Ca2+]i, and ET-1-induced responses in chronically hypoxic pulmonary myocytes. Am J Physiol Lung Cell Mol Physiol 279:L884-L894

    PubMed  CAS  Google Scholar 

  23. Wang J, Shimoda LA, Sylvester JT (2004) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:L848-L858

    Article  PubMed  CAS  Google Scholar 

  24. Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528-1537

    Article  PubMed  CAS  Google Scholar 

  25. Lu W, Wang J, Shimoda LA, Sylvester JT (2008) Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in Ca2+ responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 295:L104-L113

    Article  PubMed  CAS  Google Scholar 

  26. Lin MJ, Leung GP, Zhang WM et al (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496-505

    Article  PubMed  CAS  Google Scholar 

  27. Madden JA, Ray DE, Keller PA, Kleinman JG (2001) Ion exchange activity in pulmonary artery smooth muscle cells: the response to hypoxia. Am J Physiol Lung Cell Mol Physiol 280:L264-L271

    PubMed  CAS  Google Scholar 

  28. Quinn DA, Honeyman TW, Joseph PM, Thompson BT, Hales CA, Scheid CR (1991) Contribution of Na+/H+ exchange to pH regulation in pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 5:586-591

    PubMed  CAS  Google Scholar 

  29. Leach RM, Sheehan DW, Chacko VP, Sylvester JT (2000) Energy state, pH, and vasomotor tone during hypoxia in precontracted pulmonary and femoral arteries. Am J Physiol Lung Cell Mol Physiol 278:L294-L304

    PubMed  CAS  Google Scholar 

  30. Quinn DA, Dahlberg CG, Bonventre JP et al (1996) The role of Na+/H+ exchange and growth factors in pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 14:139-145

    PubMed  CAS  Google Scholar 

  31. Quinn DA, Du HK, Thompson BT, Hales CA (1998) Amiloride analogs inhibit chronic hypoxic pulmonary hypertension. Am J Respir Crit Care Med 157:1263-1268

    PubMed  CAS  Google Scholar 

  32. Rios EJ, Fallon M, Wang J, Shimoda LA (2005) Chronic hypoxia elevates intracellular pH and activates Na+/H+ exchange in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 289:L867-L874

    Article  PubMed  CAS  Google Scholar 

  33. Wang Z, Orlowski J, Shull GE (1993) Primary structure and functional expression of a novel gastrointestinal isoform of the rat Na/H exchanger. J Biol Chem 268:11925-11928

    PubMed  CAS  Google Scholar 

  34. Brant SR, Yun CH, Donowitz M, Tse CM (1995) Cloning, tissue distribution, and functional analysis of the human Na+/H+ exchanger isoform, NHE3. Am J Physiol 269:C198-C206

    PubMed  CAS  Google Scholar 

  35. Attaphitaya S, Park K, Melvin JE (1999) Molecular cloning and functional expression of a rat Na+/H+ exchanger (NHE5) highly expressed in brain. J Biol Chem 274:4383-4388

    Article  PubMed  CAS  Google Scholar 

  36. Orlowski J, Kandasamy RA, Shull GE (1992) Molecular cloning of putative members of the Na/H exchanger gene family. cDNA cloning, deduced amino acid sequence, and mRNA tissue expression of the rat Na/H exchanger NHE-1 and two structurally related proteins. J Biol Chem 267:9331-9339

    PubMed  CAS  Google Scholar 

  37. Miyazaki E, Sakaguchi M, Wakabayashi S, Shigekawa M, Mihara K (2001) NHE6 protein possesses a signal peptide destined for endoplasmic reticulum membrane and localizes in secretory organelles of the cell. J Biol Chem 276:49221-49227

    Article  PubMed  CAS  Google Scholar 

  38. Nakamura N, Tanaka S, Teko Y, Mitsui K, Kanazawa H (2005) Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem 280:1561-1572

    Article  PubMed  CAS  Google Scholar 

  39. Numata M, Orlowski J (2001) Molecular cloning and characterization of a novel (Na+, K+)/H+ exchanger localized to the trans-Golgi network. J Biol Chem 276:17387-17394

    Article  PubMed  CAS  Google Scholar 

  40. Numata M, Petrecca K, Lake N, Orlowski J (1998) Identification of a mitochondrial Na+/H+ exchanger. J Biol Chem 273:6951-6959

    Article  PubMed  CAS  Google Scholar 

  41. Yu L, Quinn DA, Garg HG, Hales CA (2008) Deficiency of the NHE1 gene prevents hypoxia-induced pulmonary hypertension and vascular remodeling. Am J Respir Crit Care Med 177:1276-1284

    Article  PubMed  CAS  Google Scholar 

  42. Wang GL, Semenza GL (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268:21513-21518

    PubMed  CAS  Google Scholar 

  43. Wiener CM, Booth G, Semenza GL (1996) In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun 225:485-488

    Article  PubMed  CAS  Google Scholar 

  44. Yu AY, Frid MG, Shimoda LA, Wiener CM, Stenmark K, Semenza GL (1998) Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol 275:L818-L826

    PubMed  CAS  Google Scholar 

  45. Iyer NV, Kotch LE, Agani F et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12:149-162

    Article  PubMed  CAS  Google Scholar 

  46. Yu AY, Shimoda LA, Iyer NV et al (1999) Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J Clin Invest 103:691-696

    Article  PubMed  CAS  Google Scholar 

  47. Shimoda LA, Manalo DJ, Sham JS, Semenza GL, Sylvester JT (2001) Partial HIF-1α deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 281:L202-L208

    PubMed  CAS  Google Scholar 

  48. Whitman EM, Pisarcik S, Luke T et al (2008) Endothelin-1 mediates hypoxia-induced inhibition of voltage-gated K+ channel expression in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 294:L309-L318

    Article  PubMed  CAS  Google Scholar 

  49. Kelly BD, Hackett SF, Hirota K et al (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93:1074-1081

    Article  PubMed  CAS  Google Scholar 

  50. Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL (2006) HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 291:L941-L949

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work could not have been performed without the help of my colleagues at Johns Hopkins School of Medicine: Drs. Jim Sylvester, Jian Wang, and Gregg Semenza. In addition, it is imperative to acknowledge the technical support of Eon Rios, Michele Fallon, Letitia Weigand, and Sarah Pisarcik. Due to space restrictions, it was not possible to cite all of the excellent studies that have been published with respect to the research described in this chapter; our apologies to those whose studies were not cited.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Shimoda, L.A. (2010). Hypoxic Regulation of Ion Channels and Transporters in Pulmonary Vascular Smooth Muscle. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_14

Download citation

Publish with us

Policies and ethics