Skip to main content

Development and Implementation of Array Technologies for Proteomics: Clinical Implications and Applications

  • Chapter
  • First Online:
Targeted Therapies

Abstract

Array-based technologies, providing “-omic” level understanding of tumors at the DNA, RNA, and protein levels, have led to the uncovering of new disease susceptibility genes, therapeutic targets, expression profiles of genes or proteins related to disease outcomes as well as markers of therapeutic sensitivity and resistance. Analysis of signaling network activation at the protein level is of critical importance because nearly all current molecular-targeted therapeutics directed at modulating protein kinase activity, hence, the proteins themselves are the drug targets. Newer array-based and multiplexed approaches that can measure signaling network activation in very small tissue samples of the patient, and can perform broad-scale pathway mapping, will be the best to deliver effectively the needed predictive, prognostic, and therapy-guiding information to the bedside. The power of protein microarrays lies in their ability to provide a “map” of known cellular signaling proteins that generally reflect the state of information flow through protein networks in individual specimens. Combined with continued efforts to identify and monitor protein markers indicative of therapeutic response or resistance, protein array-based technologies are uniquely poised to provide direct functional information for individual patient tumors in time frames which was never before possible and could have a tremendous positive impact on therapeutic decision-making and ultimately on disease outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baak JP, Path FR, Hermsen MA, et al. Genomics and proteomics in cancer. Eur J Cancer. 2003;39:1199–215.

    Article  PubMed  CAS  Google Scholar 

  2. Segal E, Friedman N, Kaminski N, et al. From signatures to models: understanding cancer using microarrays. Nat Genet. 2005;37(Suppl):S38–45.

    Article  PubMed  CAS  Google Scholar 

  3. Brennan DJ, O’Brien SL, Fagan A, et al. Application of DNA microarray technology in determining breast cancer prognosis and therapeutic response. Expert Opin Biol Ther. 2005;5:1069–83.

    Article  PubMed  CAS  Google Scholar 

  4. Nishizuka S, Charboneau L, Young L, et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci USA. 2003;100:14229–34.

    Article  PubMed  CAS  Google Scholar 

  5. Celis JE, Gromov P. Proteomics in translational cancer research: toward an integrated approach. Cancer Cell. 2003;3:9–15.

    Article  PubMed  CAS  Google Scholar 

  6. Hunter T. Signaling – 2000 and beyond. Cell. 2000;100:113–27.

    Article  PubMed  CAS  Google Scholar 

  7. Görg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004;4:3665–85.

    Article  PubMed  Google Scholar 

  8. Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17:994–9.

    Article  PubMed  CAS  Google Scholar 

  9. Krutchinsky AN, Kalkum M, Chait BT. Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. Anal Chem. 2001;73:5066–77.

    Article  PubMed  CAS  Google Scholar 

  10. Washburn MP, Wolters D, Yates III JR. Large scale analysis of the yeast proteome by ­multidimensional protein identification technology. Nat Biotechnol. 2001;19:242–7.

    Article  PubMed  CAS  Google Scholar 

  11. Zhou G, Li H, DeCamp D, et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics. 2002;1:117–24.

    Article  PubMed  CAS  Google Scholar 

  12. Wan WH, Fortuna MB, Furmanski P. A rapid and efficient method for testing immunohistochemical activity of monoclonal antibodies against multiple tissue samples simultaneously. J Immunol Methods. 1987;103:121–9.

    Article  PubMed  CAS  Google Scholar 

  13. Voduc D, Kenney C, Nielsen TO. Tissue microarrays in clinical oncology. Semin Radiat Oncol. 2008;18:89–97.

    Article  PubMed  Google Scholar 

  14. van der Vegt B, de Bock GH, Hollema H, et al. Microarray methods to identify factors determining breast cancer progression: Potentials, limitations, and challenges. Crit Rev Oncol Hematol. 2009;70:1–11.

    Article  PubMed  Google Scholar 

  15. Hewitt SM. Design, construction and use of tissue microarrays. Methods Mol Biol. 2004;264:61–72.

    PubMed  CAS  Google Scholar 

  16. Hewitt SM. The application of tissue microarrays in the validation of microarray data. Methods Enzymol. 2006;410:400–15.

    Article  PubMed  CAS  Google Scholar 

  17. Dancau AM, Simon R, Mirlacher M, et al. Tissue microarrays. Methods Mol Biol. 2010;576:49–60.

    Article  PubMed  CAS  Google Scholar 

  18. Kononen J, Bubendorf I, Kallioneimi A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4:844–7.

    Article  PubMed  CAS  Google Scholar 

  19. Schoenberg-Fejzo M, Slamon D. Frozen tumor tissue microarray technology for analysis of tumor RNA, DNA and proteins. Amer J Pathol. 2001;159:1645–50.

    Article  CAS  Google Scholar 

  20. Datta MW, Kahler A, Macias V, et al. A simple, inexpensive method for the production of tissue microarrays from needle biopsy specimens: examples with prostate tissue. Appl Immunohistochem Mol Morphol. 2005;13:96–103.

    Article  PubMed  Google Scholar 

  21. Li R, Ni J, Bourne PA, et al. Cell culture block array for immunocytochemical study of protein expression in cultured cells. Appl Immunohistochem Mol Morphol. 2005;13:85–90.

    Article  PubMed  CAS  Google Scholar 

  22. Montgomery K, Zhao S, van de Rijn M, et al. A novel method for making “tissue” microarrays from small numbers of suspension cells. Appl Immunohistochem Mol Morphol. 2005;13:80–4.

    Article  PubMed  CAS  Google Scholar 

  23. Camp RL, Neumeister V, Rimm DL. A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol. 2008;26:5630–7.

    Article  PubMed  Google Scholar 

  24. Camp RL, Charette LA, Rimm DL. Validation of tissue microarray technology in breast carcinoma. Lab Invest. 2000;80:1943–9.

    Article  PubMed  CAS  Google Scholar 

  25. Torhorst J, Bucher C, Kononen J, et al. Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol. 2001;159:2249–56.

    Article  PubMed  CAS  Google Scholar 

  26. Chung GG, Zerkowski MP, Ghosh S, et al. Quantitative analysis of estrogen receptor heterogeneity in breast cancer. Lab Invest. 2007;87:662–9.

    Article  PubMed  CAS  Google Scholar 

  27. Têtu B, Popa I, Bairati I, et al. Immunohistochemical analysis of possible chemoresistance markers identified by micro-arrays on serous ovarian carcinomas. Mod Pathol. 2008;21:1002–10.

    Article  PubMed  Google Scholar 

  28. Svensson S, Jirstrom K, Ryden L, et al. ERK phosphorylation is linked to VEGFR2 expression and Ets-2 phosphorylation in breast cancer and is associated with tamoxifen treatment resistance and small tumours with good prognosis. Oncogene. 2005;24:4370–9.

    Article  PubMed  CAS  Google Scholar 

  29. Ryden L, Stendahl M, Jonsson H, et al. Tumor-specific VEGF-A and VEGFR2 in postmenopausal breast cancer patients with long-term follow-up. Implication of a link between VEGF pathway and tamoxifen response. Breast Cancer Res Treat. 2005;89:135–43.

    Article  PubMed  CAS  Google Scholar 

  30. Tovey S, Dunne B, Witton CJ, et al. Can molecular markers predict when to implement treatment with aromatase inhibitors in invasive breast cancer? Clin Cancer Res. 2005;11:4835–42.

    Article  PubMed  CAS  Google Scholar 

  31. Eckel-Passow JE, Hoering A, Therneau TM, et al. Experimental design and analysis of antibody microarrays: applying methods from cDNA arrays. Cancer Res. 2005;65:2985–9.

    PubMed  CAS  Google Scholar 

  32. Haab BB. Antibody arrays in cancer research. Mol Cell Proteomics. 2005;4:377–83.

    Article  PubMed  CAS  Google Scholar 

  33. Leuking A, Cahill DJ, Mullner S. Protein biochips: a new and versatile platform technology for molecular medicine. Drug Disc Today. 2005;10:789–94.

    Article  Google Scholar 

  34. Liotta LA, Kohn E, Petricoin EF. Clinical proteomics: personalized molecular medicine. JAMA. 2001;286:2211–4.

    Article  PubMed  CAS  Google Scholar 

  35. Petricoin EF, Zoon KC, Kohn EC, et al. Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov. 2002;1:683–95.

    Article  PubMed  CAS  Google Scholar 

  36. Paweletz CP, Charboneau L, Bichsel VE, et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene. 2001;20:1981–9.

    Article  PubMed  CAS  Google Scholar 

  37. Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol. 2003;7:55–63.

    Article  PubMed  CAS  Google Scholar 

  38. Cutler P. Protein arrays: the current state-of-the-art. Proteomics. 2003;3:3–18.

    Article  PubMed  CAS  Google Scholar 

  39. Ge H. UPA, a universal protein array system for quantitative detection of protein–protein, protein–DNA, protein–RNA and protein–ligand interactions. Nucleic Acids Res. 2000;28:e3.

    Article  PubMed  CAS  Google Scholar 

  40. Liotta L, Petricoin E. Molecular profiling of human cancer. Nat Rev Genet. 2000;1:48–56.

    Article  PubMed  CAS  Google Scholar 

  41. MacBeath G. Protein microarrays and proteomics. Nat Genet. 2002;32(Suppl):526–32.

    Article  PubMed  CAS  Google Scholar 

  42. Miller JC, Zhou H, Kwekel J, et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics. 2003;3:56–63.

    Article  PubMed  CAS  Google Scholar 

  43. Humphery-Smith I, Wischerhoff E, Hashimoto R. Protein arrays for assessment of target selectivity. Drug Discov World. 2002;4:17–27.

    Google Scholar 

  44. MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science. 2000;289:1760–3.

    PubMed  CAS  Google Scholar 

  45. Petach H, Gold L. Dimensionality is the issue: use of photoaptamers in protein microarrays. Curr Opin Biotechnol. 2002;13:309–14.

    Article  PubMed  CAS  Google Scholar 

  46. Weng S, Gu K, Hammond PW, et al. Generating addressable protein microarrays with profusion covalent mRNA-protein fusion technology. Proteomics. 2002;2:48–57.

    Article  PubMed  CAS  Google Scholar 

  47. Yue T, Haab BB. Microarrays in glycoproteomics research. Clinics Lab Med. 2009;29:15–29.

    Article  Google Scholar 

  48. Taylor AD, Hancock WS, Hincapie M, et al. Toward an integrated proteomic and glycomic approach to finding cancer biomarkers. Genome Med. 2009;1:57–66.

    Article  PubMed  Google Scholar 

  49. Liotta LA, Espina V, Mehta AI, et al. Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell. 2003;3:317–25.

    Article  PubMed  CAS  Google Scholar 

  50. Angenendt P. Progress in protein and antibody microarray technology. Drug Disc Today. 2005;10:503–11.

    Article  CAS  Google Scholar 

  51. LaBaer J, Ramachandran N. Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol. 2005;9:14–9.

    Article  PubMed  CAS  Google Scholar 

  52. Hultschig C, Kreutzberger J, Seitz H, et al. Recent advances of protein microarrays. Curr Opin Chem Biol. 2006;10:4–10.

    Article  PubMed  CAS  Google Scholar 

  53. Robinson WH. Antigen arrays for antibody profiling. Curr Opin Chem Biol. 2006;10:67–72.

    Article  PubMed  CAS  Google Scholar 

  54. Haab BB. Applications of antibody array platforms. Curr Opin Biotechnol. 2006;17:415–21.

    Article  PubMed  CAS  Google Scholar 

  55. Kingsmore SF. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov. 2006;5:310–20.

    Article  PubMed  CAS  Google Scholar 

  56. Spurrier B, Honkanen P, Holway A, et al. Protein and lysate array technologies in cancer research. Biotechnol Adv. 2008;26:361–9.

    Article  PubMed  CAS  Google Scholar 

  57. Madoz-Gurpide J, Kuick R, Wang H, et al. Integral protein microarrays for the identification of lung cancer antigens in sera that induce a humoral immune response. Mol Cell Proteomics. 2008;7:268–81.

    PubMed  CAS  Google Scholar 

  58. Sanchez-Carbayo M, Socci ND, Lozano JJ, et al. Profiling bladder cancer using targeted antibody arrays. Am J Pathol. 2006;168:93–103.

    Article  PubMed  CAS  Google Scholar 

  59. Shafer MW, Mangold L, Partin AW, et al. Antibody array profiling reveals serum TSP-I as a marker to distinguish benign from malignant prostatic disease. Prostate. 2007;67:255–67.

    Article  PubMed  Google Scholar 

  60. Orchekowski R, Hemelinck D, Li L, et al. Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Res. 2005;65:11193–202.

    Article  PubMed  CAS  Google Scholar 

  61. Ellmark P, Belov L, Huang P, et al. Multiplex detection of surface molecules on colorectal cancers. Proteomics. 2006;6:1791–802.

    Article  PubMed  CAS  Google Scholar 

  62. Grubb RL, Calvert VS, Wulfkuhle JD, et al. Signal pathway profiling of prostate cancer using reverse phase protein microarrays. Proteomics. 2003;3:2142–6.

    Article  PubMed  CAS  Google Scholar 

  63. Petricoin III EF, Bichsel VE, Calvert VS, et al. Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol. 2005;23:3614–21.

    Article  PubMed  CAS  Google Scholar 

  64. Wulfkuhle JD, Aquino JA, Calvert VS, et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics. 2003;3:2085–90.

    Article  PubMed  CAS  Google Scholar 

  65. Gulmann C, Espina V, Petricoin III E, et al. Proteomic analysis of apoptotic pathways reveals prognostic factors in follicular lymphoma. Clin Cancer Res. 2005;11:5847–55.

    Article  PubMed  CAS  Google Scholar 

  66. Sheehan KM, Calvert VS, Kay EW, et al. Use of reverse-phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics. 2005;4:346–55.

    Article  PubMed  CAS  Google Scholar 

  67. Sheehan KM, Gulmann C, Eichler GS, et al. Signal pathway profiling of epithelial and stromal compartments of colonic carcinoma reveals epithelial-mesenchymal transition. Oncogene. 2008;27:323–31.

    Article  PubMed  CAS  Google Scholar 

  68. Espina V, Wulfkuhle J, Liotta LA. Application of laser capture microdissection and reverse-phase protein microarrays to the molecular profiling of cancer signaling pathway networks in the tissue microenvironment. Clin Lab Med. 2009;29:1–13.

    Article  PubMed  Google Scholar 

  69. Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science. 1996;274:998–1001.

    Article  PubMed  CAS  Google Scholar 

  70. Anderson T, Wulfkuhle J, Liotta L, et al. Improved reproducibility of reverse-phase protein microarrays using array microenvironment normalization. Proteomics. 2009;9:5562–6.

    Article  PubMed  CAS  Google Scholar 

  71. Giltrane JM, Rimm DL. Technology insight: identification of biomarkers with tissue microarray technology. Nat Clin Pract Oncol. 2005;1:104–11.

    Article  Google Scholar 

  72. Espina V, Mehta AI, Winters ME, et al. Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics. 2003;3:2091–100.

    Article  PubMed  CAS  Google Scholar 

  73. Wulfkuhle J, Espina V, Liotta L, et al. Genomic and proteomic technologies for individualisation and improvement of cancer treatment. Eur J Cancer. 2004;40:2623–32.

    Article  PubMed  CAS  Google Scholar 

  74. Cronin M, Ghosh K, Sistare F, et al. Universal RNA reference materials for gene expression. Clin Chem. 2004;50:1464–71.

    Article  PubMed  CAS  Google Scholar 

  75. Wulfkuhle J, Edmiston KH, Liotta LA, et al. Technology insight: pharmacoproteomics for cancer – promises for patient-tailored medicine using protein microarrays. Nat Clin Pract Oncol. 2006;3:256–68.

    Article  PubMed  CAS  Google Scholar 

  76. Zha H, Raffeld M, Charboneau L, et al. Similarities of prosurvival signals in Bcl-2-positive and Bcl-2-negative follicular lymphomas identified by reverse phase protein microarray. Lab Invest. 2004;84:235–44.

    Article  PubMed  CAS  Google Scholar 

  77. Gulmann C, Sheehan KM, Conroy RM, et al. Quantitative cell signalling analysis reveals down-regulation of MAPK pathway activation in colorectal cancer. J Pathol. 2009;218:514–9.

    Article  PubMed  CAS  Google Scholar 

  78. Pierobon M, Calvert V, Belluco C, et al. Multiplexed cell signaling analysis of metastatic and nonmetastatic colorectal cancer reveals COX2-EGFR signaling activation as a potential prognostic pathway biomarker. Clin Colorectal Cancer. 2009;8:110–7.

    Article  CAS  Google Scholar 

  79. Grubb RL, Deng J, Pinto PA, et al. Pathway biomarker profiling of localized and metastatic human prostate cancer reveal metastatic and prognostic signatures. J Prot Res. 2009;8:3044–54.

    Article  CAS  Google Scholar 

  80. Stevens EV, Nishizuka S, Antony S, et al. Predicting cisplatin and trabectedin drug sensitivity in ovarian and colon cancers. Mol Cancer Ther. 2008;7:10–8.

    Article  PubMed  CAS  Google Scholar 

  81. O’Reilly KE, Warycha M, Davies MA, et al. Phosphorylated 4E-BP1 is associated with poor survival in melanoma. Clin Cancer Res. 2009;15:2872–8.

    Article  PubMed  Google Scholar 

  82. Boyd ZS, Wu QJ, O’Brien C, et al. Proteomic analysis of breast cancer molecular subtypes and biomarkers of response to targeted kinase inhibitors using reverse-phase protein microarrays. Mol Cancer Ther. 2008;7:3695–706.

    Article  PubMed  CAS  Google Scholar 

  83. Ihle NT, Lemos R, Wipf P, et al. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 while oncogenic Ras is a dominant predictor for resistance. Cancer Res. 2009;69:143–50.

    Article  PubMed  CAS  Google Scholar 

  84. Havaleshko DM, Smith SC, Cho HJ, et al. Comparison of global versus epidermal growth factor receptor pathway profiling for prediction of lapatinib sensitivity in bladder cancer. Neoplasia. 2009;11:1185–93.

    Google Scholar 

  85. Pernas FG, Allen CT, Winters ME, et al. Proteomic signatures of epidermal growth factor receptor and survival signal pathways correspond to gefitinib sensitivity in head and neck cancer. Clin Cancer Res. 2009;15:2361–72.

    Article  PubMed  CAS  Google Scholar 

  86. Park ES, Rabinovsky R, Carey M, et al. Integrative analysis of proteomic signatures, mutations, and drug responsiveness in the NCI 60 cancer cell line set. Cancer Res. 2010;9(2):257–67.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia D. Wulfkuhle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wulfkuhle, J.D., Khalil, M., Watson, J.C., Liotta, L.A., Petricoin, E.F. (2011). Development and Implementation of Array Technologies for Proteomics: Clinical Implications and Applications. In: Gioeli, D. (eds) Targeted Therapies. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-478-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-478-4_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-477-7

  • Online ISBN: 978-1-60761-478-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics