Skip to main content

Cancer Signaling Network Analysis by Quantitative Mass Spectrometry

  • Chapter
  • First Online:
Targeted Therapies

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 751 Accesses

Abstract

Global analysis of protein phosphorylation by mass spectrometry (MS) provides unbiased, discovery-based, site-specific monitoring of phosphorylation sites governing cell signaling networks involved in cancer progression and therapeutic resistance. In this chapter, advances in MS instrumentation and methodology for the identification and quantification of protein phosphorylation are discussed. These topics include (1) advantages and limitations of current MS-based protocols, (2) fundamentals of phosphopeptide fragmentation and identification, (3) selection of MS instrumentation, (4) fractionation and enrichment methods for detecting phosphorylated proteins/peptides, and (5) methods for phosphoproteome quantification. The final two topics represent the most important subjects of this chapter, as fractionation, enrichment, and quantification are crucially important to the generation of high quality MS-based phosphoproteomic data. These sections detail the use of immunoaffinity enrichment, immobilized metal affinity chromatography (IMAC), metal oxide affinity chromatography (MOAC), and strong cation exchange (SCX) chromatography as key methods for enriching and fractionating complex biological samples for phosphoproteomic analysis. Quantification of changes in signaling networks at the phosphoproteomic level through metabolic labeling (e.g., SILAC), chemical modification (e.g., iTRAQ), or label-free quantification is presented. As significant progress in detection and quantification strategies in phosphoproteomic research has arisen over the last decade, implementation of these approaches will enhance our understanding of cell signaling networks involved in cancer progression and thereby improve therapeutic targeting and monitoring of therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ESI:

Electrospray ionization

IMAC:

Immobilized metal affinity chromatography

LC-MS/MS:

Liquid chromatography tandem mass spectrometry

MALDI:

Matrix-assisted laser desorption ionization

MOAC:

Metal oxide affinity chromatography

SCX:

Strong cation exchange

SILAC:

Stable isotope labeling by amino acids in cell culture

References

  1. Nita-Lazar A, Saito-Benz H, White FM. Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics. 2008;8(21):4433–43.

    Article  PubMed  CAS  Google Scholar 

  2. Koomen JM, Haura EB, Bepler G, et al. Proteomic contributions to personalized cancer care. Mol Cell Proteomics. 2008;7(10):1780–94.

    Article  PubMed  CAS  Google Scholar 

  3. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34.

    Article  PubMed  CAS  Google Scholar 

  4. Walsh CT, Garneau-Tsodikova S, Gatto Jr GJ. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl. 2005;44(45):7342–72.

    Article  PubMed  CAS  Google Scholar 

  5. Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat Methods. 2007;4(10):798–806.

    Article  PubMed  CAS  Google Scholar 

  6. Pawson T, Kofler M. Kinome signaling through regulated protein-protein interactions in normal and cancer cells. Curr Opin Cell Biol. 2009;21(2):147–53.

    Article  PubMed  CAS  Google Scholar 

  7. Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol. 2003;21(3):315–8.

    Article  PubMed  CAS  Google Scholar 

  8. Schulze WX, Deng L, Mann M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol. 2005;1:2005.0008.

    Article  PubMed  Google Scholar 

  9. Jones RB, Gordus A, Krall JA, MacBeath G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature. 2006;439(7073):168–74.

    Article  PubMed  CAS  Google Scholar 

  10. Blethrow JD, Glavy JS, Morgan DO, Shokat KM. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc Natl Acad Sci USA. 2008;105(5):1442–7.

    Article  PubMed  CAS  Google Scholar 

  11. Kaushansky A, Gordus A, Budnik BA, Lane WS, Rush J, MacBeath G. System-wide investigation of ErbB4 reveals 19 sites of Tyr phosphorylation that are unusually selective in their recruitment properties. Chem Biol. 2008;15(8):808–17.

    Article  PubMed  CAS  Google Scholar 

  12. Pflieger D, Junger MA, Muller M, et al. Quantitative proteomic analysis of protein complexes: concurrent identification of interactors and their state of phosphorylation. Mol Cell Proteomics. 2008;7(2):326–46.

    PubMed  CAS  Google Scholar 

  13. Albeck JG, MacBeath G, White FM, Sorger PK, Lauffenburger DA, Gaudet S. Collecting and organizing systematic sets of protein data. Nat Rev Mol Cell Biol. 2006;7(11):803–12.

    Article  PubMed  CAS  Google Scholar 

  14. Tian Q, Stepaniants SB, Mao M, et al. Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics. 2004;3(10):960–9.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Y, Wolf-Yadlin A, Ross PL, et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics. 2005;4(9):1240–50.

    Article  PubMed  CAS  Google Scholar 

  16. Huang PH, Mukasa A, Bonavia R, et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA. 2007;104(31):12867–72.

    Article  PubMed  CAS  Google Scholar 

  17. Chen Y, Zhang J, Xing G, Zhao Y. Mascot-derived false positive peptide identifications revealed by manual analysis of tandem mass spectra. J Proteome Res. 2009;8(6):3141–7.

    Article  PubMed  CAS  Google Scholar 

  18. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods. 2007;4(3):231–7.

    Article  PubMed  CAS  Google Scholar 

  19. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB. Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem. 1985;57(3):675–9.

    Article  PubMed  CAS  Google Scholar 

  20. Hillenkamp F, Karas M, Beavis RC, Chait BT. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991;63(24):1193A–203.

    Article  PubMed  CAS  Google Scholar 

  21. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422(6928):198–207.

    Article  PubMed  CAS  Google Scholar 

  22. Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49–79.

    Article  PubMed  CAS  Google Scholar 

  23. Bonenfant D, Schmelzle T, Jacinto E, et al. Quantitation of changes in protein phosphorylation: a simple method based on stable isotope labeling and mass spectrometry. Proc Natl Acad Sci USA. 2003;100(3):880–5.

    Article  PubMed  CAS  Google Scholar 

  24. Mitulovic G, Mechtler K. HPLC techniques for proteomics analysis – a short overview of latest developments. Brief Funct Genomic Proteomic. 2006;5(4):249–60.

    Article  PubMed  CAS  Google Scholar 

  25. Steen H, Mann M. The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol. 2004;5(9):699–711.

    Article  PubMed  CAS  Google Scholar 

  26. Hunt DF, Buko AM, Ballard JM, Shabanowitz J, Giordani AB. Sequence analysis of polypeptides by collision activated dissociation on a triple quadrupole mass spectrometer. Biomed Mass Spectrom. 1981;8(9):397–408.

    Article  PubMed  CAS  Google Scholar 

  27. Ficarro SB, McCleland ML, Stukenberg PT, et al. Phosphoproteome analysis by mass ­spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol. 2002;20(3):301–5.

    Article  PubMed  CAS  Google Scholar 

  28. Schmelzle K, White FM. Phosphoproteomic approaches to elucidate cellular signaling networks. Curr Opin Biotechnol. 2006;17(4):406–14.

    Article  PubMed  CAS  Google Scholar 

  29. Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem. 2004;76(13):3590–8.

    Article  PubMed  CAS  Google Scholar 

  30. Villen J, Beausoleil SA, Gygi SP. Evaluation of the utility of neutral-loss-dependent MS3 strategies in large-scale phosphorylation analysis. Proteomics. 2008;8(21):4444–52.

    Article  PubMed  CAS  Google Scholar 

  31. Zubarev RA, Horn DM, Fridriksson EK, et al. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem. 2000;72(3):563–73.

    Article  PubMed  CAS  Google Scholar 

  32. Ducret A, Van Oostveen I, Eng JK, Yates III JR, Aebersold R. High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci. 1998;7(3):706–19.

    Article  PubMed  CAS  Google Scholar 

  33. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551–67.

    Article  PubMed  CAS  Google Scholar 

  34. Nichols AM, White FM. Manual validation of peptide sequence and sites of tyrosine phosphorylation from MS/MS spectra. Methods Mol Biol. 2009;492:143–60.

    Article  PubMed  CAS  Google Scholar 

  35. Nesvizhskii AI, Vitek O, Aebersold R. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods. 2007;4(10):787–97.

    Article  PubMed  CAS  Google Scholar 

  36. Hunt DF, Yates III JR, Shabanowitz J, Winston S, Hauer CR. Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci USA. 1986;83(17):6233–7.

    Article  PubMed  CAS  Google Scholar 

  37. Hoffmann Ed, Stroobant V. Mass spectrometry: principles and applications. 3rd ed. Chichester, England: Wiley; 2007.

    Google Scholar 

  38. Elias JE, Haas W, Faherty BK, Gygi SP. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods. 2005;2(9):667–75.

    Article  PubMed  CAS  Google Scholar 

  39. Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci USA. 2007;104(14):5860–5.

    Article  PubMed  CAS  Google Scholar 

  40. Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos Trans R Soc Lond B Biol Sci. 1998;353(1368):583–605.

    Article  PubMed  CAS  Google Scholar 

  41. Steiniger SC, Coppinger JA, Kruger JA, Yates III J, Janda KD. Quantitative mass spectrometry identifies drug targets in cancer stem cell-containing side population. Stem Cells. 2008;26(12):3037–46.

    Article  PubMed  CAS  Google Scholar 

  42. Todorovic V, Desai BV, Eigenheer RA, et al. Detection of differentially expressed basal cell proteins by mass spectrometry. Mol Cell Proteomics. 2010;9(2):351–61.

    Article  PubMed  CAS  Google Scholar 

  43. Forner F, Kumar C, Luber CA, Fromme T, Klingenspor M, Mann M. Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metab. 2009;10(4):324–35.

    Article  PubMed  CAS  Google Scholar 

  44. Olsen JV, Blagoev B, Gnad F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127(3):635–48.

    Article  PubMed  CAS  Google Scholar 

  45. Amanchy R, Kalume DE, Iwahori A, Zhong J, Pandey A. Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC). J Proteome Res. 2005;4(5):1661–71.

    Article  PubMed  CAS  Google Scholar 

  46. Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–6.

    Article  PubMed  CAS  Google Scholar 

  47. Konishi H, Namikawa K, Shikata K, Kobatake Y, Tachibana T, Kiyama H. Identification of peripherin as a Akt substrate in neurons. J Biol Chem. 2007;282(32):23491–9.

    Article  PubMed  CAS  Google Scholar 

  48. Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA. 2000;97(17):9390–5.

    Article  PubMed  CAS  Google Scholar 

  49. Granvogl B, Ploscher M, Eichacker LA. Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem. 2007;389(4):991–1002.

    Article  PubMed  CAS  Google Scholar 

  50. Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol. 2004;22(9):1139–45.

    Article  PubMed  CAS  Google Scholar 

  51. Wolf-Yadlin A, Kumar N, Zhang Y, et al. Effects of HER2 overexpression on cell signaling networks governing proliferation and migration. Mol Syst Biol. 2006;2:54.

    Article  PubMed  Google Scholar 

  52. Stokes MP, Rush J, Macneill J, et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA. 2007;104(50):19855–60.

    Article  PubMed  CAS  Google Scholar 

  53. Porath J, Carlsson J, Olsson I, Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 1975;258(5536):598–9.

    Article  PubMed  CAS  Google Scholar 

  54. Andersson L, Porath J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem. 1986;154(1):250–4.

    Article  PubMed  CAS  Google Scholar 

  55. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 2005;4(7):873–86.

    Article  PubMed  CAS  Google Scholar 

  56. Kweon HK, Hakansson K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem. 2006;78(6):1743–9.

    Article  PubMed  CAS  Google Scholar 

  57. Wolschin F, Wienkoop S, Weckwerth W. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics. 2005;5(17):4389–97.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang Y, Wolf-Yadlin A, White FM. Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks. Methods Mol Biol. 2007;359:203–12.

    Article  PubMed  CAS  Google Scholar 

  59. Collins MO, Yu L, Husi H, Blackstock WP, Choudhary JS, Grant SG. Robust enrichment of phosphorylated species in complex mixtures by sequential protein and peptide metal-affinity chromatography and analysis by tandem mass spectrometry. Sci STKE. 2005;2005(298):pl6.

    Article  PubMed  Google Scholar 

  60. Villen J, Beausoleil SA, Gerber SA, Gygi SP. Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA. 2007;104(5):1488–93.

    Article  PubMed  CAS  Google Scholar 

  61. Villen J, Gygi SP. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc. 2008;3(10):1630–8.

    Article  PubMed  Google Scholar 

  62. Ong SE, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–86.

    Article  PubMed  CAS  Google Scholar 

  63. Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–69.

    Article  PubMed  CAS  Google Scholar 

  64. Pan C, Kumar C, Bohl S, Klingmueller U, Mann M. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics. 2009;8(3):443–50.

    Article  PubMed  CAS  Google Scholar 

  65. Guha U, Chaerkady R, Marimuthu A, et al. Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc Natl Acad Sci USA. 2008;105(37):14112–7.

    Article  PubMed  CAS  Google Scholar 

  66. Swaney DL, Wenger CD, Thomson JA, Coon JJ. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA. 2009;106(4):995–1000.

    Article  PubMed  CAS  Google Scholar 

  67. Jorgensen C, Sherman A, Chen GI, et al. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science. 2009;326(5959):1502–9.

    Article  PubMed  CAS  Google Scholar 

  68. Kruger M, Moser M, Ussar S, et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell. 2008;134(2):353–64.

    Article  PubMed  Google Scholar 

  69. Gruhler A, Schulze WX, Matthiesen R, Mann M, Jensen ON. Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics. 2005;4(11):1697–709.

    Article  PubMed  CAS  Google Scholar 

  70. Kim JE, White FM. Quantitative analysis of phosphotyrosine signaling networks triggered by CD3 and CD28 costimulation in Jurkat cells. J Immunol. 2006;176(5):2833–43.

    PubMed  CAS  Google Scholar 

  71. Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM. Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes. 2006;55(8):2171–9.

    Article  PubMed  CAS  Google Scholar 

  72. Bantscheff M, Eberhard D, Abraham Y, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol. 2007;25(9):1035–44.

    Article  PubMed  CAS  Google Scholar 

  73. DeSouza LV, Grigull J, Ghanny S, et al. Endometrial carcinoma biomarker discovery and verification using differentially tagged clinical samples with multidimensional liquid chromatography and tandem mass spectrometry. Mol Cell Proteomics. 2007;6(7):1170–82.

    Article  PubMed  CAS  Google Scholar 

  74. DeSouza LV, Romaschin AD, Colgan TJ, Siu KW. Absolute quantification of potential cancer markers in clinical tissue homogenates using multiple reaction monitoring on a hybrid triple quadrupole/linear ion trap tandem mass spectrometer. Anal Chem. 2009;81(9):3462–70.

    Article  PubMed  CAS  Google Scholar 

  75. Hendrickson EL, Xia Q, Wang T, Leigh JA, Hackett M. Comparison of spectral counting and metabolic stable isotope labeling for use with quantitative microbial proteomics. Analyst. 2006;131(12):1335–41.

    Article  PubMed  CAS  Google Scholar 

  76. Meierhofer D, Wang X, Huang L, Kaiser P. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res. 2008;7(10):4566–76.

    Article  PubMed  CAS  Google Scholar 

  77. Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325(5942):834–40.

    Article  PubMed  CAS  Google Scholar 

  78. Janes KA, Lauffenburger DA. A biological approach to computational models of proteomic networks. Curr Opin Chem Biol. 2006;10(1):73–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Amanda Del Rosario and other members of the White laboratory for helpful discussions regarding the contents of this chapter. This work was supported by a Genetech Postdoctoral Fellowship (to J.R.N.) and by National Cancer Institute (NCI) Grants R01-CA118705 (to F.M.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Forest M. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neil, J.R., White, F.M. (2011). Cancer Signaling Network Analysis by Quantitative Mass Spectrometry. In: Gioeli, D. (eds) Targeted Therapies. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-478-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-478-4_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-477-7

  • Online ISBN: 978-1-60761-478-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics