Skip to main content

The Biology of IgE: The Generation of High-Affinity IgE Antibodies

  • Chapter
  • First Online:

Abstract

B cells can undergo affinity maturation through the process of somatic hypermutation (SHM) followed by selection for high-affinity variants. Affinity maturation occurs in germinal centers (GC) and requires T–B cell cooperation. Extra GC B-cell responses are associated with the production of low-affinity antibodies. B cells producing high-affinity IgE during T-dependent responses are not directly selected in GC but are produced by the sequential switching of GC-selected high-affinity IgG-producing B cells. In contrast, natural low-affinity IgE can be generated without cognate T–B cell interactions in lymphopenic conditions. Low- and high-affinity IgE may differentially affect mast cell survival and degranulation and thus determine whether mast cells contribute to a beneficial or pathogenic environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. D. McCoy, N. L. Harris, P. Diener, S. Hatak, B. Odermatt, L. Hangartner, B. M. Senn, B. J. Marsland, M. B. Geuking, H. Hengartner, A. J. Macpherson, R. M. Zinkernagel. Natural IgE production in the absence of MHC Class II cognate help. Immunity 24: 329–339, 2006.

    Article  CAS  PubMed  Google Scholar 

  2. M. A. Curotto de Lafaille, S. Muriglan, M. J. Sunshine, Y. Lei, N. Kutchukhidze, G. C. Furtado, A. K. Wensky, D. Olivares-Villagomez, J. J. Lafaille. Hyper immunoglobulin E response in mice with monoclonal populations of B and T lymphocytes. J Exp Med 194: 1349–1359, 2001.

    Article  Google Scholar 

  3. C. Gonzalez-Espinosa, S. Odom, A. Olivera, J. P. Hobson, M. E. Martinez, A. Oliveira-Dos-Santos, L. Barra, S. Spiegel, J. M. Penninger, J. Rivera. Preferential signaling and induction of allergy-promoting lymphokines upon weak stimulation of the high affinity IgE receptor on mast cells. J Exp Med 197: 1453–1465, 2003.

    Article  CAS  PubMed  Google Scholar 

  4. S. Yamasaki, E. Ishikawa, M. Kohno, T. Saito. The quantity and duration of FcRgamma signals determine mast cell degranulation and survival. Blood 103: 3093–3101, 2004.

    Article  CAS  PubMed  Google Scholar 

  5. H. C. Oettgen, R. S. Geha. IgE regulation and roles in asthma pathogenesis. J Allergy Clin Immunol 107: 429–440, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. R. S. Geha, H. H. Jabara, S. R. Brodeur. The regulation of immunoglobulin E class-switch recombination. Nat Rev Immunol 3: 721–732, 2003.

    Article  CAS  PubMed  Google Scholar 

  7. L. Xu, B. Gorham, S. C. Li, A. Bottaro, F. W. Alt, P. Rothman. Replacement of germ-line epsilon promoter by gene targeting alters control of immunoglobulin heavy chain class switching. Proc Natl Acad Sci USA 90: 3705–3709, 1993.

    Article  CAS  PubMed  Google Scholar 

  8. L. Xu, P. Rothman. IFN-gamma represses epsilon germline transcription and subsequently down-regulates switch recombination to epsilon. Int Immunol 6: 515–521, 1994.

    Article  CAS  PubMed  Google Scholar 

  9. M. Sugai, H. Gonda, T. Kusunoki, T. Katakai, Y. Yokota, A. Shimizu. Essential role of Id2 in negative regulation of IgE class switching. Nat Immunol 4: 25–30, 2003.

    Article  CAS  PubMed  Google Scholar 

  10. J. P. Manis, M. Tian, F. W. Alt. Mechanism and control of class-switch recombination. Trends Immunol 23: 31–39, 2002.

    Article  CAS  PubMed  Google Scholar 

  11. K. Kinoshita, T. Honjo. Linking class-switch recombination with somatic hypermutation. Nat Rev Mol Cell Biol 2: 493–503, 2001.

    Article  CAS  PubMed  Google Scholar 

  12. J. A. Fenton, G. Pratt, A. C. Rawstron, G. J. Morgan. Isotype class switching and the pathogenesis of multiple myeloma. Hematol Oncol 20: 75–85, 2002.

    Article  CAS  PubMed  Google Scholar 

  13. T. Yoshimoto, H. Okamura, Y. I. Tagawa, Y. Iwakura, K. Nakanishi. Interleukin 18 together with interleukin 12 inhibits IgE production by induction of interferon-gamma production from activated B cells. Proc Natl Acad Sci USA 94: 3948–3953, 1997.

    Article  CAS  PubMed  Google Scholar 

  14. E. Severinson, C. Fernandez, J. Stavnezer. Induction of germ-line immunoglobulin heavy chain transcripts by mitogens and interleukins prior to switch recombination. Eur J Immunol 20: 1079–1084, 1990.

    Article  CAS  PubMed  Google Scholar 

  15. N. Liu, N. Ohnishi, L. Ni, S. Akira, K. B. Bacon. CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat Immunol 4: 687–693, 2003.

    Article  CAS  PubMed  Google Scholar 

  16. M. B. Harris, C. C. Chang, M. T. Berton, N. N. Danial, J. Zhang, D. Kuehner, B. H. Ye, M. Kvatyuk, P. P. Pandolfi, G. Cattoretti, R. Dalla-Favera, P. B. Rothman. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of iepsilon transcription and immunoglobulin E switching. Mol Cell Biol 19: 7264–7275, 1999.

    CAS  PubMed  Google Scholar 

  17. G. Perona-Wright, K. Mohrs, J. Taylor, C. Zaph, D. Artis, E. J. Pearce, M. Mohrs. Cutting edge: Helminth infection induces IgE in the absence of mu- or delta-chain expression. J Immunol 181: 6697–6701, 2008.

    CAS  PubMed  Google Scholar 

  18. Z. Orinska, A. Osiak, J. Lohler, E. Bulanova, V. Budagian, I. Horak, S. Bulfone-Paus. Novel B cell population producing functional IgG in the absence of membrane IgM expression. Eur J Immunol 32: 3472–3480, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. M. Hasan, B. Polic, M. Bralic, S. Jonjic, K. Rajewsky. Incomplete block of B cell development and immunoglobulin production in mice carrying the muMT mutation on the BALB/c background. Eur J Immunol 32: 3463–3471, 2002.

    Article  CAS  PubMed  Google Scholar 

  20. K. Yoshida, M. Matsuoka, S. Usuda, A. Mori, K. Ishizaka, H. Sakano. Immunoglobulin switch circular DNA in the mouse infected with Nippostrongylus brasiliensis: evidence for successive class switching from mu to epsilon via gamma 1. Proc Natl Acad Sci USA 87: 7829–7833, 1990.

    Article  CAS  PubMed  Google Scholar 

  21. F. C. Mills, G. Thyphronitis, F. D. Finkelman, E. E. Max. Ig mu-epsilon isotype switch in IL-4-treated human B lymphoblastoid cells. Evidence for a sequential switch. J Immunol 149: 1075–1085, 1992.

    CAS  PubMed  Google Scholar 

  22. R. Mandler, F. D. Finkelman, A. D. Levine, C. M. Snapper. IL-4 induction of IgE class switching by lipopolysaccharide-activated murine B cells occurs predominantly through sequential switching. J Immunol 150: 407–418, 1993.

    CAS  PubMed  Google Scholar 

  23. G. Siebenkotten, C. Esser, M. Wabl, A. Radbruch. The murine IgG1/IgE class switch program. Eur J Immunol 22: 1827–1834, 1992.

    Article  CAS  PubMed  Google Scholar 

  24. H. H. Jabara, R. Loh, N. Ramesh, D. Vercelli, R. S. Geha. Sequential switching from mu to epsilon via gamma 4 in human B cells stimulated with IL-4 and hydrocortisone. J Immunol 151: 4528–4533, 1993.

    CAS  PubMed  Google Scholar 

  25. F. C. Mills, M. P. Mitchell, N. Harindranath, E. E. Max. Human Ig S gamma regions and their participation in sequential switching to IgE. J Immunol 155: 3021–3036, 1995.

    CAS  PubMed  Google Scholar 

  26. B. Baskin, K. B. Islam, B. Evengard, L. Emtestam, C. I. Smith. Direct and sequential switching from mu to epsilon in patients with Schistosoma mansoni infection and atopic dermatitis. Eur J Immunol 27: 130–135, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. K. Zhang, F. C. Mills, A. Saxon. Switch circles from IL-4-directed epsilon class switching from human B lymphocytes. Evidence for direct, sequential, and multiple step sequential switch from mu to epsilon Ig heavy chain gene. J Immunol 152: 3427–3435, 1994.

    CAS  PubMed  Google Scholar 

  28. A. Erazo, N. Kutchukhidze, M. Leung, A. P. Christ, J. F. Urban, Jr., M. A. Curotto de Lafaille, J. J. Lafaille. Unique maturation program of the IgE response in vivo. Immunity 26: 191–203, 2007.

    Article  CAS  PubMed  Google Scholar 

  29. I. M. Katona, J. F. Urban, Jr., F. D. Finkelman. The role of L3T4+ and Lyt-2+ T cells in the IgE response and immunity to Nippostrongylus brasiliensis. J Immunol 140: 3206–3211, 1988.

    CAS  PubMed  Google Scholar 

  30. F. D. Finkelman, J. Holmes, I. M. Katona, J. F. Urban, Jr., M. P. Beckmann, L. S. Park, K. A. Schooley, R. L. Coffman, T. R. Mosmann, W. E. Paul. Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol 8: 303–333, 1990.

    Article  CAS  PubMed  Google Scholar 

  31. S. Jung, G. Siebenkotten, A. Radbruch. Frequency of immunoglobulin E class switching is autonomously determined and independent of prior switching to other classes. J Exp Med 179: 2023–2026, 1994.

    Article  CAS  PubMed  Google Scholar 

  32. C. G. Vinuesa, S. G. Tangye, B. Moser, C. R. Mackay. Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol 5: 853–865, 2005.

    Article  CAS  PubMed  Google Scholar 

  33. P. Schaerli, K. Willimann, A. B. Lang, M. Lipp, P. Loetscher, B. Moser. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192: 1553–1562, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. D. Breitfeld, L. Ohl, E. Kremmer, J. Ellwart, F. Sallusto, M. Lipp, R. Forster. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192: 1545–1552, 2000.

    Article  CAS  PubMed  Google Scholar 

  35. T. Chtanova, S. G. Tangye, R. Newton, N. Frank, M. R. Hodge, M. S. Rolph, C. R. Mackay. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173: 68–78, 2004.

    CAS  PubMed  Google Scholar 

  36. A. U. Rasheed, H. P. Rahn, F. Sallusto, M. Lipp, G. Muller. Follicular B helper T cell activity is confined to CXCR5(hi)ICOS(hi) CD4 T cells and is independent of CD57 expression. Eur J Immunol 36: 1892–1903, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. A. Suto, H. Nakajima, K. Hirose, K. Suzuki, S. Kagami, Y. Seto, A. Hoshimoto, Y. Saito, D. C. Foster, I. Iwamoto. Interleukin 21 prevents antigen-induced IgE production by inhibiting germ line C(epsilon) transcription of IL-4-stimulated B cells. Blood 100: 4565–4573, 2002.

    Article  CAS  PubMed  Google Scholar 

  38. K. Ozaki, R. Spolski, C. G. Feng, C. F. Qi, J. Cheng, A. Sher, H. C. Morse, 3rd, C. Liu, P. L. Schwartzberg, W. J. Leonard. A critical role for IL-21 in regulating immunoglobulin production. Science 298: 1630–1634, 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Lafaille laboratory is supported by the NIH/NIAID, the National Multiple Sclerosis Society, the Strategic Program for Asthma Research, and the Crohn’s and Colitis Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Curotto de Lafaille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Curotto de Lafaille, M.A., Lafaille, J.J. (2010). The Biology of IgE: The Generation of High-Affinity IgE Antibodies. In: Penichet, M., Jensen-Jarolim, E. (eds) Cancer and IgE. Humana Press. https://doi.org/10.1007/978-1-60761-451-7_3

Download citation

Publish with us

Policies and ethics