Skip to main content

Abstract

The frontiers of cell science are a terra incognita. At least some of the protein function(s) of cells and the systems biology that are emerging have been traced to single base changes in the genome, single nucleotide polymorphisms, or more rare mutations that help to explain functional alterations in the bustling life of a cancer cell. However, even the most ambitious genome-wide association studies have, in most cases, failed to adequately explain complex traits or the underpinnings of pathology, placing in doubt the dogma of the “common-disease, common-variant” hypothesis – a theory that the commonality of some diseases must imply a common set of identifiable triggers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Institute NC. 51-Year trends in U.S. cancer death rates In: SEER Cancer Statistics Review, 1975–2000: http://seer.cancer.gov/statfacts/html/melan. Accessed 1 June 2011.

  2. Weinberg R. The biology of cancer. New York: Garland Science; 2007.

    Google Scholar 

  3. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.

    Article  PubMed  Google Scholar 

  4. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  PubMed  CAS  Google Scholar 

  5. Chan E, Patel R, Nallur S, Ratner E, Bacchiocchi A, et al. MicroRNA signatures differentiate melanoma subtypes. Cell Cycle. 2011;10(11):1845–52.

    Article  PubMed  Google Scholar 

  6. Segura MF, Belitskaya-Levy I, Rose AE, Zakrzewski J, Gaziel A, et al. Melanoma MicroRNA signature predicts post-recurrence survival. Clin Cancer Res. 2010;16:1577–86.

    Article  PubMed  CAS  Google Scholar 

  7. Ma Z, Lui WO, Fire A, Dadras SS. Profiling and discovery of novel miRNAs from formalin-fixed, paraffin-embedded melanoma and nodal specimens. J Mol Diagn. 2009;11:420–9.

    Article  PubMed  CAS  Google Scholar 

  8. Liu A, Xu X. MicroRNA isolation from formalin-fixed, paraffin-embedded tissues. Methods Mol Biol. 2011;724:259–67.

    Article  PubMed  CAS  Google Scholar 

  9. Muller DW, Bosserhoff AK. Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene. 2008;27:6698–706.

    Article  PubMed  CAS  Google Scholar 

  10. Fu TY, Chang CC, Lin CT, Lai CH, Peng SY, et al. Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells. Exp Cell Res. 2011;317:445–51.

    Article  PubMed  CAS  Google Scholar 

  11. Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res. 2008;18: 549–57.

    Article  PubMed  CAS  Google Scholar 

  12. Glud M, Manfe V, Biskup E, Holst L, Dirksen AM, et al. MicroRNA miR-125b induces senescence in human melanoma cells. Melanoma Res. 2011;21: 253–6.

    Article  PubMed  CAS  Google Scholar 

  13. Glud M, Rossing M, Hother C, Holst L, Hastrup N, et al. Downregulation of miR-125b in metastatic cutaneous malignant melanoma. Melanoma Res. 2010;20: 479–84.

    Article  PubMed  CAS  Google Scholar 

  14. Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, et al. miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem. 2011;286:16606–14.

    Article  PubMed  CAS  Google Scholar 

  15. Philippidou D, Schmitt M, Moser D, Margue C, Nazarov PV, et al. Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer Res. 2010;70:4163–73.

    Article  PubMed  CAS  Google Scholar 

  16. Das SK, Sokhi UK, Bhutia SK, Azab B, Su ZZ, et al. Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells. Proc Natl Acad Sci USA. 2010;107: 11948–53.

    Article  PubMed  CAS  Google Scholar 

  17. Levati L, Pagani E, Romani S, Castiglia D, Piccinni E, et al. MicroRNA-155 targets the SKI gene in human melanoma cell lines. Pigment Cell Melanoma Res. 2011;24:538–50.

    Article  PubMed  CAS  Google Scholar 

  18. Chen J, Feilotter HE, Pare GC, Zhang X, Pemberton JG, et al. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol. 2010;176:2520–9.

    Article  PubMed  CAS  Google Scholar 

  19. Greenberg E, Hershkovitz L, Itzhaki O, Hajdu S, Nemlich Y, et al. Regulation of cancer aggressive features in melanoma cells by MicroRNAs. PLoS One. 2011;6:e18936.

    Article  PubMed  CAS  Google Scholar 

  20. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 2010;17:236–45.

    Article  PubMed  CAS  Google Scholar 

  21. Deng Y, Deng H, Bi F, Liu J, Bemis LT, et al. MicroRNA-137 targets carboxyl-terminal binding protein 1 in melanoma cell lines. Int J Biol Sci. 2011;7:133–7.

    PubMed  CAS  Google Scholar 

  22. Chinnadurai G. The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res. 2009;69:731–4.

    Article  PubMed  CAS  Google Scholar 

  23. Mroz EA, Baird AH, Michaud WA, Rocco JW. COOH-terminal binding protein regulates expression of the p16INK4A tumor suppressor and senescence in primary human cells. Cancer Res. 2008;68:6049–53.

    Article  PubMed  CAS  Google Scholar 

  24. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res. 2008;68:1362–8.

    Article  PubMed  CAS  Google Scholar 

  25. Haflidadottir BS, Bergsteinsdottir K, Praetorius C, Steingrimsson E. miR-148 regulates Mitf in melanoma cells. PLoS One. 2010;5:e11574.

    Article  PubMed  Google Scholar 

  26. Hallsson JH, Haflidadottir BS, Schepsky A, Arnheiter H, Steingrimsson E. Evolutionary sequence comparison of the Mitf gene reveals novel conserved domains. Pigment Cell Res. 2007;20:185–200.

    Article  PubMed  CAS  Google Scholar 

  27. Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA. 2009;106:1814–9.

    Article  PubMed  CAS  Google Scholar 

  28. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  PubMed  CAS  Google Scholar 

  29. Yan D, Zhou X, Chen X, Hu DN, Dong XD, et al. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met. Invest Ophthalmol Vis Sci. 2009;50:1559–65.

    Article  PubMed  Google Scholar 

  30. Migliore C, Petrelli A, Ghiso E, Corso S, Capparuccia L, et al. MicroRNAs impair MET-mediated invasive growth. Cancer Res. 2008;68:10128–36.

    Article  PubMed  CAS  Google Scholar 

  31. Comoglio PM, Trusolino L. Invasive growth: from development to metastasis. J Clin Invest. 2002; 109:857–62.

    PubMed  CAS  Google Scholar 

  32. Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, et al. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle. 2009;8:2756–68.

    Article  PubMed  CAS  Google Scholar 

  33. Li X, Sanda T, Look AT, Novina CD, von Boehmer H. Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. J Exp Med. 2011;208:663–75.

    Article  PubMed  CAS  Google Scholar 

  34. Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8: 97–106.

    Article  PubMed  CAS  Google Scholar 

  35. McGovern M, Voutev R, Maciejowski J, Corsi AK, Hubbard EJ. A “latent niche” mechanism for tumor initiation. Proc Natl Acad Sci USA. 2009;106: 11617–22.

    Article  PubMed  CAS  Google Scholar 

  36. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    Article  PubMed  CAS  Google Scholar 

  37. Dissanayake SK, Wade M, Johnson CE, O’Connell MP, Leotlela PD, et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem. 2007;282:17259–71.

    Article  PubMed  CAS  Google Scholar 

  38. Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis. 2008;25:657–63.

    Article  PubMed  CAS  Google Scholar 

  39. Massague J. TGFbeta in cancer. Cell. 2008;134: 215–30.

    Article  PubMed  CAS  Google Scholar 

  40. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.

    Article  PubMed  CAS  Google Scholar 

  41. Kondo M, Cubillo E, Tobiume K, Shirakihara T, Fukuda N, et al. A role for Id in the regulation of TGF-beta-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ. 2004;11:1092–101.

    Article  PubMed  CAS  Google Scholar 

  42. Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science. 2010;328:1694–8.

    Article  PubMed  CAS  Google Scholar 

  43. Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010;465:584–9.

    Article  PubMed  CAS  Google Scholar 

  44. Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell. 2009;33:237–47.

    Article  PubMed  CAS  Google Scholar 

  45. Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell. 2010;37:620–32.

    Article  PubMed  CAS  Google Scholar 

  46. Penna E, Orso F, Cimino D, Tenaglia E, Lembo A, et al. microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J. 2011;30:1990–2007.

    Article  PubMed  CAS  Google Scholar 

  47. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910–4.

    Article  PubMed  CAS  Google Scholar 

  48. Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, et al. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010;31:766–76.

    Article  PubMed  CAS  Google Scholar 

  49. Mueller DW, Bosserhoff AK. MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. Int J Cancer. 2010;129(5): 1064–74.

    Article  Google Scholar 

  50. Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, et al. Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell. 2010;40:841–9.

    Article  PubMed  CAS  Google Scholar 

  51. Boyle GM, Woods SL, Bonazzi VF, Stark MS, Hacker E, et al. Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res. 2011;24:525–37.

    Article  PubMed  CAS  Google Scholar 

  52. Mazar J, DeYoung K, Khaitan D, Meister E, Almodovar A, et al. The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS One. 2010;5:e13779.

    Article  PubMed  Google Scholar 

  53. Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res. 1998;58:1515–20.

    PubMed  CAS  Google Scholar 

  54. Mueller DW, Rehli M, Bosserhoff AK. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol. 2009;129:1740–51.

    Article  PubMed  CAS  Google Scholar 

  55. Molnar V, Tamasi V, Bakos B, Wiener Z, Falus A. Changes in miRNA expression in solid tumors: an miRNA profiling in melanomas. Semin Cancer Biol. 2008;18:111–22.

    Article  PubMed  CAS  Google Scholar 

  56. Satzger I, Mattern A, Kuettler U, Weinspach D, Voelker B, et al. MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma. Int J Cancer. 2010;126:2553–62.

    PubMed  CAS  Google Scholar 

  57. Ma Z, Swede H, Cassarino DC, Fleming E, Fire A, Dadras SS. Up-regulated Dicer expression in patients with cutaneous melanoma. PLoS ONE. 2011;6(6): e20494.

    Article  PubMed  CAS  Google Scholar 

  58. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005;96:111–5.

    Article  PubMed  CAS  Google Scholar 

  59. Sugito N, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, et al. RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res. 2006;12:7322–8.

    Article  PubMed  CAS  Google Scholar 

  60. Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, et al. Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol. 2006;169:1812–20.

    Article  PubMed  CAS  Google Scholar 

  61. Chiosea S, Jelezcova E, Chandran U, Luo J, Mantha G, et al. Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res. 2007;67: 2345–50.

    Article  PubMed  CAS  Google Scholar 

  62. Muralidhar B, Goldstein LD, Ng G, Winder DM, Palmer RD, et al. Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J Pathol. 2007;212:368–77.

    Article  PubMed  CAS  Google Scholar 

  63. Chiosea SI, Barnes EL, Lai SY, Egloff AM, Sargent RL, et al. Mucoepidermoid carcinoma of upper aerodigestive tract: clinicopathologic study of 78 cases with immunohistochemical analysis of Dicer expression. Virchows Arch. 2008;452:629–35.

    Article  PubMed  CAS  Google Scholar 

  64. Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med. 2008;359: 2641–50.

    Article  PubMed  CAS  Google Scholar 

  65. Jakymiw A, Patel RS, Deming N, Bhattacharyya I, Shah P, et al. Overexpression of dicer as a result of reduced let-7 MicroRNA levels contributes to increased cell proliferation of oral cancer cells. Genes Chromosomes Cancer. 2010;49:549–59.

    Article  PubMed  CAS  Google Scholar 

  66. Scatolini M, Grand MM, Grosso E, Venesio T, Pisacane A, et al. Altered molecular pathways in melanocytic lesions. Int J Cancer. 2010;126:1869–81.

    PubMed  CAS  Google Scholar 

  67. Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics. 2008;1:13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Sam Dadras M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kozubek, J., Altaf, F., Dadras, S.S. (2012). MicroRNA Biomarkers in Melanoma. In: Murphy, M. (eds) Diagnostic and Prognostic Biomarkers and Therapeutic Targets in Melanoma. Current Clinical Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-433-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-433-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-432-6

  • Online ISBN: 978-1-60761-433-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics