Skip to main content

Molecular Pathogenesis of Melanoma: Established and Novel Pathways

  • Chapter
  • First Online:
Diagnostic and Prognostic Biomarkers and Therapeutic Targets in Melanoma

Abstract

Melanoma is the eighth most common malignancy in the USA and has shown a rapid increase in its incidence rate over the past two decades, especially for early-stage disease [1–4] A recent analysis of data from the Surveillance Epidemiology and End Results (SEER) Program indicates that the incidence of melanoma increases with age, showing somewhat different patterns in men and women [3]. This cancer arises from melanocytes, which are specialized pigmented cells that are predominantly found in the skin and eyes, where they produce melanin, the pigment responsible for skin and hair color.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beddingfield III FC. The melanoma epidemic: res ipsa loquitur. Oncologist. 2002;8:459–65.

    Article  Google Scholar 

  2. Gerami P, Gammon B, Murphy M. Melanocytic neoplasms I: molecular diagnosis. In: Murphy MJ, editor. Molecular diagnostics in dermatology and dermatopathology. New York: Springer; 2011.

    Google Scholar 

  3. Dennis LK. Analysis of the melanoma epidemic, both apparent and real: data from the 1973 through 1994 surveillance, epidemiology, and end results program registry. Arch Dermatol. 1999;135:275–80.

    Article  PubMed  CAS  Google Scholar 

  4. Lipsker DM, Hedelin G, Heid E, Grosshans EM, Cribier BJ. Striking increases of thin melanomas contrasts with a stable incidence of thick melanomas. Arch Dermatol. 1999;135:1451–6.

    Article  PubMed  CAS  Google Scholar 

  5. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, Melchi CF. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005;41:45–60.

    Article  PubMed  Google Scholar 

  6. Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med. 1999;340:1341–8.

    Article  PubMed  CAS  Google Scholar 

  7. Jhappan C, Noonan FP, Merlino G. Ultraviolet radiation and cutaneous malignant melanoma. Oncogene. 2003;22:3099–112.

    Article  PubMed  CAS  Google Scholar 

  8. Eide MJ, Weinstock MA. Association of UV index, latitude, and melanoma incidence in non-White populations – US surveillance, epidemiology, and end results (SEER) program, 1992 to 2001. Arch Dermatol. 2005;141:477–81.

    Article  PubMed  Google Scholar 

  9. De Fabo EC, Noonan FP, Fears T, Merlino G. Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res. 2004;64:6372–6.

    Article  PubMed  Google Scholar 

  10. Wang SQ, Setlow R, Berwick M, Polsky D, Marghoob AA, Kopf AW, Bart RS. Ultraviolet A and melanoma: a review. J Am Acad Dermatol. 2001;44: 837–46.

    Article  PubMed  CAS  Google Scholar 

  11. Moan J, Dahlback A, Setlow RB. Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation. Photochem Photobiol. 1999;70:243–7.

    Article  PubMed  CAS  Google Scholar 

  12. Oliveria S, Dusza S, Berwick M. Issues in the epidemiology of melanoma. Expert Rev Anticancer Ther. 2001;1:453–9.

    Article  PubMed  CAS  Google Scholar 

  13. Garland C, Garland F, Gorham E. Epidemiologic evidence for different roles of ultraviolet A and B radiation in melanoma mortality rates. Ann Epidemiol. 2003;13:395–404.

    Article  PubMed  Google Scholar 

  14. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.

    Article  PubMed  CAS  Google Scholar 

  15. Giehl K. Oncogenic Ras in tumor progression and metastasis. Biol Chem. 2005;386:193–205.

    Article  PubMed  CAS  Google Scholar 

  16. Campbell PM, Der CJ. Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin Cancer Biol. 2004;14:105–14.

    Article  PubMed  CAS  Google Scholar 

  17. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417: 949–54.

    Article  PubMed  CAS  Google Scholar 

  18. Goodall J, Wellbrock C, Dexter TJ, Roberts K, Marais R, Goding CR. The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol Cell Biol. 2004;24:2923–31.

    Article  PubMed  CAS  Google Scholar 

  19. Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP. Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res. 2005;65: 2412–21.

    Article  PubMed  CAS  Google Scholar 

  20. Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature. 1998;391:298–301.

    Article  PubMed  CAS  Google Scholar 

  21. Bhatt KV, Spofford LS, Aram G, McMullen M, Pumiglia K, Aplin AE. Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF–MEK–ERK signaling. Oncogene. 2005;24:3459–71.

    Article  PubMed  CAS  Google Scholar 

  22. Gray-Schopfer VC, Cheong SC, Chong H, et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer. 2006;95: 496–505.

    Article  PubMed  CAS  Google Scholar 

  23. Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–4.

    Article  PubMed  CAS  Google Scholar 

  24. Huntington JT, Shields JM, Der CJ, et al. Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J Biol Chem. 2004;279:33168–76.

    Article  PubMed  CAS  Google Scholar 

  25. Ellerhorst JA, Ekmekcioglu S, Johnson MK, Cooke CP, Johnson MM, Grimm EA. Regulation of iNOS by the p44/42 mitogen-activated protein kinase pathway in human melanoma. Oncogene. 2006;25:3956–62.

    Article  PubMed  CAS  Google Scholar 

  26. Patton EE, Widlund HR, Kutok JL, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005;15:249–54.

    Article  PubMed  CAS  Google Scholar 

  27. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132:363–74.

    Article  PubMed  CAS  Google Scholar 

  28. Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS. BRAF(E600) in benign and malignant human tumours. Oncogene. 2008;27:877–95.

    Article  PubMed  CAS  Google Scholar 

  29. Dhomen N, Reis-Filho JS, da Rocha Dias S, et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 2009;15:294–303.

    Article  PubMed  CAS  Google Scholar 

  30. Strumberg D, Richly H, Hilger RA, et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J Clin Oncol. 2005;23: 965–72.

    Article  PubMed  CAS  Google Scholar 

  31. Eisen T, Ahmad T, Flaherty KT, et al. Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. Br J Cancer. 2006;95:581–6.

    Article  PubMed  CAS  Google Scholar 

  32. Rao RD, Holtan SG, Ingle JN, et al. Combination of paclitaxel and carboplatin as second-line therapy for patients with metastatic melanoma. Cancer. 2006; 106: 375–82.

    Article  PubMed  CAS  Google Scholar 

  33. Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM, Sellers WR, Lengauer C, Stegmeier F. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 2009;69:4286–93.

    Article  PubMed  CAS  Google Scholar 

  34. Ciuffreda L, Del Bufalo D, Desideri M, et al. Growth-inhibitory and antiangiogenic activity of the MEK inhibitor PD0325901 in malignant melanoma with or without BRAF mutations. Neoplasia. 2009;11:720–31.

    PubMed  CAS  Google Scholar 

  35. Banerji U, Camidge DR, Verheul HM, et al. The first-in-human study of the hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a phase I open-label multicenter trial in patients with advanced cancer. Clin Cancer Res. 2010;16:1613–23.

    Article  PubMed  CAS  Google Scholar 

  36. Stone S, Ping J, Dayananth P, Tavtigian SV, Katcher H, Parry D, Gordon P, Kamb A. Complex structure and regulation of the P16 (MTS1) locus. Cancer Res. 1995;55:2988–94.

    PubMed  CAS  Google Scholar 

  37. Haber DA. Splicing into senescence: the curious case of p16 and p19ARF. Cell. 1997;28(91):555–8.

    Article  Google Scholar 

  38. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92:725–34.

    Article  PubMed  CAS  Google Scholar 

  39. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31.

    Article  PubMed  CAS  Google Scholar 

  40. Box NF, Terzian T. The role of p53 in pigmentation, tanning and melanoma. Pigment Cell Melanoma Res. 2008;21:525–33.

    Article  PubMed  CAS  Google Scholar 

  41. Goldstein AM, Landi MT, Tsang S, Fraser MC, Munroe DJ, Tucker MA. Association of MC1R variants and risk of melanoma in melanoma-prone families with CDKN2A mutations. Cancer Epidemiol Biomarkers Prev. 2005;14:2208–12.

    PubMed  CAS  Google Scholar 

  42. Bishop DT, Demenais F, Goldstein AM, et al. Melanoma genetics consortium: geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst. 2002;94:894–903.

    PubMed  CAS  Google Scholar 

  43. Demenais F. Influence of genes, nevi, and sun sensitivity on melanoma risk in a family sample unselected by family history and in melanoma-prone families. J Natl Cancer Inst. 2004;96:785–95.

    Article  PubMed  Google Scholar 

  44. Puig S, Malvehy J, Badenas C, Ruiz A, et al. Role of the CDKN2A Locus in patients with multiple primary melanomas. J Clin Oncol. 2005;23:3043–51.

    Article  PubMed  CAS  Google Scholar 

  45. Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA. Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst. 2000;92:1006–10.

    Article  PubMed  CAS  Google Scholar 

  46. Chaudru V, Chompret A, Bressac-de Paillerets B, Spatz A, Avril MF, Demenais F. Influence of genes, nevi, and sun sensitivity on melanoma risk in a ­family sample unselected by family history and in melanoma-prone families. J Natl Cancer Inst. 2004;96:785–95.

    Article  PubMed  Google Scholar 

  47. Eliason MJ, Hansen CB, Hart M, et al. Multiple primary melanomas in a CDKN2A mutation carrier exposed to ionizing radiation. Arch Dermatol. 2007;143:1409–12.

    Article  PubMed  CAS  Google Scholar 

  48. Pho L, Grossman D, Leachman SA. Melanoma genetics: a review of genetic factors and clinical phenotypes in familial melanoma. Curr Opin Oncol. 2006;18:173–9.

    Article  PubMed  CAS  Google Scholar 

  49. Fargnoli MC, Gandini S, Peris K, Maisonneuve P, Raimondi S. MC1R variants increase melanoma risk in families with CDKN2A mutations: a meta-analysis. Eur J Cancer. 2010;46:1413–20.

    Article  PubMed  CAS  Google Scholar 

  50. Box NF, Duffy DL, Chen W, Stark M, Martin NG, Sturm RA, Hayward NK. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet. 2001;69:765–73.

    Article  PubMed  CAS  Google Scholar 

  51. van der Velden PA, Sandkuijl LA, Bergman W, Pavel S, van Mourik L, Frants RR, Gruis NA. Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am J Hum Genet. 2001;69:774–9.

    Article  PubMed  Google Scholar 

  52. Chaudru V, Laud K, Avril MF, Minière A, Chompret A, Bressac-de Paillerets B, Demenais F. Melanocortin-1 receptor (MC1R) gene variants and dysplastic nevi modify penetrance of CDKN2A mutations in French melanoma-prone pedigrees. Cancer Epidemiol Biomarkers Prev. 2005;14:2384–90.

    Article  PubMed  CAS  Google Scholar 

  53. Goldstein AM, Chaudru V, Ghiorzo P, et al. Cutaneous phenotype and MC1R variants as modifying factors for the development of melanoma in CDKN2A G101W mutation carriers from 4 countries. Int J Cancer. 2007;121:825–31.

    Article  PubMed  CAS  Google Scholar 

  54. Meyle KD, Guldberg P. Genetic risk factors for melanoma. Hum Genet. 2009;126:499–510.

    Article  PubMed  CAS  Google Scholar 

  55. Goldstein AM, Chan M, Harland M, et al. Melanoma Genetics Consortium (GenoMEL). High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006;66:9818–28.

    Article  PubMed  CAS  Google Scholar 

  56. Haluska FG, Tsao H, Wu H, Haluska FS, Lazar A, Goel V. Genetic alterations in signaling pathways in melanoma. Clin Cancer Res. 2006;12:2301s–7s.

    Article  PubMed  CAS  Google Scholar 

  57. Stokoe D. PTEN. Curr Biol. 2001;11:R502.

    Article  PubMed  CAS  Google Scholar 

  58. Dahia PL. PTEN, a unique tumor suppressor gene. Endocr Relat Cancer. 2000;7:115–29.

    Article  PubMed  CAS  Google Scholar 

  59. Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res. 1999;253:210–29.

    Article  PubMed  CAS  Google Scholar 

  60. Downward J. PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol. 2004;15:177–82.

    Article  PubMed  CAS  Google Scholar 

  61. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    Article  PubMed  CAS  Google Scholar 

  62. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13: 2905–27.

    Article  PubMed  CAS  Google Scholar 

  63. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355–65.

    Article  PubMed  CAS  Google Scholar 

  64. Plas DR, Thompson CB. Akt-dependent transformation: there is more to growth than just surviving. Oncogene. 2005;24:7435–42.

    Article  PubMed  CAS  Google Scholar 

  65. Stiles B, Groszer M, Wang S, Jiao J, Wu H. PTEN less means more. Dev Biol. 2004;273:175–84.

    Article  PubMed  CAS  Google Scholar 

  66. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.

    Article  PubMed  CAS  Google Scholar 

  67. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282:1318–21.

    Article  PubMed  CAS  Google Scholar 

  68. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA. 2001;98:11598–603.

    Article  PubMed  CAS  Google Scholar 

  69. Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene. 2002;21:1299–303.

    Article  PubMed  CAS  Google Scholar 

  70. Oren M, Damalas A, Gottlieb T, et al. Regulation of p53: intricate loops and delicate balances. Biochem Pharmacol. 2002;64:865–71.

    Article  PubMed  CAS  Google Scholar 

  71. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68.

    Article  PubMed  CAS  Google Scholar 

  72. Romashkova JA, Makarov SS. NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 1999;401:86–90.

    Article  PubMed  CAS  Google Scholar 

  73. Wan YS, Wang ZQ, Shao Y, Voorhees JJ, Fisher GJ. Ultraviolet irradiation activates PI 3-kinase/AKT survival pathway via EGF receptors in human skin in vivo. Int J Oncol. 2001;18:461–6.

    PubMed  CAS  Google Scholar 

  74. Waldmann V, Wacker J, Deichmann M. Mutations of the activation-associated phosphorylation sites at codons 308 and 473 of protein kinase B are absent in human melanoma. Arch Dermatol Res. 2001;293: 368–72.

    Article  PubMed  CAS  Google Scholar 

  75. Waldmann V, Wacker J, Deichmann M. Absence of mutations in the pleckstrin homology (PH) domain of protein kinase B (PKB/Akt) in malignant melanoma. Melanoma Res. 2002;12:45–50.

    Article  PubMed  CAS  Google Scholar 

  76. Davies MA, Stemke-Hale K, Tellez C, et al. A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer. 2008;99:1265–8.

    Article  PubMed  CAS  Google Scholar 

  77. Krasilnikov M, Adler V, Fuchs SY, Dong Z, Haimovitz-Friedman A, Herlyn M, Ronai Z. Contribution of phosphatidylinositol 3-kinase to radiation resistance in human melanoma cells. Mol Carcinog. 1999;24:64–9.

    Article  PubMed  CAS  Google Scholar 

  78. Simpson L, Parsons R. PTEN: life as a tumor suppressor. Exp Cell Res. 2001;264:29–41.

    Article  PubMed  CAS  Google Scholar 

  79. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273:13375–8.

    Article  PubMed  CAS  Google Scholar 

  80. Vazquez F, Sellers WR. The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim Biophys Acta. 2000;1470:M21–35.

    PubMed  CAS  Google Scholar 

  81. Bonneau D, Longy M. Mutations of the human PTEN gene. Hum Mutat. 2000;16:109–22.

    Article  PubMed  CAS  Google Scholar 

  82. Maehama T, Taylor GS, Dixon JE. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem. 2001;70:247–79.

    Article  PubMed  CAS  Google Scholar 

  83. Ali IU, Schriml LM, Dean M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst. 1999;91: 1922–32.

    Article  PubMed  CAS  Google Scholar 

  84. Tsao H, Zhang X, Benoit E, Haluska FG. Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene. 1998;16:3397–402.

    Article  PubMed  CAS  Google Scholar 

  85. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

    Article  PubMed  CAS  Google Scholar 

  86. Mirmohammadsadegh A, Marini A, Nambiar S, Hassan M, Tannapfel A, Ruzicka T, Hengge UR. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res. 2006;66:6546–52.

    Article  PubMed  CAS  Google Scholar 

  87. Tsao H, Goel V, Wu H, Yang G, Haluska FG. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol. 2004;122:337–41.

    Article  PubMed  CAS  Google Scholar 

  88. Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene. 2003;22:3113–22.

    Article  PubMed  CAS  Google Scholar 

  89. Dahia PL, Aguiar RC, Alberta J, et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet. 1999;8:185–93.

    Article  PubMed  CAS  Google Scholar 

  90. Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 2006;12:406–14.

    Article  PubMed  CAS  Google Scholar 

  91. Denat L, Larue L. Malignant melanoma and the role of the paradoxal protein microphthalmia transcription factor. Bull Cancer. 2007;94:81–92.

    PubMed  CAS  Google Scholar 

  92. Loercher AE, Tank EM, Delston RB, Harbour JW. MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol. 2005;168:35–40.

    Article  PubMed  CAS  Google Scholar 

  93. Carreira S, Goodall J, Aksan I, et al. Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature. 2005;433:764–9.

    Article  PubMed  CAS  Google Scholar 

  94. Wellbrock C, Marais R. Elevated expression of MITF counteracts B-RAF stimulated melanocyte and melanoma cell proliferation. J Cell Biol. 2005;170:703–8.

    Article  PubMed  CAS  Google Scholar 

  95. Du J, Widlund HR, Horstmann MA, et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell. 2004;6:565–76.

    Article  PubMed  CAS  Google Scholar 

  96. McGill GG, Horstmann M, Widlund HR, et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002;109:707–18.

    Article  PubMed  CAS  Google Scholar 

  97. Garraway LA, Widlund HR, Rubin MA, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436:117–22.

    Article  PubMed  CAS  Google Scholar 

  98. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.

    PubMed  CAS  Google Scholar 

  99. Dorsky RI, Moon RT, Raible DW. Control of neural crest cell fate by the Wnt signalling pathway. Nature. 1998;396:370–3.

    Article  PubMed  CAS  Google Scholar 

  100. Dorsky RI, Moon RT, Raible DW. Environmental signals and cell fate specification in premigratory neural crest. Bioessays. 2000;22:708–16.

    Article  PubMed  CAS  Google Scholar 

  101. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science. 2000;287:1606–9.

    Article  PubMed  CAS  Google Scholar 

  102. You L, He B, Xu Z, et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res. 2004;64:5385–9.

    Article  PubMed  CAS  Google Scholar 

  103. Kashani-Sabet M, Range J, Torabian S, et al. A multi-marker assay to distinguish malignant melanomas from benign nevi. Proc Natl Acad Sci USA. 2009;106:6268–72.

    Article  PubMed  CAS  Google Scholar 

  104. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science. 1997;275:1790–2.

    Article  PubMed  CAS  Google Scholar 

  105. Rimm DL, Caca K, Hu G, Harrison FB, Fearon ER. Frequent nuclear/cytoplasmic localization of β-catenin without exon 3 mutations in malignant melanoma. Am J Pathol. 1999;154:325–9.

    Article  PubMed  CAS  Google Scholar 

  106. Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One. 2008;3:2734.

    Article  CAS  Google Scholar 

  107. Morgan T. The theory of the gene. Am Nat. 1917;51:513–44.

    Article  Google Scholar 

  108. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–6.

    Article  PubMed  CAS  Google Scholar 

  109. Jeffries S, Capobianco AJ. Neoplastic transformation by Notch requires nuclear localization. Mol Cell Biol. 2000;20:3928–41.

    Article  PubMed  CAS  Google Scholar 

  110. Allman D, Punt JA, Izon DJ, Aster JC, Pear WS. An invitation to T and more: notch signaling in lymphopoiesis. Cell. 2002;109:S1–11.

    Article  PubMed  CAS  Google Scholar 

  111. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66:649–61.

    Article  PubMed  CAS  Google Scholar 

  112. Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB, Ball DW. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res. 2001;61:3200–5.

    PubMed  CAS  Google Scholar 

  113. Gestblom C, Grynfeld A, Ora I, et al. The basic helix-loop-helix transcription factor dHAND, a marker gene for the developing human sympathetic nervous system, is expressed in both high- and low-stage neuroblastomas. Lab Invest. 1999;79:67–79.

    PubMed  CAS  Google Scholar 

  114. Grynfeld A, Påhlman S, Axelson H. Induced neuroblastoma cell differentiation, associated with transient HES-1 activity and reduced HASH-1 expression, is inhibited by Notch1. Int J Cancer. 2000;88:401–10.

    Article  PubMed  CAS  Google Scholar 

  115. Zagouras P, Stifani S, Blaumueller CM, Carcangiu ML, Artavanis-Tsakonas S. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci USA. 1995;92:6414–8.

    Article  PubMed  CAS  Google Scholar 

  116. Talora C, Sgroi DC, Crum CP, Dotto GP. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 2002;16:2252–63.

    Article  PubMed  CAS  Google Scholar 

  117. Shou J, Ross S, Koeppen H, de Sauvage FJ, Gao WQ. Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res. 2001;61:7291–7.

    PubMed  CAS  Google Scholar 

  118. Nicolas M, Wolfer A, Raj K, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33:416–21.

    Article  PubMed  CAS  Google Scholar 

  119. Rangarajan A, Talora C, Okuyama R, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001;20:3427–36.

    Article  PubMed  CAS  Google Scholar 

  120. Lowell S, Jones P, Le Roux I, Dunne J, Watt FM. Stimulation of human epidermal differentiation by δ-notch signalling at the boundaries of stem-cell clusters. Curr Biol. 2000;10:491–500.

    Article  PubMed  CAS  Google Scholar 

  121. Hoek K, Rimm DL, Williams KR, et al. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 2004;64:5270–82.

    Article  PubMed  CAS  Google Scholar 

  122. Massi D, Tarantini F, Franchi A, et al. Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod Pathol. 2006;19:246–59.

    Article  PubMed  CAS  Google Scholar 

  123. Pinnix CC, Lee JT, Liu ZJ, et al. Active Notch1 confers a transformed phenotype to primary human melanocytes. Cancer Res. 2009;69:5312–20.

    Article  PubMed  CAS  Google Scholar 

  124. Kang DE, Soriano S, Xia X, Eberhart CG, De Strooper B, Zheng H, Koo EH. Presenilin couples the paired phosphorylation of beta-catenin independent of axin: implications for beta-catenin activation in tumorigenesis. Cell. 2002;110:751–62.

    Article  PubMed  CAS  Google Scholar 

  125. Li G, Satyamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 2001;61:3819–25.

    PubMed  CAS  Google Scholar 

  126. Liu ZJ, Xiao M, Balint K, et al. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res. 2006;66: 4182–90.

    Article  PubMed  CAS  Google Scholar 

  127. Cheng P, Zlobin A, Volgina V, et al. Notch-1 regulates NF-kB activity in hemopoietic progenitor cells. J Immunol. 2001;167:4458–67.

    PubMed  CAS  Google Scholar 

  128. Shin HM, Minter LM, Cho OH, et al. Notch1 augments Nf-kB activity by facilitating its nuclear retention. EMBO J. 2006;25:129–38.

    Article  PubMed  CAS  Google Scholar 

  129. Weijzen S, Rizzo P, Braid M, et al. Activation of Notch1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. 2002;8:979–86.

    Article  PubMed  CAS  Google Scholar 

  130. Kiaris H, Politi K, Grimm LM, et al. Modulation of Notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol. 2004;165:695–705.

    Article  PubMed  CAS  Google Scholar 

  131. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.

    Article  PubMed  CAS  Google Scholar 

  132. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25:280–8.

    Article  PubMed  CAS  Google Scholar 

  133. Yamamoto M, Yamazaki S, Uematsu S, et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature. 2004;430:218–22.

    Article  PubMed  CAS  Google Scholar 

  134. Kuwata H, Matsumoto M, Atarashi K, Morishita H, Hirotani T, Koga R, Takeda K. IkappaBNS inhibits induction of a subset of Toll-like receptor-dependent genes and limits inflammation. Immunity. 2006;24: 41–51.

    Article  PubMed  CAS  Google Scholar 

  135. Bours V, Franzoso G, Azarenko V, Park S, Kanno T, Brown K, Siebenlist U. The oncoprotein Bcl-3 directly transactivates through kappa B motifs via association with DNA-binding p50B homodimers. Cell. 1993;72:729–39.

    Article  PubMed  CAS  Google Scholar 

  136. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell. 2001;7:401–9.

    Article  PubMed  CAS  Google Scholar 

  137. Basseres DS, Baldwin AS. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 2006;25:6817–30.

    Article  PubMed  CAS  Google Scholar 

  138. Jost PJ, Ruland J. Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood. 2007;109:2700–7.

    PubMed  CAS  Google Scholar 

  139. Cilloni D, Martinelli G, Messa F, Baccarani M, Saglio G. Nuclear factor kB as a target for new drug development in myeloid malignancies. Haematologica. 2007;92:1224–9.

    Article  PubMed  CAS  Google Scholar 

  140. Dutta J, Fan Y, Gupta N, Fan G, Gélinas C. Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene. 2006;25:6800–16.

    Article  PubMed  CAS  Google Scholar 

  141. Luo JL, Kamata H, Karin M. The anti-death machinery in IKK/NF-kappaB signaling. J Clin Immunol. 2005;25:541–50.

    Article  PubMed  CAS  Google Scholar 

  142. Burstein E, Duckett CS. Dying for NF-kappaB? Control of cell death by transcriptional regulation of the apoptotic machinery. Curr Opin Cell Biol. 2003;15:732–7.

    Article  PubMed  CAS  Google Scholar 

  143. Hayakawa Y, Maeda S, Nakagawa H, et al. Effectiveness of IkappaB kinase inhibitors in murine colitis-associated tumorigenesis. J Gastroenterol. 2009;44:935–43.

    Article  PubMed  CAS  Google Scholar 

  144. Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood. 2010;115:3541–52.

    Article  PubMed  CAS  Google Scholar 

  145. Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer. 2005;15(04):879–90.

    Article  CAS  Google Scholar 

  146. Ianaro A, Tersigni M, Belardo G, et al. NEMO-binding domain peptide inhibits proliferation of human melanoma cells. Cancer Lett. 2009;18(274): 331–6.

    Article  CAS  Google Scholar 

  147. Amiri KI, Richmond A. Role of nuclear factor-κB in melanoma. Cancer Metast Rev. 2005;24:301–31.

    Article  CAS  Google Scholar 

  148. Meyskens Jr FL, Buckmeier JA, McNulty SE, Tohidian NB. Activation of nuclear factor-kappa B in human metastatic melanoma cells and the effect of oxidative stress. Clin Cancer Res. 1999;5: 1197–202.

    PubMed  CAS  Google Scholar 

  149. McNulty SE, Tohidian NB, Meyskens Jr FL. RelA, p50 and inhibitor of kappa B alpha are elevated in human metastatic melanoma cells and respond aberrantly to ultraviolet light B. Pigment Cell Res. 2001;14:456–65.

    Article  PubMed  CAS  Google Scholar 

  150. McNulty SE, del Rosario R, Cen D, Meyskens Jr FL, Yang S. Comparative expression of NFkappaB proteins in melanocytes of normal skin vs. benign intradermal naevus and human metastatic melanoma biopsies. Pigment Cell Res. 2004;17:173–80.

    Article  PubMed  CAS  Google Scholar 

  151. Yang J, Amiri KI, Burke JR, Schmid JA, Richmond A. BMS-345541 targets inhibitor of kappaB kinase and induces apoptosis in melanoma: involvement of nuclear factor kappaB and mitochondria pathways. Clin Cancer Res. 2006;12:950–60.

    Article  PubMed  CAS  Google Scholar 

  152. Dhawan P, Singh AB, Ellis DL, Richmond A. Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res. 2002;62: 7335–42.

    PubMed  CAS  Google Scholar 

  153. Troppmair J, Hartkamp J, Rapp UR. Activation of NF-kappa B by oncogenic Raf in HEK 293 cells occurs through autocrine recruitment of the stress kinase cascade. Oncogene. 1998;17:685–90.

    Article  PubMed  CAS  Google Scholar 

  154. Jo H, Zhang R, Zhang H, et al. NF-kappa B is required for H-ras oncogene induced abnormal cell proliferation and tumorigenesis. Oncogene. 2000;19: 841–9.

    Article  PubMed  CAS  Google Scholar 

  155. Richardson PG, Hideshima T, Anderson KC. Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control. 2003;10:361–9.

    PubMed  Google Scholar 

  156. Markovic SN, Geyer SM, Dawkins F, et al. A phase II study of bortezomib in the treatment of metastatic malignant melanoma. Cancer. 2005;103:2584–9.

    Article  PubMed  CAS  Google Scholar 

  157. Kamijo R, Harada H, Matsuyama T, et al. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science. 1994; 263:1612–5.

    Article  PubMed  CAS  Google Scholar 

  158. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6:521–34.

    Article  PubMed  CAS  Google Scholar 

  159. Grimm EA, Ellerhorst J, Tang CH, Ekmekcioglu S. Constitutive intracellular production of iNOS and NO in human melanoma: possible role in regulation of growth and resistance to apoptosis. Nitric Oxide. 2008;19:133–7.

    Article  PubMed  CAS  Google Scholar 

  160. Russo PA, Halliday GM. Inhibition of nitric oxide and reactive oxygen species production improves the ability of a sunscreen to protect from sunburn, immunosuppression and photocarcinogenesis. Br J Dermatol. 2006;155:408–15.

    Article  PubMed  CAS  Google Scholar 

  161. Palmieri G, Capone ME, Ascierto ML, et al. Main roads to melanoma. J Transl Med. 2009;7:86.

    Article  PubMed  CAS  Google Scholar 

  162. Martin E, Nathan C, Xie QW. Role of interferon regulatory factor 1 in induction of nitric oxide synthase. J Exp Med. 1994;180:977–84.

    Article  PubMed  CAS  Google Scholar 

  163. Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994;269:4705–8.

    PubMed  CAS  Google Scholar 

  164. Adcock IM, Brown CR, Kwon O, Barnes PJ. Oxidative stress induces NF kappa B DNA binding and inducible NOS mRNA in human epithelial cells. Biochem Biophys Res Commun. 1994;199:1518–24.

    Article  PubMed  CAS  Google Scholar 

  165. Meyskens Jr FL, McNulty SE, Buckmeier JA, et al. Aberrant redox regulation in human metastatic melanoma cells compared to normal melanocytes. Free Radic Biol Med. 2001;31:799–808.

    Article  PubMed  CAS  Google Scholar 

  166. Zhang J, Peng B, Chen X. Expression of nuclear factor kappaB, inducible nitric oxide syntheses, and vascular endothelial growth factor in adenoid cystic carcinoma of salivary glands: correlations with the angiogenesis and clinical outcome. Clin Cancer Res. 2005;11:7334–43.

    Article  PubMed  CAS  Google Scholar 

  167. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Rev Immunol. 1997;15: 323–50.

    Article  CAS  Google Scholar 

  168. Bredt DS. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res. 1999;31:577–96.

    Article  PubMed  CAS  Google Scholar 

  169. Geller DA, Billiar TR. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev. 1998;17: 7–23.

    Article  PubMed  CAS  Google Scholar 

  170. Massi D, Franchi A, Sardi I, et al. Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions. J Pathol. 2001;194:194–200.

    Article  PubMed  CAS  Google Scholar 

  171. Xie K, Huang S, Dong Z, Juang SH, Gutman M, Xie QW, Nathan C, Fidler IJ. Transfection with the inducible nitric oxide syntheses gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med. 1995;181: 1333–43.

    Article  PubMed  CAS  Google Scholar 

  172. Xie K, Wang Y, Huang S, et al. Nitric oxide-mediated apoptosis of K-1735 melanoma cells is associated with downregulation of Bcl-2. Oncogene. 1997;15:771–9.

    Article  PubMed  CAS  Google Scholar 

  173. Messmer UK, Ankarcrona M, Nicotera P, Brüne B. p53 expression in nitric oxide induced apoptosis. FEBS Lett. 1994;355:23–6.

    Article  PubMed  CAS  Google Scholar 

  174. Rudin CM, Thompson CB. Apoptosis and disease: regulation and clinical relevance of programmed cell death. Annu Rev Med. 1997;48:267–81.

    Article  PubMed  CAS  Google Scholar 

  175. Williams GT, Smith CA. Molecular regulation of apoptosis: genetic controls on cell death. Cell. 1993;74:777–9.

    Article  PubMed  CAS  Google Scholar 

  176. Krammer PH. The CD95(APO-1/Fas)/CD95L system. Toxicol Lett. 1998;102–103:131–7.

    Article  PubMed  Google Scholar 

  177. Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol. 1999;17:2941–53.

    PubMed  CAS  Google Scholar 

  178. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13:555–62.

    Article  PubMed  CAS  Google Scholar 

  179. Brune B, Mohr S, Messmer UK. Protein thiol modification and apoptotic cell death as cGMP-independent nitric oxide (NO) signaling pathways. Rev Physiol Biochem Pharmacol. 1996;127:1–30.

    Article  PubMed  CAS  Google Scholar 

  180. Tschugguel W, Pustelnik T, Lass H, et al. Inducible nitric oxide synthase (iNOS) expression may predict distant metastasis in human melanoma. Br J Cancer. 1999;79:1609–12.

    Article  PubMed  CAS  Google Scholar 

  181. Ahmed B, Van den Oord JJ. Expression of the inducible isoform of nitric oxide synthase in pigment cell lesions of the skin. Br J Dermatol. 2000;142: 432–40.

    Article  PubMed  CAS  Google Scholar 

  182. Ekmekcioglu S, Ellerhorst J, Smid CM, et al. Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res. 2000;6:4768–75.

    PubMed  CAS  Google Scholar 

  183. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  184. Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 2006;20:2149–82.

    Article  PubMed  CAS  Google Scholar 

  185. Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene. 2003;22:3138–51.

    Article  PubMed  CAS  Google Scholar 

  186. Miller AJ, Mihm MC. Melanoma. N Engl J Med. 2006;355:51–65.

    Article  PubMed  CAS  Google Scholar 

  187. Bevona C, Goggins W, Quinn T. Cutaneous melanomas associated with nevi. Arch Dermatol. 2003;139: 1620–4.

    Article  PubMed  Google Scholar 

  188. Rasheed S, Mao Z, Chan JMC, Chan LS. Is melanoma a stem cell tumor? Identification of neurogenic proteins in trans-differentiated cells. J Transl Med. 2005;3:14.

    Article  PubMed  CAS  Google Scholar 

  189. Zabierowski SE, Herlyn M. Melanoma stem cells: the dark seed of melanoma. J Clin Oncol. 2008;26: 2890–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Antonio Ascierto M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ascierto, P.A., Ascierto, M.L., Capone, M., Elaba, Z., Murphy, M.J., Palmieri, G. (2012). Molecular Pathogenesis of Melanoma: Established and Novel Pathways. In: Murphy, M. (eds) Diagnostic and Prognostic Biomarkers and Therapeutic Targets in Melanoma. Current Clinical Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-433-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-433-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-432-6

  • Online ISBN: 978-1-60761-433-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics