Skip to main content

Dyslipidemia in Chronic Kidney Disease and Nephrotic Syndrome

  • Chapter
  • First Online:
  • 2224 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The prevailing pandemic of type 2 diabetes and hypertension has led to a dramatic rise in the incidence of chronic kidney disease worldwide. Chronic kidney disease and proteinuria are associated with cardiovascular disease and profound alteration of lipid metabolism and serum lipid and lipoprotein profile. The associated lipid disorders play a major role in progression of renal and cardiovascular disease in this population. The nature and mechanisms of lipid abnormalities in kidney disease vary depending on the presence and severity of proteinuria, renal failure, renal replacement modalities (hemodialysis, peritoneal dialysis, and renal transplantation), dietary and drug regimens, and preexistent genetic disorders of lipid metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baxter JH, Goodman HC, Havel RJ. Serum lipid and lipoprotein alterations in nephrosis. J Clin Invest. 1960;39:455–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Schreiner GE. The nephrotic syndrome. In: Strauss MB, Welt LG, editors. Diseases of the kidney. London: Churchill; 1963. p. 335–444.

    Google Scholar 

  3. Hartroft WS. Fat emboli in glomerular capillaries of choline deficient rats and of patients with diabetic glomerulosclerosis. Am J Pathol. 1955;31:381–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Daniels WB. Plasma lipoids in renal disease. Brit J Exp Pathol. 1925;6:283–90.

    Google Scholar 

  5. Losowsky MS, Kenward DH. Lipid metabolism in acute and chronic renal failure. J Lab Clin Med. 1968;71:736–43.

    CAS  PubMed  Google Scholar 

  6. Bagdade JD, Porte D, Bierman EL. Hypertriglyceridemia: a metabolic consequence of chronic renal failure. New Engl J Med. 1968;279:181–5.

    CAS  PubMed  Google Scholar 

  7. Brons M, Christensen NC, Horder M. Hyperlipoproteinemia in patients with chronic renal failure. Acta Med Scand. 1972;192:119–23.

    CAS  PubMed  Google Scholar 

  8. Antonis A, Bersohn J. The influence of diet on serumtriglycerides in South African white and Bantu prisoners. Lancet. 1961;1:3–9.

    CAS  PubMed  Google Scholar 

  9. Glueck CJ, Levy RI, Fredrickson DS. Immunoreactive insulin, glucose tolerance and carbohydrate inducibility in Types II, III, IV, and V hyperlipoproteinaemia. Diabetes. 1969;18:739–47.

    CAS  PubMed  Google Scholar 

  10. Kaysen GA, de Sain-van der Velden MG. New insights into lipid metabolism in the nephrotic syndrome. Kidney Int Suppl. 1999;71:S18–21.

    CAS  PubMed  Google Scholar 

  11. Vaziri ND. Molecular mechanisms of lipid dysregulation in nephrotic syndrome. (Nephrology Forum) Kidney Int. 2003;63:1964–76.

    PubMed  Google Scholar 

  12. Joven J, Villabona C, Vilella E, Masana L, Albertí R, Vallés M. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N Engl J Med. 1990;323(9):579–84.

    CAS  PubMed  Google Scholar 

  13. de Sain-van der Velden MG, Kaysen GA, Barrett HA, et al. Increased VLDL in nephrotic patients results from a decreased. catabolism while increased LDL results from increased synthesis. Kidney Int. 1998;53:994–1001.

    Google Scholar 

  14. Garber DW, Gottlieb BA, Marsh JB, Sparks CE, et al. Catabolism of very low density lipoproteins in experimental nephrosis. J Clin Invest. 1984;74:1375–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Warwick GL, Packard CJ, Demant T, et al. Metabolism of apolipoprotein B-containing lipoproteins in subjects with nephrotic range proteinuria. Kidney Int. 1991;40:129–38.

    CAS  PubMed  Google Scholar 

  16. Kaysen GA, Mehendru L, Pan XM, et al. Both peripheral chylomicron catabolism and hepatic uptake of remnants are defective in nephrosis. Am J Physiol. 1992;263:F335–41.

    CAS  PubMed  Google Scholar 

  17. Davies RW, Staprans I, Hutchison FN, Kaysen GA. Proteinuria, not altered albumin metabolism, affects hyperlipidemia in the nephrotic rat. J Clin Invest. 1990;86(2):600–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Shearer GC, Stevenson FT, Atkinson DN, Jones H, Staprans I, Kaysen GA. Hypoalbuminemia and proteinuria contribute separately to reduced lipoprotein catabolism in the nephrotic syndrome. Kidney Int. 2001;59(1):179–89.

    CAS  PubMed  Google Scholar 

  19. Levy E, Ziv E, Bar-On H, Shafrir E. Experimental nephrotic syndrome: removal and tissue distribution of chylomicrons and very-low-density lipoproteins of normal and nephrotic origin. Biochim Biophys Acta. 1990;1043:259–66.

    CAS  PubMed  Google Scholar 

  20. Sato T, Liang K, Vaziri ND. Downregulation of lipoprotein lipase and VLDL receptor in rats with focal glomerulosclerosis. Kidney Int. 2002;61:157–62.

    CAS  PubMed  Google Scholar 

  21. Liang K, Vaziri ND. Gene expression of lipoprotein lipase in experimental nephrosis. J Lab Clin Med. 1997;130(4):387–94.

    CAS  PubMed  Google Scholar 

  22. Liang K, Vaziri ND. Down-regulation of hepatic lipase expression in experimental nephrotic syndrome. Kidney Int. 1997;51(6):1933–7.

    CAS  PubMed  Google Scholar 

  23. Sato T, Liang K, Vaziri ND. Protein restriction and AST-120 improve lipoprotein lipase, hepatic lipase and VLDL receptor in focal glomeruloscleros. Kidney Int. 2003;64:1780–6.

    CAS  PubMed  Google Scholar 

  24. Liang K, Vaziri ND. Acquired VLDL receptor deficiency in experimental nephrosis. Kidney Int. 1997;51:1761–5.

    CAS  PubMed  Google Scholar 

  25. Deighan CJ, Caslake MJ, McConnell M, Boulton-Jones JM, Packard CJ. Patients with nephrotic-range proteinuria have apolipoprotein C and E deficient VLDL1. Kidney Int. 2000;58(3):1238–46.

    CAS  PubMed  Google Scholar 

  26. Wang L, Shearer GC, Budamagunta MS, Voss JC, Molfino A, Kaysen GA. Proteinuria decreases tissue lipoprotein receptor levels resulting in altered lipoprotein structure and increasing lipid levels. Kidney Int. 2012;82(9):990–9.

    CAS  PubMed  Google Scholar 

  27. Furukawa S, Hirano T, Mamo JC, Nagano S, Takahashi T. Catabolic defect of triglyceride is associated with abnormal very-low-density lipoprotein in experimental nephrosis. Metabolism. 1990;39(1):101–7.

    CAS  PubMed  Google Scholar 

  28. Shearer GC, Couser WG, Kaysen GA. Nephrotic livers secrete normal VLDL that acquire structural and functional defects following interaction with HDL. Kidney Int. 2004;65(1):228–37.

    CAS  PubMed  Google Scholar 

  29. Zhou Y, Zhang X, Chen L, Wu J, Dang H, Wei M, Fan Y, Zhang Y, Zhu Y, Wang N, Breyer MD, Guan Y. Expression profiling of hepatic genes associated with lipid metabolism in nephrotic rats. Am J Physiol Renal Physiol. 2008;295(3):F662–71.

    Google Scholar 

  30. Vaziri ND, Kim C, Kim S, Phan D, Liang K. Upregulation of hepatic Acyl CoA diglycerol acyltransferase (DGAT)-1 expression in nephrotic syndrome. Kidney Int. 2004;66:262–7.

    CAS  PubMed  Google Scholar 

  31. Han S, Vaziri ND, Gollapudi P, Kwok V, Moradi H. Hepatic fatty acid and cholesterol metabolism in nephrotic syndrome. Am J Transl Res. 2013;5(2):246–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Warwick GL, Caslake MJ, Boulton-Jones JM, et al. Low-density lipoprotein metabolism in the nephrotic syndrome. Metabolism. 1990;39:187–92.

    CAS  PubMed  Google Scholar 

  33. Vaziri ND, Sato T, Liang K. Molecular mechanism of altered cholesterol metabolism in focal glomerulosclerosis. Kidney Int. 2003;63:1756–63.

    CAS  PubMed  Google Scholar 

  34. Kim CH, Kim HJ, Mitsuhashi M, Vaziri ND. Hepatic tissue Sterol Regulatory Element-Binding Protein-2 (SREBP-2) and LDL receptor in Nephrotic Syndrome. Metabolism. 2007;56:1377–82.

    CAS  PubMed  Google Scholar 

  35. Vaziri ND, Liang K. Downregulation of hepatic LDL receptor expression in experimental nephrosis. Kidney Int. 1996;50:887–93.

    CAS  PubMed  Google Scholar 

  36. Vaziri ND, Liang KH. Hepatic HMG-CoA reductase gene expression during the course of puromycin-induced nephrosis. Kidney Int. 1995;48:1979–85.

    CAS  PubMed  Google Scholar 

  37. Vaziri ND, Liang KH. Upregulation of Acyl-Coenzyme A: Cholesterol acyltransferase (ACAT) in nephrotic syndrome. Kidney Int. 2002;61:1769–75.

    CAS  PubMed  Google Scholar 

  38. Liu S, Vaziri ND. Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemiain nephrotic syndrome. Nephrol Dial Transplant. 2014;29:538–43.

    CAS  PubMed  Google Scholar 

  39. Vaziri ND, Liang K, Parks JS. Acquired Lecithin: Cholesterol acyltransferase (LCAT) deficiency in nephrotic syndrome. Am J Physiol (Renal Physiol). 2001;49:F823–9.

    Google Scholar 

  40. Zhao Y, Marcel YL. Serum albumin is a significant intermediate in cholesterol transfer between cells and lipoproteins. Biochemistry. 1996;35:7174–80.

    CAS  PubMed  Google Scholar 

  41. Moulin P, Appel GB, Ginsberg HN, Tall AR. Increased concentration of plasma cholesteryl ester transfer protein in nephrotic syndrome: role in dyslipidemia. J Lipid Res. 1992;33(12):1817–22.

    CAS  PubMed  Google Scholar 

  42. Braschi S, Masson D, Rostoker G, Florentin E, Athias A, Martin C, Jacotot B, Gambert P, Lallemant C, Lagrost L. Role of lipoprotein-bound NEFAs in enhancing the specific activity of plasma CETP in the nephrotic syndrome. Arterioscler Thromb Vasc Biol. 1997;17(11):2559–67.

    CAS  PubMed  Google Scholar 

  43. Zhang C, Yao M, Wang X, Zhuang Y, Xia Z, Yang Y, Li Y, Liu X, Li K, Wang J. Effect of hypoalbuminemia on the increased serum cholesteryl ester transfer protein concentration in children with idiopathic nephrotic syndrome. Clin Biochem. 2007;40(12):869–75.

    CAS  PubMed  Google Scholar 

  44. Liang K, Vaziri ND. Downregulation of hepatic high-density lipoprotein receptor, SR-B1 in nephrotic syndrome. Kidney Int. 1999;56:621–6.

    CAS  PubMed  Google Scholar 

  45. Vaziri ND, Gollapudi p, Han S, Farahmand G, Moradi H. Upregulation of hepatic HDL endocytic receptor and PDZK-1 dependent downregulation of HDL docking receptor in nephrotic syndrome. Nephrol Dial Transplant. 2011;103(6):524–33.

    Google Scholar 

  46. Kronenberg F, Lingenhel A, Lhotta K, Rantner B, Kronenberg MF, König P, Thiery J, Koch M, von Eckardstein A, Dieplinger H. Lipoprotein(a) and low-density lipoprotein-derived cholesterol in nephrotic syndrome: impact on lipid-lowering therapy? Kidney Int. 2004;66(1):348–54.

    CAS  PubMed  Google Scholar 

  47. Wanner C, Rader D, Bartens W, Krämer J, Brewer HB, Schollmeyer P, Wieland H. Elevated plasma lipoprotein(a) in patients with the nephrotic syndrome. Ann Intern Med. 1993;119(4):263–9.

    CAS  PubMed  Google Scholar 

  48. Kronenberg F. Dyslipidemia and nephrotic syndrome: recent advances. J Ren Nutr. 2005;15(2):195–203.

    PubMed  Google Scholar 

  49. Kronenberg F, Utermann G, Dieplinger H. Lipoprotein(a) in renal disease. Am J Kidney Dis. 1996;27(1):1–25.

    CAS  PubMed  Google Scholar 

  50. Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms and potential consequences. Am J Physiol, Renal Physiol. 2006;290:262–72.

    Google Scholar 

  51. Vaziri ND. Lipotoxicity and impaired HDL-mediated reverse cholesterol/lipid transport in chronic kidney disease. J Renal Nutrition. 2010;20:S35–43.

    CAS  Google Scholar 

  52. Attman PO, Samuelsson O, Johansson AC, Moberly JB, Alaupovic P. Dialysis modalities and dyslipidemia. Kidney Int Suppl. 2003;84:S110–2.

    PubMed  Google Scholar 

  53. Deighan CJ, Caslake MJ, McConnell M, Boulton-Jones JM, Packard CJ. Atherogenic lipoprotein phenotype in end-stage renal failure: origin and extent of small dense low-density lipoprotein formation. Am J Kidney Dis. 2000;35:852–62.

    CAS  PubMed  Google Scholar 

  54. Moradi H, Pahl MV, Elahimehr R, Vaziri ND. Impaired antioxidant activity of HDL in chronic kidney disease. Transl Res. 2009;153:77–85.

    CAS  PubMed  Google Scholar 

  55. Vaziri ND, Moradi H, Pahl MV, Fogelman AM, Navab M. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int. 2009;76(4):437–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Vaziri ND, Navab M, Fogelman AM. HDL metabolism and activity in chronic kidney disease. Nat Rev Nephrol. 2010;6(5):287–96.

    CAS  PubMed  Google Scholar 

  57. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62:1524–38

    CAS  PubMed  Google Scholar 

  58. Vaziri ND. Oxidative stress in chronic renal failure: the nature, mechanism and consequences. Seminars in Nephrol. 2004;24:469–73

    CAS  Google Scholar 

  59. Moradi H, Ganji S, Kamanna Vj, Pahl MV ND. Vaziri. Increased monocyte adhesion-promoting capacity of plasma in end-stage renal disease—response to antioxidant therapy. Clin Nephrol. 2010;74(4):273–81.

    CAS  PubMed  Google Scholar 

  60. Akmal M, Kasim SE, Soliman AR, Massry SG. Excess parathyroid hormone adversely affects lipid metabolism in chronic renal failure. Kidney Int. 1990;37:854–8.

    CAS  PubMed  Google Scholar 

  61. Chan MK, Persaud J, Varghese Z, Moorhead JF. Pathogenic roles of post-heparin lipases in lipid abnormalities in hemodialysis patients. Kidney Int. 1984;25:812–8.

    CAS  PubMed  Google Scholar 

  62. Sakurai T, Oka T, Hasegawa H, Igaki N, Miki S, Goto T. Comparison of lipids, apoproteins and associated enzyme activities between diabetic and nondiabetic end-stage renal disease. Nephron. 1992;61:409–14.

    CAS  PubMed  Google Scholar 

  63. Vaziri ND, Liang K. Down-regulation of tissue lipoprotein lipase expression in experimental chronic renal failure. Kidney Int. 1996;50:1928–35.

    CAS  PubMed  Google Scholar 

  64. Vaziri ND, Yuan J, Ni Z, Nicholas SB, Norris KC. Lipoprotein lipase deficiency in chronic kidney disease is compounded by downregulation of endothelial GPIHBP1 expression. Clin Exp Nephrol. 2012;16:238–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Vaziri ND, Wang XQ, Liang K. Secondary hyperparathyroidism downregulates lipoprotein lipase expression in chronic renal failure. Am J Physiol Renal Physiol. 1997;273:F925–30.

    CAS  Google Scholar 

  66. Roullet JB, Lacour B, Yvert JP, Drueke T. Correction by insulin of disturbed TG-rich LP metabolism in rats with chronic renal failure. Am J Physiol Endocrinol Metab. 1986;250:E373–6.

    CAS  Google Scholar 

  67. Bagdade J, Casaretto A, Albers J. Effects of chronic uremia, hemodialysis, and renal transplantation on plasma lipids and lipoproteins in man. J Lab Clin Med. 1976;87:38–48.

    CAS  PubMed  Google Scholar 

  68. Vaziri ND, Norris K. Lipid disorders and their relevance to outcomes in chronic kidney disease. Blood Purif. 2011;31(1–3):189–96.

    CAS  PubMed  Google Scholar 

  69. Klin M, Smogorzewski M, Ni Z, Zhang G, Massry SG. Abnormalities in hepatic lipase in chronic renal failure: role of excess parathyroid hormone. J Clin Invest. 1996;97:2167–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Kim C, Vaziri ND. Downregulation of hepatic LDL receptor-related protein (LRP) in chronic renal failure. Kidney Int. 2005;67:1028–32.

    CAS  PubMed  Google Scholar 

  71. Vaziri ND, Liang K. Down-regulation of VLDL receptor expression in chronic experimental renal failure. Kidney Int. 1997;51:913–9.

    CAS  PubMed  Google Scholar 

  72. Vaziri ND. Role of dyslipidemia in impairment of energy metabolism, oxidative stress, inflammation and cardiovascular disease in chronic kidney disease. Clin Exp Nephrol. 2013. doi:10.1007/s10157-013-0847-z.

    Google Scholar 

  73. Epstein M, Vaziri ND. Role of statins in the management of dyslipidemia of chronic kidney disease; current concepts and emerging treatment paradigms. Nat Rev Nephrol. 2012;8(4):214–23.

    CAS  PubMed  Google Scholar 

  74. Attman PO, Samuelsson O, Alaupovic P. Lipoprotein metabolism and renal failure. Am J Kidney Dis. 1993;21:573–92.

    CAS  PubMed  Google Scholar 

  75. Honda H, Ueda M, Kojima S, Mashiba S, Michihata T, Takahashi K, Shishido K, Akizawa T. Oxidized high-density lipoprotein as a risk factor for cardiovascular events in prevalent hemodialysis patients. Atherosclerosis. 2012;220:493–501.

    CAS  PubMed  Google Scholar 

  76. Holzer M, Birner-Gruenberger R, Stojakovic T, El-Gamal D, Binder V, Wadsack C, Heinemann A, Marsche G. Uremia alters HDL composition and function. J Am Soc Nephrol. 2011;22(9):1631–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Okubo K, Ikewaki K, Sakai S, Tada N, Kawaguchi Y, Mochizuki S. Abnormal HDL apolipoprotein A-I and A-II kinetics in hemodialysis patients: a stable isotope study. J Am Soc Nephrol. 2004;15(4):1008–15.

    CAS  PubMed  Google Scholar 

  78. Vaziri ND, Deng G, Liang K. Hepatic HDL receptor, SR-B1 and Apo A-I expression in chronic renal failure. Nephrol Dial Transplant. 1999;14:1462–6.

    CAS  PubMed  Google Scholar 

  79. Kamanna VS, Kashyap ML, Pai R, et al. Uremic serum subfraction inhibits apolipoprotein A-I production by a human hepatoma cell line. J Am Soc Nephrol. 1994;5:193–200.

    CAS  PubMed  Google Scholar 

  80. Moradi H, Said HM, Vaziri ND. Post-transcriptional nature of uremia-induced down-regulation of hepatic apolipoprotein A-I production. Transl Res. 2013. doi:pii: S1931-5244(12)00403-3. 10.1016/j.trsl.2012.11.001.

    Google Scholar 

  81. Pruijm M, Schmidtko J, Aho A, Pagano S, Roux-Lombard P, Teta D, Burnier M, Vuilleumier N. High prevalence of anti-apolipoprotein/a-1 autoantibodies in maintenance hemodialysis and association with dialysis vintage. Ther Apher Dial. 2012;16(6):588–94.

    CAS  PubMed  Google Scholar 

  82. Miida T, Miyazaki O, Hanyu O, Nakamura Y, Hirayama S, Narita I, Gejyo F, Ei I, Tasaki K, Kohda Y, Ohta T, Yata S, Fukamachi I, Okada M. LCAT-dependent conversion of prebeta1-HDL into alpha-migrating HDL is severely delayed in hemodialysis patients. J Am Soc Nephrol. 2003;14(3):732–8.

    CAS  PubMed  Google Scholar 

  83. Guarnieri GF, Moracchiello M, Campanacci L, et al. Lecithin-cholesterol acyltransferase (LCAT) activity in chronic uremia. Kidney Int Suppl. 1978;8:S26–30.

    PubMed  Google Scholar 

  84. Vaziri ND, Liang K, Parks JS. Downregulation of lecithin: Cholesterol acyltransferase (LCAT) in chronic renal failure. Kidney Int. 2001;59:2192–6.

    CAS  PubMed  Google Scholar 

  85. Liang K, Kim C, Vaziri ND. HMG-CoA reductase inhibition reverses LCAT and LDL receptor deficiencies and improves HDL in rats with chronic renal failure. Am J Physiol Renal Physiol. 2005;288:F539–44.

    CAS  PubMed  Google Scholar 

  86. Yamamoto S, Yancey PG, Ikizler TA, Jerome WG, Kaseda R, Cox B, Bian A, Shintani A, Fogo AB, Linton MF, Fazio S, Kon V. Dysfunctional High-Density Lipoprotein in Patients On Chronic Hemodialysis. J Am Coll Cardiol. 2012. doi:pii: S0735-1097(12)04651-7.

    Google Scholar 

  87. Vaziri ND, Liang K, Parks JS. Down-regulation of hepatic lecithin: cholesterol acyltransferase gene expression in chronic renal failure. Kidney Int. 2001;59:2192–6. (BPU345176).

    CAS  PubMed  Google Scholar 

  88. Liang K, Vaziri ND. Upregulation of Acyl-CoA: Cholesterol acyltransferase (ACAT) in chronic renal failure. Am J Physiol Endocrinol Metab. 2002;283:E676–81.

    CAS  PubMed  Google Scholar 

  89. Moradi H, Yuan J, Ni Z, Norris K, Vaziri ND. Reverse cholesterol transport pathway in experimental chronic kidney disease. Am J Nephrol. 2009;30:147–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Kim HJ, Moradi H, Vaziri ND. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am J Physiol Renal Physiol. 2009;296(6):F1297–306.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Shao B, Oda MN, Oram JF, Heinecke JW. Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Curr Opin Cardiol. 2006;21:322–8.

    PubMed  Google Scholar 

  92. Kalantar-Zadeh K, Kopple JD, Kamranpour N, Fogelman AM, Navab M. HDL inflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int. 2007;72:1149–56.

    CAS  PubMed  Google Scholar 

  93. Kimura H, Miyazaki R, Suzuki S, Gejyo F, Yoshida H. Cholesteryl ester transfer protein as a protective factor against vascular disease in hemodialysis patients. Am J of Kidney Dis. 2001;38:70–6.

    CAS  Google Scholar 

  94. Pahl MV, Ni Z, Sepassi L, Vaziri ND. Plasma phosphlipid transfer protein, cholesteryl ester transfer protein and lecithin: cholesterol aacyltransferase in end-stage renal disease. NDT. 2009;24(8):2541–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Dantoine TF, Debord J, Charmes JP, Merle L, Marquet P, Lachatre G, Leroux-Robert C. Decrease of serum paraoxonase activity in chronic renal failure. J Am Soc Nephrol. 1998;9:2082–8.

    CAS  PubMed  Google Scholar 

  96. Weichhart T, Kopecky C, Kubicek M, Haidinger M, Döller D, Katholnig K, Suarna C, Eller P, Tölle M, Gerner C, Zlabinger GJ, van der Giet M, Hörl WH, Stocker R, Säemann MD. Serum amyloid A in uremic HDL promotes inflammation. J Am Soc Nephrol. 2012;23:934–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, Rahmani S, Mottahedeh R, Dave R, Reddy ST, Fogelman AM. Inflammatory/anti-inflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-denisty lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003;108:2751–6.

    CAS  PubMed  Google Scholar 

  98. Ansell BJ, Fonarow GC, Fogelman AM. The paradox of dysfunctional high-density lipoprotein. Curr Opin Lipidol. 2007;18:427–34.

    CAS  PubMed  Google Scholar 

  99. Frischmann ME, Kronenberg F, Trenkwalder E, Schaefer JR, Schweer H, Dieplinger B, Koenig P, Ikewaki K, Dieplinger H. In vivo turnover study demonstrates diminished clearance of lipoprotein(a) in hemodialysis patients. Kidney Int. 2007;71(10):1036–43.

    CAS  PubMed  Google Scholar 

  100. Trenkwalder E, Gruber A, König P, Dieplinger H, Kronenberg F. Increased plasma concentrations of LDL-unbound apo(a) in patients with end-stage renal disease. Kidney Int. 1997;52(6):1685–92.

    CAS  PubMed  Google Scholar 

  101. Attman PO, Samuelsson OG, Moberly J, Johansson AC, Ljungman S, Weiss LG, et al. Apolipoprotein B-containing lipoproteins in renal failure: the relation to mode of dialysis. Kidney Int. 1999;55(4):1536–42.

    CAS  PubMed  Google Scholar 

  102. Shoji T, Nishizawa Y, Nishitani H, Yamakawa M, Morii H. Roles of hypoalbuminemia and lipoprotein lipase on hyperlipoproteinemia in continuous ambulatory peritoneal dialysis. Metabolism. 1991;40(10):1002–8.

    CAS  PubMed  Google Scholar 

  103. Horkko S, Huttunen K, Laara E, Kervinen K, Kesaniemi YA. Effects of three treatment modes on plasma lipids and lipoproteins in uraemic patients. Ann Med. 1994;26(4):271–82.

    CAS  PubMed  Google Scholar 

  104. Llopart R, Donate T, Oliva JA, Roda M, Rousaud F, Gonzalez-Sastre F, et al. Triglyceride-rich lipoprotein abnormalities in CAPD-treated patients. Nephrol Dial Transplant. 1995;10(4):537–40.

    CAS  PubMed  Google Scholar 

  105. Siamopoulos KC, Elisaf MS, Bairaktari HT, Pappas MB, Sferopoulos GD, Nikolakakis NG. Lipid parameters including lipoprotein (a) in patients undergoing CAPD and hemodialysis. Perit Dial Int. 1995;15(8):342–7.

    CAS  PubMed  Google Scholar 

  106. Moberly JB, Attman PO, Samuelsson O, Johansson AC, Knight-Gibson C, Alaupovic P. Alterations in lipoprotein composition in peritoneal dialysis patients. Perit Dial Int. 2002;22(2):220–8.

    CAS  PubMed  Google Scholar 

  107. Prinsen BH, Rabelink TJ, Romijn JA, et al. A broad-based metabolic approach to study VLDL apoB100 metabolism in patients with ESRD and patients treated with peritoneal dialysis. Kidney Int. 2004;65:1064–75.

    CAS  PubMed  Google Scholar 

  108. Babazono T, Nakamoto H, Kasai K, et al. Effects of icodextrin on glycemic and lipid profiles in diabetic patients undergoing peritoneal dialysis. Am J Nephrol. 2007;27:409–41.

    CAS  PubMed  Google Scholar 

  109. Paraskevas KI. Statin therapy in peritoneal dialysis patients: effects beyond lipid lowering. Int Urol Nephrol. 2008;40:165–70.

    CAS  PubMed  Google Scholar 

  110. Kobashigawa JA, Kasiske BL. Hyperlipidemia in solid organ transplantation. Transplantation. 1997;63:331–8.

    CAS  PubMed  Google Scholar 

  111. Castro R, Queiros J, Fonseca I, Pimentel JP, Henriques AC, Sarmento AM, et al. Therapy of post-renal transplantation hyperlipidaemia: comparative study with simvastatin and fish oil. Nephrol Dial Transplant. 1997;12:2140–3.

    CAS  PubMed  Google Scholar 

  112. Moore R, Hernandez D, Valantine H. Calcineurin inhibitors and post-transplant hyperlipidaemias. Drug Saf. 2001;24:755–66.

    CAS  PubMed  Google Scholar 

  113. Tse KC, Lam MF, Yip PS, Li FK, Lai KN, Chan TM. A long-term study on hyperlipidemia in stable renal transplant recipients. Clin Transplant. 2004;18:274–80.

    Google Scholar 

  114. Trence DL. Management of patients on chronic glucocorticoidi therapy: an endocrine perspective. Prim Care. 2003;30:593–605.

    PubMed  Google Scholar 

  115. Vaziri ND, Liang K, Azad H. Effect of cyclosporine on HMG-CoA reductase, cholesterol 7 a -hydroxylase, LDL receptor, HDL receptor, VLDL receptor and lipoprotein lipase expressions. J Pharmacol Exp Ther. 2000;294:778–83.

    CAS  PubMed  Google Scholar 

  116. Artz MA, Boots JM, Ligtenberg G, et al. Improved cardiovascular risk profile and renal function in renal transplant patients after randomized conversion from cyclosporine to tacrolimus. J Am Soc Nephrol. 2003;14:1880–8.

    CAS  PubMed  Google Scholar 

  117. Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361(9364):1149–58.

    CAS  PubMed  Google Scholar 

  118. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22. 109.

    Google Scholar 

  119. Tonelli M, Isles C, Curhan GC, Tonkin A, Pfeffer MA, Shepherd J, et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation. 2004;110(12):1557–63.

    CAS  PubMed  Google Scholar 

  120. Tonelli M, Moye L, Sacks FM, Kiberd B, Curhan G. Pravastatin for secondary prevention of cardiovascular events in persons with mild chronic renal insufficiency. Ann Intern Med. 2003;138(2):98–104.

    CAS  PubMed  Google Scholar 

  121. Strippoli GF, Navaneethan SD, Johnson DW, Perkovic V, Pellegrini F, Nicolucci A, et al. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. Bmj. 2008;336(7645):645–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomized placebo-controlled trial. Lancet. 2011;377:2181–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Asselbergs FW, Diercks GF, Hillege HL, van Boven AJ, Janssen WM, Voors AA, et al. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation. 2004;110(18):2809–16.

    CAS  PubMed  Google Scholar 

  124. Collins R, Armitage J, Parish S, Sleigh P, Peto R. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomized placebo-controlled trial. Lancet. 2003;361:2005–16.

    PubMed  Google Scholar 

  125. Athyros VG, Mikhailidis DP, Papageorgiou AA, Symeonidis AN, Pehlivanidis AN, Bouloukos VI, et al. The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation (GREACE) study. J Clin Pathol. 2004;57(7):728–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Shepherd J, Kastelein JJ, Bittner V, Deedwania P, Breazna A, Dobson S, et al. Effect of intensive lipid lowering with atorvastatin on renal function in patients with coronary heart disease: the Treating to New Targets (TNT) study. Clin J Am Soc Nephrol. 2007;2(6):1131–9.

    CAS  PubMed  Google Scholar 

  127. Tonelli M, Moye L, Sacks FM, Cole T, Curhan GC. Effect of pravastatin on loss of renal function in people with moderate chronic renal insufficiency and cardiovascular disease. J Am Soc Nephrol. 2003;14(6):1605–161.

    CAS  PubMed  Google Scholar 

  128. Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 2001;59(1):260–9.

    CAS  PubMed  Google Scholar 

  129. Sandhu S, Wiebe N, Fried LF, Tonelli M. Statins for improving renal outcomes: a meta-analysis. J Am Soc Nephrol. 2006 Jul;17(7):2006–16.

    CAS  PubMed  Google Scholar 

  130. Douglas K, O’Malley PG, Jackson JL. Meta-analysis: the effect of statins on albuminuria. Ann Intern Med. 2006;145(2):117–24.

    CAS  PubMed  Google Scholar 

  131. http://clinicaltrials.gov/ct2/show/NCT00296400?term=planet&rank=1;http://clinicaltrials.gov/ct2/show/NCT00296374?term=planet&rank=2.

    Google Scholar 

  132. Deslypere JP, Delanghe J, Vermeulen A. Proteinuria as complication of simvastatin treatment. Lancet. 1990;336(8728):1453.

    CAS  PubMed  Google Scholar 

  133. Verhulst A, D’Haese PC, De Broe ME. Inhibitors of HMG-CoA reductase reduce receptor-mediated endocytosis in human kidney proximal tubular cells. J Am Soc Nephrol. 2004;15(9):2249–57.

    CAS  PubMed  Google Scholar 

  134. Wanner C, Krane V, Marz W, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:238–48.

    CAS  PubMed  Google Scholar 

  135. Fellstrom BC, Jardine AG, Schmieder RE, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2009;360:1395–407.

    CAS  PubMed  Google Scholar 

  136. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R; Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomized trials of statins. Lancet. 2005;366:1267–78.

    CAS  PubMed  Google Scholar 

  137. März W, Genser B, Drechsler C, Krane V, Grammer TB, Ritz E, Stojakovic T, Scharnagl H, Winkler K, Holme I, Holdaas H, Wanner C; German Diabetes and Dialysis Study Investigators. Atorvastatin and low-density lipoprotein cholesterol in type 2 diabetes mellitus patients on hemodialysis. Clin J Am Soc Nephrol. 2011;6(6):1316–25.

    PubMed Central  PubMed  Google Scholar 

  138. Calabrò P, Yeh ET. The pleiotropic effects of statins. Curr Opin Cardiol. 2005;20:541–6.

    PubMed  Google Scholar 

  139. Haslinger B, Goedde MF, Toet KH, et al. Simvastatin increases fibrinolytic activity in human peritoneal mesothelial cells independent of cholesterol lowering. Kidney Int. 2002;62:1611–9.

    CAS  PubMed  Google Scholar 

  140. Holdaas H, Fellstrom B, Cole E, Nyberg G, Olsson AG, Pedersen TR, et al. Long-term cardiac outcomes in renal transplant recipients receiving fluvastatin: the ALERT extension study. Am J Transplant. 2005;5:2929–36.

    CAS  PubMed  Google Scholar 

  141. Tonelli M, Collins D, Robins S, Bloomfield H, Curhan GC. Effect of gemfibrozil on change in renal function in men with moderate chronic renal insufficiency and coronary disease. Am J Kidney Dis. 2004;44:832–9.

    CAS  PubMed  Google Scholar 

  142. Tonelli M, Collins D, Robins S, Bloomfield H, Curhan GC; Veterans’ Affairs High-Density Lipoprotein Intervention Trial (VA-HIT) Investigators. Gemfibrozil for secondary prevention of cardiovascular events in mild to moderate chronic renal insufficiency. Kidney Int. 2004;66:1123–30.

    CAS  PubMed  Google Scholar 

  143. Otvos JD, Collins D, Freedman DS. LDL and HDL particle subclasses predict coronary events and are changed favorably by gemfibrozil therapy in the Veterans Affairs HDL Intervention Trial (VA-HIT). Circulation. 2006;113:1556–63.

    CAS  PubMed  Google Scholar 

  144. Jun M, Zhu B, Tonelli M, et al. Effects of fibrates in kidney disease, a review and meta-analysis. J Am Coll Cardiol. 2012. doi:10.1016/j.jacc.2012.07.049.

    Google Scholar 

  145. Kidney Disease Outcomes Quality Initiative (K/DOQI) Group. K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am J Kidney Dis. 2003;41:I–IV (quiz 42–33).

    Google Scholar 

  146. Jacobson TA, Zimmerman FH. Fibrates in combination with statins in the management of dyslipidemia. J Clin Hypertens (Greenwich). 2006;8(1):35–41.

    CAS  Google Scholar 

  147. Vaziri ND, Liang K. Acyl-CoA cholesterol acyltransferase inhibition ameliorates proteinuria, hyperlipidemia, LCAT, SRB-1 and LDL receptor deficiencies in nephrotic syndrome. Circulation. 2004;110:419–25.

    CAS  PubMed  Google Scholar 

  148. Vaziri ND, Liang K. ACAT inhibition reverses LCAT deficiency and improves plasma HDL in chronic renal failure. Am J Physiol Renal Physiol. 2004;287:F1038–43.

    CAS  PubMed  Google Scholar 

  149. Tardif JC, Grégoire J, L’Allier PL, Anderson TJ, Bertrand O, Reeves F, Title LM, Alfonso F, Schampaert E, Hassan A, McLain R, Pressler ML, Ibrahim R, Lespérance J, Blue J, Heinonen T, Rodés-Cabau J, Avasimibe and Progression of Lesions on UltraSound (A-PLUS) Investigators. Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation. 2004;110(21):3372–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosratola D. Vaziri MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Humana Press

About this chapter

Cite this chapter

Vaziri, N. (2015). Dyslipidemia in Chronic Kidney Disease and Nephrotic Syndrome. In: Garg, A. (eds) Dyslipidemias. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-424-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-424-1_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-423-4

  • Online ISBN: 978-1-60761-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics