Skip to main content

Novel Lipid-Lowering Agents

  • Chapter
  • First Online:
Dyslipidemias

Part of the book series: Contemporary Endocrinology ((COE))

  • 2226 Accesses

Abstract

Lipid-lowering drugs are the second most commonly prescribed medication class in the USA with statins being the most commonly prescribed agent within this class. The widespread use of statins owes to overwhelming evidence of benefit and safety as well as awareness campaigns directed at both the physicians and consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohsfeldt RL, Gandhi SK, Smolen LJ, Jensen MM, Fox KM, Gold A, et al. Cost effectiveness of rosuvastatin in patients at risk of cardiovascular disease based on findings from the JUPITER trial. J Med Econ. 2010;13(3):428–37. Epub 2010/07/29. doi:10.3111/ 13696998.2010.499758. PubMed PMID: 20662625.

    Article  PubMed  Google Scholar 

  2. Vandenberg BF, Robinson J. Management of the patient with statin intolerance. Curr Atheroscler Rep. 2010;12(1):48–57. Epub 2010/04/29. doi:10.1007/s11883-009-0077-8. PubMed PMID: 20425271.

    Article  CAS  PubMed  Google Scholar 

  3. Stein EA. Other therapies for reducing low-density lipoprotein cholesterol: medications in development. Endocrinol Metab Clin North Am. 2009;38(1):99–119. Epub 2009/02/17. doi:S0889-8529(08)00087-X [pii]. 10.1016/j.ecl.2008.11.011. PubMed PMID: 19217514.

    Article  CAS  PubMed  Google Scholar 

  4. Huijgen R, Kindt I, Verhoeven SB, Sijbrands EJ, Vissers MN, Kastelein JJ, et al. Two years after molecular diagnosis of familial hypercholesterolemia: majority on cholesterol-lowering treatment but a minority reaches treatment goal. PLoS One. 2010;5(2):e9220. Epub 2010/02/20. doi:10.1371/journal.pone.0009220. PubMed PMID: 20169164; PubMed Central PMCID: PMC2821409.

    Article  Google Scholar 

  5. Hadfield SG, Horara S, Starr BJ, Yazdgerdi S, Bhatnagar D, Cramb R, et al. Are patients with familial hypercholesterolaemia well managed in lipid clinics? An audit of eleven clinics from the Department of Health Familial Hypercholesterolaemia Cascade Testing project. Ann Clin Biochem. 2008;45(Pt 2):199–205. Epub 2008/03/08. doi:10.1258/acb.2007.007078. PubMed PMID: 18325186.

    Article  CAS  PubMed  Google Scholar 

  6. Leren TP, Finborud TH, Manshaus TE, Ose L, Berge KE. Diagnosis of familial hypercholesterolemia in general practice using clinical diagnostic criteria or genetic testing as part of cascade genetic screening. Community Genet. 2008;11(1):26–35. Epub 2008/01/17. doi:000111637 [pii]. 10.1159/000111637. PubMed PMID: 18196915.

    Article  PubMed  Google Scholar 

  7. Thomas ME, Harris KP, Ramaswamy C, Hattersley JM, Wheeler DC, Varghese Z, et al. Simvastatin therapy for hypercholesterolemic patients with nephrotic syndrome or significant proteinuria. Kidney Int. 1993;44(5):1124–9. Epub 1993/11/01. PubMed PMID: 8264145.

    Article  CAS  PubMed  Google Scholar 

  8. Brown CD, Azrolan N, Thomas L, Roberts KG, Bostom A, Zhao ZH, et al. Reduction of lipoprotein(a) following treatment with lovastatin in patients with unremitting nephrotic syndrome. Am J Kidney Dis. 1995;26(1):170–7. PubMed PMID: 7611249.

    Article  CAS  PubMed  Google Scholar 

  9. Kronenberg F. Dyslipidemia and nephrotic syndrome: recent advances. J Ren Nutr. 2005;15(2):195–203. PubMed PMID: 15827892.

    Article  PubMed  Google Scholar 

  10. Garg A, Simha V. Update on dyslipidemia. J Clin Endocrinol Metab. 2007;92(5):1581–9. Epub 2007/05/08. doi:92/5/1581 [pii]. 10.1210/jc.2007-0275. PubMed PMID: 17483372.

    Article  CAS  PubMed  Google Scholar 

  11. Pasternak RC, Smith SC Jr., Bairey-Merz CN, Grundy SM, Cleeman JI, Lenfant C. ACC/AHA/NHLBI clinical advisory on the use and safety of statins. Circulation. 2002;106(8):1024–8. Epub 2002/08/21. PubMed PMID: 12186811.

    Article  PubMed  Google Scholar 

  12. Thompson PD, Clarkson PM, Rosenson RS. National Lipid Association Statin Safety Task Force Muscle Safety Expert P. An assessment of statin safety by muscle experts. Am J Cardiol. 2006;97(8A):69C–76C. doi:10.1016/j.amjcard.2005.12.013. PubMed PMID: 16581332.

    Article  Google Scholar 

  13. Alsheikh-Ali AA, Ambrose MS, Kuvin JT, Karas RH. The safety of rosuvastatin as used in common clinical practice: a postmarketing analysis. Circulation. 2005;111(23):3051–7. doi:10.1161/CIRCULATIONAHA.105.555482. PubMed PMID: 15911706.

    Article  PubMed  Google Scholar 

  14. Thompson GR, Miller JP, Breslow JL. Improved survival of patients with homozygous familial hypercholesterolaemia treated with plasma exchange. Br Med J (Clin Res Ed). 1985;291(6510):1671–3. Epub 1985/12/14. PubMed PMID: 3935235; PubMed Central PMCID: PMC1418783.

    Article  CAS  Google Scholar 

  15. Wittrup HH, Nordestgaard BG, Steffensen R, Jensen G, Tybjaerg-Hansen A. Effect of gender on phenotypic expression of the S447X mutation in LPL: the Copenhagen City Heart Study. Atherosclerosis. 2002;165(1):119–26. Epub 2002/09/05. doi:S0021915002001831 [pii]. PubMed PMID: 12208477.

    Article  CAS  PubMed  Google Scholar 

  16. Gaudet D, Methot J, Dery S, Brisson D, Essiembre C, Tremblay G, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPL(S447X)) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther. 2012. Epub 2012/06/22. doi:gt201243 [pii]. 10.1038/gt.2012.43. PubMed PMID: 22717743.

    Google Scholar 

  17. Stroes ES, Nierman MC, Meulenberg JJ, Franssen R, Twisk J, Henny CP, et al. Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol. 2008;28(12):2303–4. doi:10.1161/ATVBAHA.108.175620. PubMed PMID: 18802015.

    Article  CAS  PubMed  Google Scholar 

  18. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9719):998–1006. Epub 2010/03/17. doi:S0140-6736(10)60284-X [pii]. 10.1016/S0140-6736(10)60284-X. PubMed PMID: 20227758.

    Article  CAS  PubMed  Google Scholar 

  19. Stein EA, Dufour R, Gagne C, Gaudet D, East C, Donovan JM, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation. 2012;126(19):2283–92. Epub 2012/10/13. doi:CIRCULATIONAHA.112.104125 [pii]. 10.1161/CIRCULATIONAHA.112.104125. PubMed PMID: 23060426.

    Article  CAS  PubMed  Google Scholar 

  20. McGowan MP, Tardif JC, Ceska R, Burgess LJ, Soran H, Gouni-Berthold I, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One. 2012;7(11):e49006. Epub 2012/11/16. doi:10.1371/journal.pone.0049006. PONE-D-12–18748 [pii]. PubMed PMID: 23152839; PubMed Central PMCID: PMC3496741.

    Article  Google Scholar 

  21. FDA Briefing Document: NDA 203568, Mipomersen Sodium Injection 200 mg/mL. 2012. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM323927.pdf. Accessed 18 Oct 2013.

  22. Mipomersen prescribing information. http://www.kynamro.com/~/media/Kynamro/Files/KYNAMRO-PI.pdf. Accessed 29 Jan 2015.

    Google Scholar 

  23. Raal FJ, Pilcher GJ, Illingworth DR, Pappu AS, Stein EA, Laskarzewski P, et al. Expanded-dose simvastatin is effective in homozygous familial hypercholesterolaemia. Atherosclerosis. 1997;135(2):249–56. Epub 1998/01/16. PubMed PMID: 9430375.

    Article  CAS  PubMed  Google Scholar 

  24. Raal FJ, Pilcher GJ, Panz VR, van Deventer HE, Brice BC, Blom DJ, et al. Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation. 2011;124(20):2202–7. doi:10.1161/CIRCULATIONAHA.111.042523. PubMed PMID: 21986285.

    Article  CAS  PubMed  Google Scholar 

  25. Visser ME, Akdim F, Tribble DL, Nederveen AJ, Kwoh TJ, Kastelein JJ, et al. Effect of apolipoprotein-B synthesis inhibition on liver triglyceride content in patients with familial hypercholesterolemia. J Lipid Res. 2010;51(5):1057–62. Epub 2009/12/17. doi:jlr.M002915 [pii]. 10.1194/jlr.M002915. PubMed PMID: 20008831; PubMed Central PMCID: PMC2853432.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Stepanova M, Younossi ZM. Independent association between nonalcoholic fatty liver disease and cardiovascular disease in the US population. Clin Gastroenterol Hepatol. 2012;10(6):646–50. doi:10.1016/j.cgh.2011.12.039. PubMed PMID: 22245962.

    Article  PubMed  Google Scholar 

  27. FDA Briefing Document: NDA 203858, Lomitapide Mesylate Capsules 5 mg, 10 mg, 20 mg. 2012. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM323841.pdf. Accessed 18 Oct 2013.

  28. Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML, Sarkis A, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356(2):148–56. Epub 2007/01/12. doi:356/2/148 [pii]. 10.1056/NEJMoa061189. PubMed PMID: 17215532.

    Article  CAS  PubMed  Google Scholar 

  29. Cuchel M, Meagher EA, du Toit Theron H, Blom DJ, Marais AD, Hegele RA, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381(9860): 40-6. doi:10.1016/S0140-6736(12)61731-0.

    Google Scholar 

  30. Kim E, Campbell S, Schueller O, Wong E, Cole B, Kuo J, et al. A small-molecule inhibitor of enterocytic microsomal triglyceride transfer protein, SLx-4090: biochemical, pharmacodynamic, pharmacokinetic, and safety profile. J Pharmacol Exp Ther. 2011;337(3):775–85. doi:10.1124/jpet.110.177527. PubMed PMID: 21406547.

    Article  CAS  PubMed  Google Scholar 

  31. Mera Y, Odani N, Kawai T, Hata T, Suzuki M, Hagiwara A, et al. Pharmacological characterization of diethyl-2-({3-dimethylcarbamoyl-4-[(4'-trifluoromethylbiphenyl-2-carbonyl)amino]p henyl}acetyloxymethyl)-2-phenylmalonate (JTT-130), an intestine-specific inhibitor of microsomal triglyceride transfer protein. J Pharmacol Exp Ther. 2011;336(2):321–7. doi:10.1124/jpet.110.173807. PubMed PMID: 20974698.

    Article  CAS  PubMed  Google Scholar 

  32. Chen HC, Farese RV Jr. Inhibition of triglyceride synthesis as a treatment strategy for obesity: lessons from DGAT1-deficient mice. Arterioscler Thromb Vasc Biol. 2005;25(3):482–6. Epub 2004/12/01. doi:10.1161/01.ATV.0000151874.81059.ad. PubMed PMID: 15569818.

    Article  CAS  PubMed  Google Scholar 

  33. Lin HV, Chen D, Shen Z, Zhu L, Ouyang X, Vongs A, et al. Diacylglycerol acyltransferase-1 (DGAT1) inhibition perturbs postprandial gut hormone release. PLoS One. 2013;8(1):e54480. doi:10.1371/journal.pone.0054480. PubMed PMID: 23336002; PubMed Central PMCID: PMC3545956.

    Google Scholar 

  34. Haas JT, Winter HS, Lim E, Kirby A, Blumenstiel B, Defelice M, et al. DGAT1 mutation is linked to a congenital diarrheal disorder. J Clin Invest. 2012;122(12):4680–4. Epub 2012/11/02. doi:10.1172/JCI64873. PubMed PMID: 23114594.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Yeh VS, Beno DW, Brodjian S, Brune ME, Cullen SC, Dayton BD, et al. Identification and preliminary characterization of a potent, safe, and orally efficacious inhibitor of acyl-CoA:diacylglycerol acyltransferase 1. J Med Chem. 2012;55(4):1751–7. doi:10.1021/jm201524g. PubMed PMID: 22263872.

    Article  CAS  PubMed  Google Scholar 

  36. Dow RL, Andrews M, Aspnes GE, Balan G, Michael Gibbs E, Guzman-Perez A, et al. Design and synthesis of potent, orally-active DGAT-1 inhibitors containing a dioxino[2,3-d]pyrimidine core. Bioorg Med Chem Lett. 2011;21(20):6122–5. doi:10.1016/j.bmcl.2011.08.028. PubMed PMID: 21908190.

    Article  CAS  PubMed  Google Scholar 

  37. Database NCT. A 12-week multi-center, randomized, double-blind, placebo-controlled, parallel-group adaptive design study to evaluate the efficacy on blood glucose control and safety of five doses of LCQ908 (2, 5, 10, 15 and 20 mg) or sitagliptin 100 mg on a background therapy of metformin in obese patients with type 2 diabetes 2011. http://www.novctrd.com/ctrdWebApp/clinicaltrialrepository/displayFile.do?trialResult=4313. Accessed 18 Oct 2013.

  38. Denison H, Nilsson C, Kujacic M, Lofgren L, Karlsson C, Knutsson M, et al. Proof of mechanism for the DGAT1 inhibitor AZD7687: results from a first-time-in-human single-dose study. Diabetes Obes Metab. 2013;15(2):136–43. doi:10.1111/dom.12002. PubMed PMID: 22950654.

    Article  CAS  PubMed  Google Scholar 

  39. Pinkosky SL, Filippov S, Srivastava RA, Hanselman JC, Bradshaw CD, Hurley TR, et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J Lipid Res. 2013;54(1):134–51. doi:10.1194/jlr.M030528. PubMed PMID: 23118444; PubMed Central PMCID: PMC3520520.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. EsperionTherapeutics. ETC-1002 2013. http://www.esperion.com/therapies-progress/etc-1002/. Accessed 18 Oct 2013.

  41. Ballantyne CM, Davidson MH, Macdougall DE, Bays HE, Dicarlo LA, Rosenberg NL, et al. Efficacy and safety of a novel dual modulator of adenosine triphosphate—citrate lyase and adenosine monophosphate—activated protein kinase in subjects with hypercholesterolemia: the results of a double-blind, parallel group, multicenter, placebo controlled trial. J Am Coll Cardiol. 2013. doi:10.1016/j.jacc.2013.05.050. PubMed PMID: 23770179.

    Google Scholar 

  42. Shoemaker TJ, Kono T, Mariash CN, Evans-Molina C. Thyroid hormone analogues for the treatment of metabolic disorders: new potential for unmet clinical needs? Endocr Pract. 2012;18(6):954–64. Epub 2012/07/13. doi:R572115521589372 [pii]. 10.4158/EP12086.RA. PubMed PMID: 22784847.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ladenson PW, Kristensen JD, Ridgway EC, Olsson AG, Carlsson B, Klein I, et al. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N Engl J Med. 2010;362(10):906–16. Epub 2010/03/12. doi:362/10/906 [pii]. 10.1056/NEJMoa0905633. PubMed PMID: 20220185.

    Article  CAS  PubMed  Google Scholar 

  44. Berkenstam A, Kristensen J, Mellstrom K, Carlsson B, Malm J, Rehnmark S, et al. The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc Natl Acad Sci U S A. 2008;105(2):663–7. Epub 2007/12/28. doi:0705286104 [pii]. 10.1073/pnas.0705286104. PubMed PMID: 18160532; PubMed Central PMCID: PMC2206593.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Karo Bio Terminates the Eprotirome Program 2012. http://www.karobio.com/investormedia/pressreleaser/pressrelease?pid=639535. Accessed 18 Oct 2013.

  46. Madrigal Pharmaceuticals announces results from MGL-3196 Multiple Dose Study at the American Heart Association 2012 Scientific Sessions 2012. http://finance.yahoo.com/news/madrigal-pharmaceuticals-announces-results-mgl-173000411.html. Accessed 18 Oct 2013.

  47. The coronary drug project. Findings leading to further modifications of its protocol with respect to dextrothyroxine. The coronary drug project research group. JAMA. 1972;220(7):996–1008. Epub 1972/05/15. PubMed PMID: 4337170.

    Google Scholar 

  48. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72. Epub 2006/03/24. doi: 354/12/1264 [pii]. 10.1056/NEJMoa054013. PubMed PMID: 16554528.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang DW, Garuti R, Tang WJ, Cohen JC, Hobbs HH. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc Natl Acad Sci U S A. 2008;105(35):13045–50. Epub 2008/08/30. doi:0806312105 [pii]. 10.1073/pnas.0806312105. PubMed PMID: 18753623; PubMed Central PMCID: PMC2526098.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Stefanutti C, Morozzi C, Di Giacomo S. New clinical perspectives of hypolipidemic drug therapy in severe hypercholesterolemia. Curr Med Chem. 2012;19(28):4861–8. Epub 2012/09/12. doi:CMC-EPUB-20120903-2 [pii]. PubMed PMID: 22963620.

    Article  CAS  PubMed  Google Scholar 

  51. Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov. 2012;11(5):367–83. Epub 2012/06/12. PubMed PMID: 22679642.

    Article  CAS  PubMed  Google Scholar 

  52. Stein EA, Mellis S, Yancopoulos GD, Stahl N, Logan D, Smith WB, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366(12):1108–18. Epub 2012/03/23. doi:10.1056/NEJMoa1105803. PubMed PMID: 22435370.

    Article  CAS  PubMed  Google Scholar 

  53. Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 2012;380(9836):29–36. Epub 2012/05/29. doi:10.1016/S0140-6736(12)60771-5. PubMed PMID: 22633824.

    Article  CAS  PubMed  Google Scholar 

  54. Raal F, Scott R, Somaratne R, Bridges I, Li G, Wasserman SM, et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation. 2012;126(20):2408–17. Epub 2012/11/07. doi:10.1161/CIRCULATIONAHA.112.144055. PubMed PMID: 23129602.

    Article  CAS  PubMed  Google Scholar 

  55. Sullivan D, Olsson AG, Scott R, Kim JB, Xue A, Gebski V, et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA. 2012;308 (23):1–10. Epub 2012/11/07. doi:10.1001/jama.2012.25790. PubMed PMID: 23128163.

    Google Scholar 

  56. McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59(25):2344–53. doi:10.1016/j.jacc.2012.03.007. PubMed PMID: 22463922.

    Article  CAS  PubMed  Google Scholar 

  57. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100(3):928–33. Epub 2003/01/29. doi:10.1073/pnas.0335507100 [pii]. PubMed PMID: 12552133; PubMed Central PMCID: PMC298703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Zhao Z, Tuakli-Wosornu Y, Lagace TA, Kinch L, Grishin NV, Horton JD, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79(3):514–23. Epub 2006/08/16. doi: S0002–9297(07)62750–5 [pii]. 10.1086/507488. PubMed PMID: 16909389; PubMed Central PMCID: PMC1559532.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Hooper AJ, Marais AD, Tanyanyiwa DM, Burnett JR. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis. 2007;193(2):445–8. Epub 2006/09/23. doi:S0021-9150(06)00522-3 [pii]. 10.1016/j.atherosclerosis.2006.08.039. PubMed PMID: 16989838.

    Article  CAS  PubMed  Google Scholar 

  60. Briel M, Ferreira-Gonzalez I, You JJ, Karanicolas PJ, Akl EA, Wu P, et al. Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ. 2009;338:b92. Epub 2009/02/18. PubMed PMID: 19221140; PubMed Central PMCID: PMC2645847.

    Article  Google Scholar 

  61. Okamoto H, Yonemori F, Wakitani K, Minowa T, Maeda K, Shinkai H. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature. 2000;406(6792):203–7. Epub 2000/07/26. doi:10.1038/35018119. PubMed PMID: 10910363.

    Article  CAS  PubMed  Google Scholar 

  62. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22. Epub 2007/11/07. doi:NEJMoa0706628 [pii]. 10.1056/NEJMoa0706628. PubMed PMID: 17984165.

    Article  CAS  PubMed  Google Scholar 

  63. Nissen SE, Tardif JC, Nicholls SJ, Revkin JH, Shear CL, Duggan WT, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007;356(13):1304–16. Epub 2007/03/28. doi:NEJMoa070635 [pii]. 10.1056/NEJMoa070635. PubMed PMID: 17387129.

    Article  CAS  PubMed  Google Scholar 

  64. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99. Epub 2012/11/07. doi:10.1056/NEJMoa1206797. PubMed PMID: 23126252.

    Article  CAS  PubMed  Google Scholar 

  65. Degoma EM, Rader DJ. Novel HDL-directed pharmacotherapeutic strategies. Nat Rev Cardiol. 2011;8(5):266–77. Epub 2011/01/19. doi:nrcardio.2010.200 [pii]. 10.1038/nrcardio.2010.200. PubMed PMID: 21243009; PubMed Central PMCID: PMC3315102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Nicholls SJ, Brewer HB, Kastelein JJ, Krueger KA, Wang MD, Shao M, et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial. JAMA. 2011;306(19):2099–109. doi:10.1001/jama.2011.1649. PubMed PMID: 22089718.

    Article  CAS  PubMed  Google Scholar 

  67. Cannon CP, Shah S, Dansky HM, Davidson M, Brinton EA, Gotto AM, et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010;363(25):2406–15. doi:10.1056/NEJMoa1009744. PubMed PMID: 21082868.

    Article  CAS  PubMed  Google Scholar 

  68. Friedman DJ, Pollak MR. Genetics of kidney failure and the evolving story of APOL1. J Clin Invest. 2011;121(9):3367–74. Epub 2011/09/02. doi:46263 [pii]. 10.1172/JCI46263. PubMed PMID: 21881214; PubMed Central PMCID: PMC3163957.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Sirtori CR, Calabresi L, Franceschini G, Baldassarre D, Amato M, Johansson J, et al. Cardiovascular status of carriers of the apolipoprotein A-I(Milano) mutant: the Limone sul Garda study. Circulation. 2001;103(15):1949–54. PubMed PMID: 11306522.

    Article  CAS  PubMed  Google Scholar 

  70. Nissen SE, Tsunoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, Yasin M, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290(17):2292–300. Epub 2003/11/06. doi:10.1001/jama.290.17.2292 290/17/2292 [pii]. PubMed PMID: 14600188.

    Article  CAS  PubMed  Google Scholar 

  71. Tardif JC, Gregoire J, L'Allier PL, Ibrahim R, Lesperance J, Heinonen TM, et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA. 2007;297(15):1675–82. Epub 2007/03/28. doi:297.15.jpc70004 [pii]. 10.1001/jama.297.15.jpc70004. PubMed PMID: 17387133.

    Article  PubMed  Google Scholar 

  72. Waksman R, Torguson R, Kent KM, Pichard AD, Suddath WO, Satler LF, et al. A first-in-man, randomized, placebo-controlled study to evaluate the safety and feasibility of autologous delipidated high-density lipoprotein plasma infusions in patients with acute coronary syndrome. J Am Coll Cardiol. 2010;55(24):2727–35. Epub 2010/06/12. doi:S0735-1097(10)01379-3 [pii]. 10.1016/j.jacc.2009.12.067. PubMed PMID: 20538165.

    Article  PubMed  Google Scholar 

  73. Navab M, Shechter I, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Fogelman AM. Structure and function of HDL mimetics. Arterioscler Thromb Vasc Biol. 2010;30(2):164–8. doi:10.1161/ATVBAHA.109.187518. PubMed PMID: 19608977; PubMed Central PMCID: PMC2860541.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Tancevski I, Rudling M, Eller P. Thyromimetics: a journey from bench to bed-side. Pharmacol Ther. 2011;131(1):33–9. doi:10.1016/j.pharmthera.2011.04.003. PubMed PMID: 21504761.

    Article  CAS  PubMed  Google Scholar 

  75. Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res. 2009;50(Suppl):S172–7. doi:10.1194/jlr.R800091-JLR200. PubMed PMID: 19020338; PubMed Central PMCID: PMC2674748.

    Google Scholar 

  76. Sacks FM, Stanesa M, Hegele RA. Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide. JAMA Intern Med. 2014;174(3):443-7. doi: 101001/jamainternmed. 201313309.

    Google Scholar 

  77. Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L., et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2014;385(9965):24-30. doi: 101016/S0140- 6736(14)61399-4.

    Google Scholar 

  78. Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 2012;380(9836):29-36. doi: 101016/S0140- 6736(12)60771-5.

    Google Scholar 

  79. Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS, Watts GF, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebocontrolled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2541-8. doi: 101016/j. jacc.201403019.

    Google Scholar 

  80. Giugliano RP, Desai NR, Kohli P, Rogers WJ, Somaratne R, Huang F, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380(9858):2007-17. doi: 101016/ S0140-6736(12)61770-X.

    Google Scholar 

  81. McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/ kexin type 9 serine protease, SAR236553/ REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59(25):2344-53. doi: 101016/j.jacc.201203007.

    Google Scholar 

  82. Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med. 2012; 367(20):1891-900. doi: 101056/NEJMoa1201832.

    Google Scholar 

  83. Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal FJ. Effect of the proprotein convertase subtilisin/ kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation. 2013;128(19):2113-20. doi: 101161/CIRCULATIONAHA. 113004678.

    Google Scholar 

  84. Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo- controlled trial. Lancet. 2014;385(9965):341- 350. doi: 101016/S0140-6736(14)61374-X.

    Google Scholar 

  85. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and Safety of Evolocumab in Reducing Lipids and Cardiovascular Events. N Engl J Med. 2015 [Epub ahead of print]. doi: 101056/NEJMoa1500858.

    Google Scholar 

  86. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and Safety of Alirocumab in Reducing Lipids and Cardiovascular Events. N Engl J Med. 2015 [Epub ahead of print]. doi: 101056/NEJMoa1501031.

    Google Scholar 

  87. Gaudet D, Brisson D, Tremblay K, Alexander VJ, Singleton W, Hughes SG, et al. Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med. 2014;371(23):2200-6. doi: 101056/NEJMoa1400284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Humana Press

About this chapter

Cite this chapter

Ahmad, Z., Garg, A. (2015). Novel Lipid-Lowering Agents. In: Garg, A. (eds) Dyslipidemias. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-424-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-424-1_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-423-4

  • Online ISBN: 978-1-60761-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics