Skip to main content

Bile Acid Sequestrants: Risk–Benefits and Role in Treating Dyslipidemias

  • Chapter
  • First Online:
Dyslipidemias

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Much progress has been made during the past two decades in the management of lipid disorders and consequent reduction in mortality from cardiovascular disease. However, many people remain inadequately treated and not at lipid goals. Bile acid sequestrants (BAS) have been an effective modality for treatment of hypercholesterolemia and elevated low-density lipoprotein-cholesterol (LDL-C) for more than 50 years. Well- designed angiographic and clinical trials have documented the successful reduction in atherosclerotic burden and cardiovascular events with the use of BAS in monotherapy and combination therapy with other lipid-lowering agents.

Despite the availability of statins as the preferred agents for LDL-C lowering, BAS have proven to be of value as second-line therapy or as adjunct therapy when LDL-C goals are not achievable with statins alone. Due to a lack of systemic absorption, BAS have no major adverse effect. The newer BAS may be associated with better tolerability and side effects.

In patients with type 2 diabetes, or those at a risk of diabetes, BAS have a unique advantage of a dual effect, namely reduction in LDL-C and a modest but significant effect on reducing hyperglycemia. The precise mechanism of the glucose-lowering effect is not fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Insull W Jr. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J. 2006;99(3):257–73.

    Article  PubMed  Google Scholar 

  2. Out C, Groen AK, Brufau G. Bile acid sequestrants: more than simple resins. Curr Opin Lipidol. 2012;23(1):43–55.

    Article  CAS  PubMed  Google Scholar 

  3. Davidson MH, Dillon MA, Gordon B et al. Colesevelam hydrochloride (cholestagel): a new, potent bile acid sequestrant associated with a low incidence of gastrointestinal side effects. Arch Intern Med. 1999; 159(16):1893–900.

    Article  CAS  PubMed  Google Scholar 

  4. Bays H, Dujovne C. Colesevelam HCl: a non-systemic lipid-altering drug. Expert Opin Pharmacother. 2003;4(5):779–90.

    PubMed  Google Scholar 

  5. Goldstein JL, Brown MS. Regulation of low-density lipoprotein receptors: implications for pathogenesis and therapy of hypercholesterolemia and atherosclerosis. Circulation 1987;76(3):504–7.

    Article  CAS  PubMed  Google Scholar 

  6. Knapp HH, Schrott H, Ma P, et al. Efficacy and safety of combination simvastatin and colesevelam in patients with primary hypercholesterolemia. Am J Med. 2001;110(5):352–60.

    Article  CAS  PubMed  Google Scholar 

  7. Hunninghake D, Insull W Jr, Toth P, Davidson D, Donovan JM, Burke SK. Coadministration of colesevelam hydrochloride with atorvastatin lowers LDL cholesterol additively. Atherosclerosis. 2001;158(2):407–16.

    Article  CAS  PubMed  Google Scholar 

  8. Eckel RH. Approach to the patient who is intolerant of statin therapy. J Clin Endocrinol Metab. 2010;95:2015–22.

    Article  CAS  PubMed  Google Scholar 

  9. Knopp RH, Tsunehara C, Retzlaff BM, et al. Lipoprotein effects of combined ezetimibe and colesevelam hydrochloride versus ezetimibe alone in hypercholesterolemic subjects: a pilot study. Metabolism. 2006;55(12):1697–703.

    Article  CAS  PubMed  Google Scholar 

  10. Cashin-Hemphill L, Mack WJ, Pogoda JM, Sanmarco ME, Azen SP, Blankenhorn DH. Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4-year follow-up. JAMA. 1990;264(23):3013–7.

    Article  CAS  PubMed  Google Scholar 

  11. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med. 1990;323(19):1289–98.

    Article  CAS  PubMed  Google Scholar 

  12. McKenney J, Jones M, Abby S. Safety and efficacy of colesevelam hydrochloride in combination with fenofibrate for the treatment of mixed hyperlipidemia. Curr Med Res Opin. 2005;21(9):1403–12.

    Article  CAS  PubMed  Google Scholar 

  13. Devaraj S, Chan E, Jialal I. Direct demonstration of an antiinflammatory effect of simvastatin in subjects with the metabolic syndrome. J Clin Endocrinol Metab. 2006;91(11):4489–96.

    Article  CAS  PubMed  Google Scholar 

  14. Bays HE, Davidson M, Jones MR, Abby SL. Effects of colesevelam hydrochloride on low-density lipoprotein cholesterol and high-sensitivity C-reactive protein when added to statins in patients with hypercholesterolemia. Am J Cardiol. 2006;97(8):1198–205.

    Article  CAS  PubMed  Google Scholar 

  15. Rosenson RS. Colesevelam HCl reduces LDL particle number and increases LDL size in hypercholesterolemia. Atherosclerosis. 2006;185(2):327–30.

    Article  CAS  PubMed  Google Scholar 

  16. Siperstein MD, Nichols CW Jr, Chaikoff IL. Effects of ferric chloride and bile on plasma cholesterol and atherosclerosis in the cholesterol-fed bird. Science. 1953;117:386–9.

    Article  CAS  PubMed  Google Scholar 

  17. Tennent DM, Siegel H, Zanetti ME, et al. Plasma cholesterol lowering action of bile acid binding polymers in experimental animals. J Lipid Res. 1960;1:469–73.

    CAS  PubMed  Google Scholar 

  18. Bergen SS Jr, Van Itallie TB, Tennent DM, Sebrell WH. Effect of an anion exchange resin on serum cholesterol in man. Proc Soc Exp Biol Med. 1959;102:676–9.

    Article  CAS  PubMed  Google Scholar 

  19. Hashim SA, Bergen SS Jr, Van Itallie TB. Experimental steatorrhea induced in man by bile acid sequestrant. Proc Soc Exp Biol Med. 1961;106:173–5.

    Article  CAS  PubMed  Google Scholar 

  20. Parkinson TM, Gundersen K, Nelson NA. Effects of colestipol (U-26,597A), a new bile acid sequestrant, on serum lipids in experimental animals and man. Atherosclerosis. 1970;11:531–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–91.

    Article  CAS  PubMed  Google Scholar 

  22. Holst JJ, McGill MA. Potential new approaches to modifying intestinal GLP-1 secretion in patients with type 2 diabetes mellitus: focus on bile acid sequestrants. Clin Drug Investig. 2012;32(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  23. Braunlin W, Zhorov E, Smisek D, et al. In vitro comparison of bile acid binding to colesevalamHCL and other bile acid sequestrants. Polymer Prepr. 2000;41:708–9.

    CAS  Google Scholar 

  24. Davidson MH. A systematic review of bile acid sequestrant therapy in children with familial hypercholesterolemia. J Clin Lipidol. 2011;5(2):76–81.

    Article  PubMed  Google Scholar 

  25. Suzuki T, Oba K, Igari Y, et al. Effects of bile-acid-binding resin (colestimide) on blood glucose and visceral fat in Japanese patients with type 2 diabetes mellitus and hypercholesterolemia: an open-label, randomized, case-control, crossover study. J Diabetes Complications. 2012;26(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  26. Dorr AE, Gundersen K, Schneider JC Jr, Spencer TW, Martin WB. Colestipol hydrochloride in hypercholesterolemic patients–effect on serum cholesterol and mortality. J Chronic Dis. 1978;31(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  27. No Authors. The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. JAMA. 1984;251(3):351–64.

    Article  Google Scholar 

  28. No Authors. The Lipid Research Clinics Coronary Primary Prevention Trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA. 1984;251(3):365–74.

    Article  Google Scholar 

  29. Brensike JF, Levy RI, Kelsey SF, et al. Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI Type II Coronary Intervention Study. Circulation. 1984;69(2):313–24.

    Article  CAS  PubMed  Google Scholar 

  30. Watts GF, Lewis B, Brunt JN, et al. Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St Thomas' Atherosclerosis Regression Study (STARS). Lancet. 1992;339(8793):563–9.

    Article  CAS  PubMed  Google Scholar 

  31. Kane JP, Malloy MJ, Ports TA, Phillips NR, Diehl JC, Havel RJ. Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA. 1990;264(23):3007–12.

    Article  CAS  PubMed  Google Scholar 

  32. Whitney EJ, Krasuski RA, Personius BE, et al. A randomized trial of a strategy for increasing high-density lipoprotein cholesterol levels: effects on progression of coronary heart disease and clinical events. Ann Intern Med. 2005;142(2):95–104.

    Article  PubMed  Google Scholar 

  33. No Authors. The Lipid Research Clinics Coronary Primary Prevention Trial. Results of 6 years of post-trial follow-up. The Lipid Research Clinics Investigators. Arch Intern Med. 1992;152(7):1399–410.

    Article  Google Scholar 

  34. Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann Intern Med. 1994;121(6):416–22.

    Article  CAS  PubMed  Google Scholar 

  35. Bays HE, Goldberg RB, Truitt KE, Jones MR. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch Intern Med. 2008;168(18):1975–83.

    Article  CAS  PubMed  Google Scholar 

  36. Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care. 2008;31(8):1479–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Goldberg RB, Fonseca VA, Truitt KE, Jones MR. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med. 2008;168(14):1531–40.

    Article  CAS  PubMed  Google Scholar 

  38. Fonseca VA, Handelsman Y, Staels B. Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence. Diabetes Obes Metab. 2010;12(5):384–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rosenstock J, Fonseca VA, Garvey WT, et al. Initial combination therapy with metformin and colesevelam for achievement of glycemic and lipid goals in early type 2 diabetes. Endocr Pract. 2010;16(4):629–40.

    Article  PubMed  Google Scholar 

  40. Handelsman Y, Goldberg RB, Garvey WT, et al. Colesevelam hydrochloride to treat hypercholesterolemia and improve glycemia in prediabetes: a randomized, prospective study. Endocr Pract. 2010;16(4):617–28.

    Article  PubMed  Google Scholar 

  41. Davidson MH. Interrupting bile-acid handling and lipid and glucose control: effects of colesevelam on glucose levels. J Clin Lipidol. 2008;2(2):S29–33.

    Article  PubMed  Google Scholar 

  42. Goldfine AB. Modulating LDL cholesterol and glucose in patients with type 2 diabetes mellitus: targeting the bile acid pathway. Curr Opin Cardiol. 2008;23(5):502–11.

    Article  PubMed  Google Scholar 

  43. Vallim TQ, Edwards PA. Bile acids have the gall to function as hormones. Cell Metab. 2009;10(3):162–4.

    Article  CAS  PubMed  Google Scholar 

  44. Beysen C, Murphy EJ, Deines K, et al. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia. 2012;55(2):432–42.

    Article  CAS  PubMed  Google Scholar 

  45. Henry RR, Aroda VR, Mudaliar S, Garvey WT, Chou HS, Jones MR. Effects of colesevelam on glucose absorption and hepatic/peripheral insulin sensitivity in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2012; 14(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  46. Mazze R, Strock E, Monk A, et al. Diurnal glucose patterns based on contimnuous glucose monitoring of patients with type 2 diabetes treated with colesevelam. Diabetes. 2012;61(suppl 1):A 301.

    Google Scholar 

  47. Stone NJ, Robinson J, Lichtenstein AH, et al. Treatment of blood cholesterol to reduce atherosclerotic cardiovascular disease risk in adults: synopsis of the 2013 American College of Cardiology/American Heart Association cholesterol guideline. Ann Intern Med. 2014;160(5):339–43.

    Article  PubMed  Google Scholar 

  48. Jacobsen TA, Ito MK, Maki KC et al National Lipid Association recommendations for patient-centered management of dyslipidemia: Part 1 – executive summary. J Clin Lipidology 2014;8:473–488.

    Google Scholar 

  49. Scheel PJ Jr, Whelton A, Rossiter K, Watson A. Cholestyramine-induced hyperchloremic metabolic acidosis. J Clin Pharmacol. 1992;32(6):536–8.

    Article  PubMed  Google Scholar 

  50. Brook, RD, Bard, RL, Rubenfire M. Images in cardiovascular medicine: xanthomas triggered by bile acid sequestrants. J Clin Lipidol. 2008;2:58–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement:

Supported, in part, by NIH Joslin Diabetes Endocrinology Research Center, DERC Core DK 036836

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om P. Ganda MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Humana Press

About this chapter

Cite this chapter

Ganda, O., Garg, A. (2015). Bile Acid Sequestrants: Risk–Benefits and Role in Treating Dyslipidemias. In: Garg, A. (eds) Dyslipidemias. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-424-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-424-1_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-423-4

  • Online ISBN: 978-1-60761-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics