Skip to main content

Fibrates: Risk Benefits and Role in Treating Dyslipidemias

  • Chapter
  • First Online:
Dyslipidemias

Abstract

There is a strong causative relationship between lipids and cardiovascular disease. The strongest body of evidence has been centered on the relationship of elevated concentrations of both total cholesterol and low-density lipoprotein (LDL) cholesterol with major cardiovascular outcomes. However, it is now widely recognized that LDL cholesterol is not the only atherogenic constituent of the lipid subfraction and that derangements in triglyceride and high-density lipoprotein (HDL) cholesterol concentrations are strong predictors for poor cardiovascular outcomes. For more than four decades, fibrates have been shown to effectively reduce triglyceride and elevate HDL-cholesterol concentrations. Fibrates are thus recommended as the primary treatment option for the management of hypertriglyceridemia and have also been suggested as an ideal pharmacotherapy aimed at reducing the residual cardiovascular risk observed in patients with mixed dyslipidemia. In spite of this, large outcome trials evaluating the effects of fibrates on major cardiovascular events have reported mixed results. In addition, although rare, reports of adverse effects, particularly when combined with statins, have limited the wider use of fibrates as lipid-lowering agents. However, recent meta-analyses, combining the outcome data from trials to date and post hoc analyses of large randomized controlled trials have reported significant cardiovascular benefits from fibrate therapy, showing risk reductions in major cardiovascular events, primarily as a consequence of a favorable effect on the risk of coronary events. In addition, recent studies have consistently reported that people with elevated triglyceride concentrations benefited the most from fibrate therapy, suggesting that while the overall risk reduction may be moderate compared to statin therapy, a substantially greater magnitude of benefit may exist in this subset of patients. These results suggest that fibrates have an important role in individualized approaches to management of patients at high risk of cardiovascular disease with mixed dyslipidemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendis S, Puska P, Norrving B, World Health Organization, World Heart Federation, World Stroke Organization. 2011. World health organization. Global atlas on cardiovascular disease prevention and control. Geneva.

    Google Scholar 

  2. LaRosa JC, He J, Vupputuri S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA. 1999;282:2340–6.

    Article  CAS  PubMed  Google Scholar 

  3. Mills EJ, Rachlis B, Wu P, et al. Primary prevention of cardiovascular mortality and events with statin treatments: a network meta-analysis involving more than 65,000 patients. J Amer Coll Cardiol. 2008;52:1769–81.

    Article  CAS  Google Scholar 

  4. Abourbih S, Filion KB, Joseph L, et al. Effect of fibrates on lipid profiles and cardiovascular outcomes: a systematic review. Amer J Med. 2009;122:e1–8.

    Article  PubMed  Google Scholar 

  5. ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74.

    Article  Google Scholar 

  6. BIP Study Group. Secondary preventiosn by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation. 2000;102:21–7.

    Article  Google Scholar 

  7. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61.

    Article  CAS  PubMed  Google Scholar 

  8. WHO Cooperative trial committee of principal investigators. A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate. Report from the Committee of Principal Investigators. Br Heart J. 1978;40:1069–118.

    Article  Google Scholar 

  9. Amend KL, Landon J, Thyagarajan V, et al. Incidence of hospitalized rhabdomyolysis with statin and fibrate use in an insured US population. Ann Pharmacother. 2011;45:1230–9.

    Article  PubMed  Google Scholar 

  10. Jun M, Foote C, Lv J, et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet. 2010;375:1875–84.

    Article  CAS  PubMed  Google Scholar 

  11. Thorp JM, Waring WS. Modification of metabolism and distribution of lipids by ethyl chlorophenoxyisobutyrate. Nature. 1962;194:948–9.

    Article  CAS  PubMed  Google Scholar 

  12. Thorp JM. Experimental evaluation of an orally active combination of androsterone with ethyl chlorophenoxy-isobutyrate. Lancet. 1962;1:1323–6.

    Article  Google Scholar 

  13. Oliver MF. Reduction of serum-lipid and uric-acid levels by an orally active androsterone. Lancet. 1962;1:1321–3.

    Article  CAS  PubMed  Google Scholar 

  14. Denborough MA, Lovell RR, Trevaks G. The effect of chlorophenoxyisobutyric acid ester with androsterone on plasma lipids in women. MJA. 1963;50:498–501.

    PubMed  Google Scholar 

  15. Hellman L, Zumoff B, Kessler G, et al. Reduction of Cholesterol and Lipids in Man by Ethyl P-Chlorophenoxyisobutyrate. Ann Intern Med. 1963;59:477–94.

    Article  CAS  PubMed  Google Scholar 

  16. Hunninghake DB, Tucker DR, Azarnoff DL. Long-term effects of clofibrate (Atromid-S) on serum lipids in man. Circulation. 1969;39:675–83.

    Article  CAS  PubMed  Google Scholar 

  17. Witztum JL. Drugs used in the treatment of hyperlipoproteinemias: In Hardman JG, Limbaird LE, Editors. Goodman & Gilman’s the pharmacological basic of therapeutics. New York: McGraw-Hill; 1996. p. 875–97.

    Google Scholar 

  18. Acheson J, Hutchinson EC. Controlled trial of clofibrate in cerebral vascular disease. Atherosclerosis. 1972;15:177–83.

    Article  CAS  PubMed  Google Scholar 

  19. Research Committee of the Scottish Society of Physicians. Ischaemic heart disease: a secondary prevention trial using clofibrate. Report by a research committee of the Scottish Society of Physicians. BMJ. 1971;4:775–84.

    Article  PubMed Central  Google Scholar 

  20. Arthur JB, Ashby DWR, Bremer C, et al. Trial of clofibrate in the treatment of ischaemic heart disease. Five-year study by a group of physicians of the Newcastle upon Tyne region. BMJ. 1971;4: 767–75.

    Article  Google Scholar 

  21. Coronary Drug Project Research Group. The coronary drug project. Findings leading to further modifications of its protocol with respect to dextrothyroxine. The coronary drug project research group. JAMA. 1972;220:996–1008.

    Article  Google Scholar 

  22. The Veterans Administration Cooperative Study Group. The treatment of cerebrovascular disease with clofibrate. Final report of the Veterans Administration Cooperative Study of Atherosclerosis, Neurology Section. Stroke. 1973;4:684–93.

    Article  Google Scholar 

  23. Schoonjans KB, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophysica Acta. 1996;1302:93–109.

    Article  CAS  Google Scholar 

  24. Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98:2088–93.

    Article  CAS  PubMed  Google Scholar 

  25. Auboeuf D, Rieusset J, Fajas L, et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes. 1997;46:1319–27.

    Article  CAS  PubMed  Google Scholar 

  26. Jones PS, Savory R, Barratt P, et al. Chromosomal localisation, inducibility, tissue-specific expression and strain differences in three murine peroxisome-proliferator-activated-receptor genes. Eur J Biochem. 1995;233:219–26.

    Article  CAS  PubMed  Google Scholar 

  27. Staels B, Koenig W, Habib A, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature. 1998;393:790–3.

    Article  CAS  PubMed  Google Scholar 

  28. Keller H, Dreyer C, Medin J, et al. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA. 1993;90:2160–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Skogsberg J, Kannisto K, Roshani L, et al. Characterization of the human peroxisome proliferator activated receptor delta gene and its expression. Int J Mol Med. 2000;6:73–81.

    CAS  PubMed  Google Scholar 

  30. Matsuura H, Adachi H, Smart RC, et al. Correlation between expression of peroxisome proliferator-activated receptor beta and squamous differentiation in epidermal and tracheobronchial epithelial cells. Mol Cell Endocrinol. 1999;147:85–92.

    Article  CAS  PubMed  Google Scholar 

  31. Westergaard M, Henningsen J, Svendsen ML, et al. Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid. J Invest Dermatol. 2001;116:702–12.

    Article  CAS  PubMed  Google Scholar 

  32. Feige JN, Gelman L, Michalik L, et al. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res. 2006;45:120–59.

    Article  CAS  PubMed  Google Scholar 

  33. Rosen ED, Sarraf P, Troy AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999;4:611–7.

    Article  CAS  PubMed  Google Scholar 

  34. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994;79:1147–56.

    Article  CAS  PubMed  Google Scholar 

  35. Kubota N, Terauchi Y, Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell. 1999;4:597–609.

    Article  CAS  PubMed  Google Scholar 

  36. Staels B, Vu-Dac N, Kosykh VA, et al. Fibrates down-regulate apolipoprotein C-III expression independent of induction of peroxisomal acyl co-enzyme A oxidase. J Clin Invest. 1995;95:705–712.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Milosavljevic D, Griglio S, Le Naour G, et al. Preferential reduction of very low density lipoprotein-1 particle number by fenofibrate in type IIB hyperlipidemia: consequences for lipid accumulation in human monocyte-derived macrophages. Atherosclerosis. 2001;155:251–60.

    Article  CAS  PubMed  Google Scholar 

  38. Fruchart JC, Brewer Jr HB, Leitersdorf E. Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Amer J Cardiol. 1998;81:912–7.

    Article  CAS  PubMed  Google Scholar 

  39. Berthou L, Staels B, Saldicco I, et al. Opposite in vitro and in vivo regulation of hepatic apolipoprotein A-I gene expression by retinoic acid. Absence of effects on apolipoprotein A-II gene expression. Arterioscler Thromb. 1994;14:1657–64.

    Article  CAS  PubMed  Google Scholar 

  40. Malmendier CL, Delcroix C. Effects of fenofibrate on high and low density lipoprotein metabolism in heterozygous familial hypercholesterolemia. Atherosclerosis. 1985;55:161–9.

    Article  CAS  PubMed  Google Scholar 

  41. Mellies MJ, Stein EA, Khoury P, et al. Effects of fenofibrate on lipids, lipoproteins, and apolipoproteins in 33 subjects with primary hypercholesterolemia. Atherosclerosis. 1987;63:57–64.

    Article  CAS  PubMed  Google Scholar 

  42. Vu-Dac N, Schoonjans K, Kosykh V, et al. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest. 1995;96:741–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Miller DB, Spence JD. Clinical pharmacokinetics of fibric acid derivatives (fibrates). Clin Pharmacokinet. 1998;34:155–62.

    Article  CAS  PubMed  Google Scholar 

  44. Abshagen U, Bablok W, Koch K, et al. Disposition pharmacokinetics of bezafibrate in man. Eur J Clin Pharmacol. 1979;16:31–8.

    Article  CAS  PubMed  Google Scholar 

  45. Najib J. Fenofibrate in the treatment of dyslipidemia: a review of the data as they relate to the new suprabioavailable tablet formulation. Clin Ther. 2002;24:2022–50.

    Article  CAS  PubMed  Google Scholar 

  46. Knauf H, Kolle EU, Mutschler E. Gemfibrozil absorption and elimination in kidney and liver disease. Klin Wochenschr. 1990;68:692–8.

    Article  CAS  PubMed  Google Scholar 

  47. Corbelli JC, Bullano MF, Willey VJ, et al. Effects of gemfibrozil conversion to fenofibrate on lipids in patients on statin therapy. Amer J Cardiol. 2002;90:1388–91.

    Article  CAS  PubMed  Google Scholar 

  48. Packard KA, Backes JM, Lenz TL, et al. Comparison of gemfibrozil and fenofibrate in patients with dyslipidemic coronary heart disease. Pharmacotherapy. 2002;22:1527–32.

    Article  PubMed  Google Scholar 

  49. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317:1237–45.

    Article  CAS  PubMed  Google Scholar 

  50. ACCORD Study Group and ACCORD Eye Study Group. Effects of medical therapies in retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363:233–44.

    Article  Google Scholar 

  51. Keech, AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370:1687–97.

    Article  CAS  PubMed  Google Scholar 

  52. DAIS Investigators. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001;357:905–10.

    Article  Google Scholar 

  53. Elkeles RS, Diamond JR, Poulter C, et al. Cardiovascular outcomes in type 2 diabetes. A double-blind placebo-controlled study of bezafibrate: the St. Mary’s, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes Care. 1998;21:641–8.

    Article  CAS  PubMed  Google Scholar 

  54. Fox CS, Larson MG, Leip EP, et al. Predictors of new-onset kidney disease in a community-based population. JAMA 2004;291:844–50.

    Article  CAS  PubMed  Google Scholar 

  55. Kidney Disease Outcomes Quality Initiative (K/DOQI) Group. K/DOQI clinical practice guidelines for managing dyslipidemia in chronic kidney disease. Am J Kidney Dis. 2003;41:S1–237.

    Google Scholar 

  56. Tonelli M, Collins D, Robins S, et al. Gemfibrozil for secondary prevention of cardiovascular events in mild to moderate chronic renal insufficiency. Kidney Int. 2004;66:1123–30.

    Article  CAS  PubMed  Google Scholar 

  57. Ting RD, Keech AC, Drury PL, et al. Benefits and safety of long-term fenofibrate therapy in people with type 2 diabetes and renal impairment: the FIELD Study. Diabetes Care. 2012;35:218–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Jun M, Zhu B, Tonelli M, et al. Effects of fibrates in kidney disease. A systematic review and meta-analysis. J Am Coll Cardiol. 2012;60:2061–71.

    Article  CAS  PubMed  Google Scholar 

  59. Davis TM, Ting R, Best JD, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia. 2010;54:280–90.

    Article  PubMed  Google Scholar 

  60. Mychaleckyj JC, Craven T, Nayak U, et al. Reversibility of fenofibrate therapy-induced renal function impairment in ACCORD type 2 diabetic participants. Diabetes Care. 2012;35:1008–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285:2486–2497.

    Article  Google Scholar 

  62. Wierzbicki AS, Mikhailidis DP, Wray R, et al. Statin-fibrate combination: therapy for hyperlipidemia: a review. Curr Med Res Opin. 2003;19:155–168.

    Article  CAS  PubMed  Google Scholar 

  63. Lipscombe J, Lewis GF, Cattran D, et al. Deterioration in renal function associated with fibrate therapy. Clin Nephrol. 2001;55:39–44.

    CAS  PubMed  Google Scholar 

  64. Tonelli M, Collins D, Robins S, et al. Effect of gemfibrozil on change in renal function in men with moderate chronic renal insufficiency and coronary disease. Am J Kidney Dis. 2004;44:832–9.

    Article  CAS  PubMed  Google Scholar 

  65. Broeders N, Knoop C, Antoine M, et al. Fibrate-induced increase in blood urea and creatinine: is gemfibrozil the only innocuous agent? Nephrol Dial Transplant. 2000;15:1993–9.

    Article  CAS  PubMed  Google Scholar 

  66. Charach G, Grosskopf I, Rotmensch HH, et al. Bezafibrates cause moderate, reversible impairment in renal function in patients without prior renal disease. Nephron Clin Pract. 2005;100:c120–5.

    Article  CAS  PubMed  Google Scholar 

  67. Rizos E, Bairaktari E, Ganotakis E, et al. Effect of ciprofibrate on lipoproteins, fibrinogen, renal function, and hepatic enzymes. J Cardiovasc Pharmacol Ther. 2002;7:219–26.

    Article  CAS  PubMed  Google Scholar 

  68. Ansquer JC, Dalton RN, Causse E, et al. Effect of fenofibrate on kidney function: a 6-week randomized crossover trial in healthy people. Am J Kidney Dis. 2008;51:904–13.

    Article  CAS  PubMed  Google Scholar 

  69. Ansquer JC, Foucher C, Rattier S, et al. Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study (DAIS). Am J Kidney Dis. 2005;45:485–93.

    Article  CAS  PubMed  Google Scholar 

  70. Hottelart C, el Esper N, Achard JM, et al. Fenofibrate increases blood creatinine, but does not change the glomerular filtration rate in patients with mild renal insufficiency. Nephrologie. 1999;20:41–4.

    CAS  PubMed  Google Scholar 

  71. Hottelart C, el Esper N, Rose F, et al. Fenofibrate increases creatininemia by increasing metabolic production of creatinine. Nephron. 2002;92:536–41.

    Article  CAS  PubMed  Google Scholar 

  72. Chen YL, Hsu CY, Huang WC, et al. Fenofibrate reversibly increases serum creatinine level in chronic kidney disease patients by reducing glomerular filtration rate. Acta Nephrol. 2011;25:1–4.

    Google Scholar 

  73. Gaist D, Rodriguez LA, Huerta C, et al. Lipid-lowering drugs and risk of myopathy: a population-based follow-up study. Epidemiology. 2001;12:565–9.

    Article  CAS  PubMed  Google Scholar 

  74. Graham DJ, Staffa JA, Shatin D, et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA. 2004;292:2585–90.

    Article  CAS  PubMed  Google Scholar 

  75. Pierce LR, Wysowski DK, Gross TP. Myopathy and rhabdomyolysis associated with lovastatin-gemfibrozil combination therapy. JAMA. 1990;264:71–5.

    Article  CAS  PubMed  Google Scholar 

  76. Jones PH, Davidson MHl. Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any statin. Amer J Cardiol. 2005;95:120–2.

    Article  CAS  PubMed  Google Scholar 

  77. de Lorgeril M, Salen P, Paillard F, et al. Lipid-lowering drugs and homocysteine. Lancet. 1999;353:209–10.

    Article  CAS  PubMed  Google Scholar 

  78. Dierkes J, Westphal S, Luley C. Serum homocysteine increases after therapy with fenofibrate or bezafibrate. Lancet. 1999;354:219–20.

    Article  CAS  PubMed  Google Scholar 

  79. Mayer O Jr, Simon J, Holubec L, et al. Fibrate treatment and prevalence risk of mild hyperhomocysteinaemia in clinical coronary heart disease patients. Eur J Cardiovasc Prev Rehabil. 2004;11:244–9.

    Article  PubMed  Google Scholar 

  80. Westphal S, Dierkes J, Luley C. Effects of fenofibrate and gemfibrozil on plasma homocysteine. Lancet. 2001;358:39–40.

    Article  CAS  PubMed  Google Scholar 

  81. Boushey CJ, Beresford SA, Omenn GS, et al. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA. 1995;274:1049–57.

    Article  CAS  PubMed  Google Scholar 

  82. Eikelboom JW, Lonn E, Genest Jr J, et al. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med. 1999;131:363–75.

    Article  CAS  PubMed  Google Scholar 

  83. Bissonnette R, Treacy E, Rozen R, et al. Fenofibrate raises plasma homocysteine levels in the fasted and fed states. Atherosclerosis. 2001;155:455–62.

    Article  CAS  PubMed  Google Scholar 

  84. Genest J, Frohlich J, Steiner G. Effect of fenofibrate-mediated increase in plasma homocysteine on the progression of coronary artery disease in type 2 diabetes mellitus. Amer J Cardiol. 2004;93:848–53.

    Article  CAS  PubMed  Google Scholar 

  85. Giral P, Bruckert E, Jacob N, et al. Homocysteine and lipid lowering agents. A comparison between atorvastatin and fenofibrate in patients with mixed hyperlipidemia. Atherosclerosis. 2001;154:421–7.

    Article  CAS  PubMed  Google Scholar 

  86. Landray MJ, Townend JN, Martin S, et al. Lipid-lowering drugs and homocysteine. Lancet. 1999;353:1974–5.

    Article  CAS  PubMed  Google Scholar 

  87. Jonkers IJ, de Man FH, Onkenhout W, et al. Implication of fibrate therapy for homocysteine. Lancet. 1999;354:1208.

    Article  CAS  PubMed  Google Scholar 

  88. Syvanne M, Whittall RA, Turpeinen U, et al. Serum homocysteine concentrations, gemfibrozil treatment, and progression of coronary atherosclerosis. Atherosclerosis. 2004;172:267–72.

    Article  CAS  PubMed  Google Scholar 

  89. Frick MH, Syvanne M, Nieminen MS, et al. Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Lopid Coronary Angiography Trial (LOCAT) Study Group. Circulation. 1997;96: 2137–43.

    Article  CAS  PubMed  Google Scholar 

  90. Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999;341:410–8.

    Article  CAS  PubMed  Google Scholar 

  91. Caroli-Bosc FX, Le Gall P, Pugliese P, et al. Role of fibrates and HMG-CoA reductase inhibitors in gallstone formation: epidemiological study in an unselected population. Dig Dis Sci. 2001;46:540–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jun PhD, MScMed(ClinEpi), Msc, BSc(Hons) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Humana Press

About this chapter

Cite this chapter

Jun, M., Perkovic, V. (2015). Fibrates: Risk Benefits and Role in Treating Dyslipidemias. In: Garg, A. (eds) Dyslipidemias. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-424-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-424-1_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-423-4

  • Online ISBN: 978-1-60761-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics