Skip to main content

Novel Genes for Dyslipidemias: Genome-Wide Association Studies

  • Chapter
  • First Online:
  • 2194 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Much of our existing knowledge of lipoprotein metabolism has emerged from the identification of genes responsible for monogenic dyslipidemias; however, many patients with abnormal blood lipid concentrations likely have polygenic disease that reflects the actions of many genes in tandem. Here, we review recent progress in unraveling the genetic basis of polygenic dyslipidemias. Genome-wide association studies (GWAS) have identified several dozen novel genetic loci related to blood lipid concentrations. Functional exploration of these loci has revealed novel functions of the genes SORT1, TRIB1, and GALNT2 in lipoprotein metabolism. A key challenge now is to build on these preliminary studies and develop a molecular understanding of how the many novel GWAS loci contribute to dyslipidemias.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–6.

    Article  CAS  PubMed  Google Scholar 

  2. Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PR, Orho-Melander M, et al. The P446 L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet. 2009;18(21):4081–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Orho-Melander M, Melander O, Guiducci C, Perez-Martinez P, Corella D, Roos C, et al. Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes. 2008;57(11):3112–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40(2):189–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  6. Kooner JS, Chambers JC, Aguilar-Salinas CA, Hinds DA, Hyde CL, Warnes GR, et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet. 2008;40(2):149–51.

    Article  CAS  PubMed  Google Scholar 

  7. Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K, Zhao JH, et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet. 2008;371(9611):483–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008;82(1):139–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, et al. 2009. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet. 2009;41(1):35–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP, et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet. 2009;41(1):47–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41(1):56–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical, and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Myocardial Infarction Genetics Consortium, Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41(3):334–41.

    Google Scholar 

  14. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM, Madsen P, et al. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab. 2010;12(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  16. Strong A, Ding Q, Edmondson AC, Millar JS, Sachs KV, Li X, et al. Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. J Clin Invest. 2012;122(8):2807–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Burkhardt R, Toh SA, Lagor WR, Birkeland A, Levin M, Li X, et al. Trib1 is a lipid- and myocardial infarction-associated gene that regulates hepatic lipogenesis and VLDL production in mice. J Clin Invest. 2010;120(12):4410–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Holleboom AG, Karlsson H, Lin RS, Beres TM, Sierts JA, Herman DS, et al. Heterozygosity for a loss-of-function mutation in GALNT2 improves plasma triglyceride clearance in man. Cell Metab. 2011;14(6):811–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Musunuru MD,PhD,MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Humana Press

About this chapter

Cite this chapter

Musunuru, K. (2015). Novel Genes for Dyslipidemias: Genome-Wide Association Studies. In: Garg, A. (eds) Dyslipidemias. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-424-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-424-1_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-423-4

  • Online ISBN: 978-1-60761-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics