Skip to main content

Lipoprotein Physiology

  • Chapter
  • First Online:
Dyslipidemias

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Lipoproteins are macromolecular complexes composed of lipids and proteins. They exist to transport hydrophobic lipids and proteins within the circulation. A key function of the apolipoprotein B-containing lipoproteins is the transport of energy in the form of esterified fatty acids (in triglycerides (TGs)) to tissues that utilize them or store them. Intestinally derived chylomicrons deliver dietary fat to the periphery, whereas liver-derived very low density lipoproteins (VLDL) deliver endogenous fat (fatty acids transported to liver from adipose or newly synthesized in liver) to the periphery. Lipolysis of TGs in the periphery is mediated by the key enzyme lipoprotein lipase (LPL). Low-density lipoproteins (LDL) are by-products of VLDL metabolism and are the major cholesterol-carrying lipoprotein in plasma. LDLs are taken up by the liver by the LDL receptor and other receptors. High-density lipoproteins (HDL) mediate the transport of cholesterol from the periphery back to the liver for excretion. Normal lipoprotein metabolism is essential for health, and a variety of inherited and acquired disorders disrupt normal lipoprotein metabolism and cause dyslipidemia and other consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hussain MM. Intestinal lipid absorption and lipoprotein formation. Curr Opin Lipidol. 2014;25:200–6.

    Article  CAS  PubMed  Google Scholar 

  2. Wang LJ, Song BL. Niemann-Pick C1-like 1 and cholesterol uptake. Biochim Biophys Acta. 2012;1821:964–72.

    Article  CAS  PubMed  Google Scholar 

  3. Liu Q, Siloto RM, Lehner R, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res. 2012;51:350–77.

    Article  CAS  PubMed  Google Scholar 

  4. Chang TY, Li BL, Chang CC, Urano Y. Acyl-coenzyme A: cholesterol acyltransferases. Am J Physiol Endocrinol Metab. 2009;297:E1–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hussain MM, Rava P, Walsh M, Rana M, Iqbal J. Multiple functions of microsomal triglyceride transfer protein. Nutr Metab (Lond). 2012;9:14.

    Article  CAS  Google Scholar 

  6. Fryer LG, Jones B, Duncan EJ, Hutchison CE, Ozkan T, Williams PA, Alder O, Nieuwdorp M, Townley AK, Mensenkamp AR. The endoplasmic reticulum coat protein II transport machinery coordinates cellular lipid secretion and cholesterol biosynthesis. J Biol Chem. 2014;289:4244–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol Rev. 2012;92:1061–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Xiao C, Dash S, Morgantini C, Lewis GF. New and emerging regulators of intestinal lipoprotein secretion. Atherosclerosis. 2014;233:608–15.

    Article  CAS  PubMed  Google Scholar 

  9. Beigneux AP, Weinstein MM, Davies BS, Gin P, Bensadoun A, Fong LG, Young SG. GPIHBP1 and lipolysis: an update. Curr Opin Lipidol. 2009;20:211–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Johansen CT, Hegele RA. The complex genetic basis of plasma triglycerides. Curr Atheroscler Rep. 2012;14:227–34.

    Article  CAS  PubMed  Google Scholar 

  11. Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta. 2014;1841:919–33.

    Article  CAS  PubMed  Google Scholar 

  12. Sharma V, Forte TM, Ryan RO. Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol. Curr Opin Lipidol. 2013;24:153–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res. 2011;52:189–206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chan DC, Pang J, Romic G, Watts GF. Postprandial hypertriglyceridemia and cardiovascular disease: current and future therapies. Curr Atheroscler Rep. 2013;15:309.

    Article  CAS  PubMed  Google Scholar 

  15. Bishop JR, Stanford KI, Esko JD. Heparan sulfate proteoglycans and triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol. 2008;19:307–13.

    Article  CAS  PubMed  Google Scholar 

  16. Reiner Z, Guardamagna O, Nair D, Soran H, Hovingh K, Bertolini S, Jones S, Coric M, Calandra S, Hamilton J, et al. Lysosomal acid lipase deficiency—an under-recognized cause of dyslipidaemia and liver dysfunction. Atherosclerosis. 2014;235:21–30.

    Article  CAS  PubMed  Google Scholar 

  17. Sundaram M, Yao Z. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr Metab (Lond). 2010;7:35.

    Article  Google Scholar 

  18. Young SG, Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 2013;27:459–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N. De novo lipogenesis in health and disease. Metabolism. 2014;63(7):895–902.

    Article  CAS  PubMed  Google Scholar 

  20. Welty FK. Hypobetalipoproteinemia and abetalipoproteinemia. Curr Opin Lipidol. 2014;25:161–68

    Article  CAS  PubMed  Google Scholar 

  21. van Greevenbroek MM, Stalenhoef AF, de Graaf J, Brouwers MC. Familial combined hyperlipidemia: from molecular insights to tailored therapy. Curr Opin Lipidol. 2014;25:176–82.

    Article  PubMed  Google Scholar 

  22. Brown MS, Goldstein JL. Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J Lipid Res. 2009;50 Suppl:15–27.

    Article  Google Scholar 

  23. Zhang L, Reue K, Fong LG, Young SG, Tontonoz P. Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis. Arterioscler Thromb Vasc Biol. 2012;32:2541–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res. 2009;50 Suppl:172–7.

    Google Scholar 

  25. Rosenson RS, Brewer HB Jr., Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125:1905–19.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Pays E, Vanhollebeke B. Human innate immunity against African trypanosomes. Curr Opin Immunol. 2009;21:493–8.

    Article  CAS  PubMed  Google Scholar 

  27. Heinecke JW. The protein cargo of HDL: implications for vascular wall biology and therapeutics. J Clin Lipidol. 2010;4:371–5.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006;116:3090–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lee JY, Parks JS. ATP-binding cassette transporter AI and its role in HDL formation. Curr Opin Lipidol. 2005;16:19–25.

    Article  PubMed  Google Scholar 

  30. Jiang XC, Jin W, Hussain MM. The impact of phospholipid transfer protein (PLTP) on lipoprotein metabolism. Nutr Metab (Lond). 2012;9:75.

    Article  CAS  Google Scholar 

  31. Rousset X, Vaisman B, Amar M, Sethi AA, Remaley AT. Lecithin: cholesterol acyltransferase—from biochemistry to role in cardiovascular disease. Curr Opin Endocrinol Diabetes Obes. 2009;16:163–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Schwartz CC, VandenBroek JM, Cooper PS. Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J Lipid Res. 2004;45:1594–607.

    Article  CAS  PubMed  Google Scholar 

  33. Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005;96:1221–32.

    Article  CAS  PubMed  Google Scholar 

  34. Yasuda T, Ishida T, Rader DJ. Update on the role of endothelial lipase in high-density lipoprotein metabolism, reverse cholesterol transport, and atherosclerosis. Circ J. 2010;74:2263–70.

    Article  CAS  PubMed  Google Scholar 

  35. Shen WJ, Hu J, Hu Z, Kraemer FB, Azhar S. Scavenger receptor class B type I (SR-BI): a versatile receptor with multiple functions and actions. Metabolism. 2014; 63(7):875–86

    Article  CAS  PubMed  Google Scholar 

  36. Barth JL, Argraves WS. Cubilin and megalin: partners in lipoprotein and vitamin metabolism. Trends Cardiovasc Med. 2001;11:26–31.

    Article  CAS  PubMed  Google Scholar 

  37. Westerterp M, Bochem AE, Yvan-Charvet L, Murphy AJ, Wang N, Tall AR. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ Res. 2014;114:157–70.

    Article  CAS  PubMed  Google Scholar 

  38. Fernandez-Hernando C, Moore KJ. MicroRNA modulation of cholesterol homeostasis. Arterioscler Thromb Vasc Biol. 2011;31:2378–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2009;50 Suppl:S189–94.

    Google Scholar 

  40. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Rader DJ, Tall AR. The not-so-simple HDL story: Is it time to revise the HDL cholesterol hypothesis? Nat Med. 2012;18:1344–6.

    Article  CAS  PubMed  Google Scholar 

  42. Luscher TF, Landmesser U, von Eckardstein A, Fogelman AM. High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target. Circ Res. 2014;114:171–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Rader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Humana Press

About this chapter

Cite this chapter

Rader, D., Khetarpal, S. (2015). Lipoprotein Physiology. In: Garg, A. (eds) Dyslipidemias. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-424-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-424-1_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-423-4

  • Online ISBN: 978-1-60761-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics