Skip to main content

Diagnosis and Treatment of Dyslipoproteinemias in Children and Adolescents

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

This chapter is intended to be a resource for pediatric endocrinologists and other physicians and health care providers on the clinical and genetic presentation, diagnosis, and treatment of disorders of hyperlipoproteinemia and hypolipoproteinemia. The major long-term goal in children and young adults with atherogenic dyslipoproteinemias is to prevent the development of the early lesions of subclinical atherosclerosis and future cardiovascular disease (CVD). In youths with profound abnormalities in triglyceride metabolism, the focus of treatment is to prevent pancreatitis. Those with rare disorders of hypolipoproteinemia may require treatment beyond standard dietary and drug interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kwiterovich PO. Lipid, apolipoprotein, and lipoprotein metabolism: implications for the diagnosis and treatment of dyslipidemia. In: Kwiterovich PO, editor. The Johns Hopkins textbook of dyslipidemia. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkens; 2010. p. 1–22.

    Google Scholar 

  2. Hussain MM, Fatma S, Pan X, Iqbal J. Intestinal lipoprotein assembly. Curr Opin Lipidol. 2005;16:281–5.

    Article  PubMed  CAS  Google Scholar 

  3. Mahley RW, Huang Y. Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing. J Clin Invest. 2007;117:94–8.

    Article  PubMed  CAS  Google Scholar 

  4. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–8.

    Article  PubMed  CAS  Google Scholar 

  5. Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest. 2003;111:1795–803.

    PubMed  CAS  Google Scholar 

  6. Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci. 2007;32:71–7.

    Article  PubMed  CAS  Google Scholar 

  7. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109:1125–31.

    PubMed  CAS  Google Scholar 

  8. Kita T, Kume N, Minami M, et al. Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci. 2001;947:199–205.

    Article  PubMed  CAS  Google Scholar 

  9. Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006;116:3090–100.

    Article  PubMed  CAS  Google Scholar 

  10. Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 2008;7:365–75.

    Article  PubMed  CAS  Google Scholar 

  11. Kocher O, Krieger M. Role of the adapter protein PDZK1 in controlling the HDL receptor SR-B1. Curr Opin Lipidol. 2009;20:236–41.

    Article  PubMed  CAS  Google Scholar 

  12. National Cholesterol Education Program. Report of the expert panel on blood cholesterol levels in children and adolescents. Pediatrics. 1992;89(Suppl):525–84.

    Google Scholar 

  13. Srinivasan SR, Myers L, Berenson GS. Distribution and correlates of non-high-density lipoprotein cholesterol in children: the Bogalusa Heart Study. Pediatrics. 2002;110:e29.

    Article  PubMed  Google Scholar 

  14. Bachorik PS, Lovejoy KL, Carroll MD, Johnson CL. Apolipoprotein B and AI distributions in the United States. 1988–1991: results of the National Health and Nutrition Examination Survey III (NHANES III). Clin Chem. 1997;43:2364–78.

    PubMed  CAS  Google Scholar 

  15. Hegele RA. Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet. 2009;10:109–21.

    Article  PubMed  CAS  Google Scholar 

  16. Rouis M, Dugi KA, Previato L, et al. Therapeutic response to medium-chain TG and omega-3 fatty acids in a patient with the familial chylomicronemia syndrome. Arterioscler Thromb Vasc Biol. 1997;17:1400–6.

    Article  PubMed  CAS  Google Scholar 

  17. Kwiterovich Jr PO. Clinical relevance of the biochemical, metabolic and genetic factors that influence low density lipoprotein heterogeneity. Am J Cardiol. 2002;90(Suppl 8A):30i–48.

    Article  PubMed  CAS  Google Scholar 

  18. Millar JS, Packard CJ. Heterogeneity of apolipoprotein B-100-containing lipoproteins: what we have learnt from kinetic studies. Curr Opin Lipidol. 1998;9:197–202.

    Article  PubMed  CAS  Google Scholar 

  19. Maslowska M, Wang HW, Cianflone K. Novel roles for acylation stimulatory protein/C3a desArg: a review of recent in vitro and in vivo evidence. Vitam Horm. 2005;70:309–32.

    Article  PubMed  CAS  Google Scholar 

  20. Kalant D, Maclaren R, Cui W, et al. C5L2 is a functional receptor for acylation stimulatory protein. J Biol Chem. 2005;280:23936–44.

    Article  PubMed  CAS  Google Scholar 

  21. Motevalli M, Goldschmidt-Clermont PJ, Virgil D, Kwiterovich Jr PO. Abnormal protein tyrosine phosphorylation in fibroblasts from hyperapoB subjects. J Biol Chem. 1997;272:24703–9.

    Article  PubMed  CAS  Google Scholar 

  22. Lee JC, Lusis AJ, Pajukanta P. Familial combined hyperlipidemia: upstream transcription factor 1 and beyond. Curr Opin Lipidol. 2006;17:101–9.

    Article  PubMed  CAS  Google Scholar 

  23. Wolman M. Wolman disease and its treatment. Clin Pediatr. 1995;34:207–12.

    Article  CAS  Google Scholar 

  24. Beaudet AL, Ferry GD, Nichols BL, Rosenberg HS. Cholesterol ester storage disease: clinical, biochemical, and pathological studies. J Pediatr. 1977;90:910–91.

    Article  PubMed  CAS  Google Scholar 

  25. Stein J, Garty BZ, Dror Y, et al. Successful treatment of Wolman disease by unrelated umbilical cord blood transplantation. Eur J Pediatr. 2007;166:663–6.

    Article  PubMed  Google Scholar 

  26. Tolar J, Petryk A, Khan K, et al. Long-term metabolic, endocrine, and neuropsychological outcome of hematopoietic cell transplantation for Wolman disease. Bone Marrow Transplant. 2009;43:21–7.

    Article  PubMed  CAS  Google Scholar 

  27. Kwiterovich Jr PO, Fredrickson DS, Levy RI. Familial hypercholesterolemia (one form of familial type II hyperlipoproteinemia): a study of its biochemical, genetic and clinical presentation in childhood. J Clin Invest. 1974;53:1237–49.

    Article  PubMed  Google Scholar 

  28. Innerarity TL, Mahley RW, Weisgraber KH, et al. Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res. 1990;31:1337–49.

    PubMed  CAS  Google Scholar 

  29. Salen G, von Bergmann K, Lutjohann D, the Multicenter Sitosterolemia Study Group. Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation. 2004;109:766–71.

    Article  CAS  Google Scholar 

  30. Pullinger CR, Eng C, Salen G, et al. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest. 2002;110:109–25.

    PubMed  CAS  Google Scholar 

  31. Mahley RW, Huang Y, Rall Jr SC. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). J Lipid Res. 1999;40:1933–49.

    PubMed  CAS  Google Scholar 

  32. Hegele RA, Little JA, Vezina C. Hepatic lipase deficiency: clinical biochemical and molecular genetic characteristics. Arterioscler Thromb. 1993;13:720–8.

    Article  PubMed  CAS  Google Scholar 

  33. Zamel R, Khan R, Pollex RL, Hegele RA. Abetalipoproteinemia: two case reports and literature review. Orphanet J Rare Dis. 2008;3:19.

    Article  PubMed  Google Scholar 

  34. Schonfeld G, Lin X, Yue P. Familial hypobetalipoproteinemia: genetics and metabolism. Cell Mol Life Sci. 2005;62:1372–8.

    Article  PubMed  CAS  Google Scholar 

  35. Musunuru K, Pirrucello JP, Do R, et al. Exome sequencing, ANGPTL 3 mutations, and familial combined hypolipidemia. N Eng J Med. 2010;363:2220–7.

    Article  CAS  Google Scholar 

  36. Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Eng J Med. 2006;354:1264.

    Article  CAS  Google Scholar 

  37. Vongsuvanh R, Hooper AJ, Coakley JC, et al. Novel mutations in abetalipoproteinemia and homozygous familial hypobetalipoproteinemia. J Inherit Metab Dis. 2007;30:990.

    Article  PubMed  CAS  Google Scholar 

  38. Bouma ME, Beucler P, Aggerbeck Infante LP, Schmitz J. Hypobetalipoproteinemia with accumulation of an apoB like protein in intestinal cells: immunoenzymatic and biochemical characterization of seven cases of Anderson’s disease. J Clin Invest. 1986;78:398–410.

    Article  PubMed  CAS  Google Scholar 

  39. Peretti N, Sassolas A, Roy CC, et al. Guidelines for the diagnosis and treatment of chylomicron retention disease based on the review of the literature and the experience of two centers. Orphanet J Rare Dis. 2010;5:24–34.

    Article  PubMed  Google Scholar 

  40. Cohen JC, Kiss RS, Pertsemlidis A, et al. Multiple rare alleles contribute to low plasma levels of HDL-C. Science. 2004;305:869–72.

    Article  PubMed  CAS  Google Scholar 

  41. Brewer HB, Remaley AT, Neufeld EB, et al. Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arterioscler Thromb Vasc Biol. 2004;24:1755–60.

    Article  PubMed  CAS  Google Scholar 

  42. Calabresi L, Pisciotta L, Costantin A. The molecular basis of lecithin: cholesterol acyltransferase deficiency syndromes. A comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arterioscler Thromb Vasc Biol. 2005;25:1972–8.

    Article  PubMed  CAS  Google Scholar 

  43. Zhong S, Sharp DS, Grove JS, et al. Increased coronary heart disease in Japanese-American men with mutations in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest. 1996;97:2917–23.

    Article  PubMed  CAS  Google Scholar 

  44. Ikewaki K, Nishiwaki M, Sakamoto T, et al. Increased catabolic rate of low density lipoproteins in humans with cholesteryl ester transfer protein deficiency. J Clin Invest. 1995;96:1573–81.

    Article  PubMed  CAS  Google Scholar 

  45. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    Article  PubMed  CAS  Google Scholar 

  46. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996;271:518–20.

    Article  PubMed  CAS  Google Scholar 

  47. Swarnakar S, Temel RE, Connelly MA, Azhar S, Williams DL. Scavenger receptor class B, type I, mediates selective uptake of low density lipoprotein cholesteryl ester. J Biol Chem. 1999;274:29733–9.

    Article  PubMed  CAS  Google Scholar 

  48. Rigotti A, Edelman ER, Seifert P, et al. Regulation by adrenocorticopic hormone of the in vivo expression of scavenger receptor class B type I (SR-BI), a high density lipoprotein receptor, in steroidogenic cells of the murine adrenal gland. J Biol Chem. 1996;271:33545–9.

    Article  PubMed  CAS  Google Scholar 

  49. West M, Greason E, Kolmakova A, et al. Scavenger receptor class B type I protein as an independent predictor of HDL cholesterol levels in subjects with hyperalphalipoproteinemia. J Clin Endocrinol Metab. 2009;4:1451–7.

    Article  CAS  Google Scholar 

  50. Naj AC, West M, Rich SS, et al. Association of scavenger receptor class B type I polymorphisms with subclinical atherosclerosis: Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Genet. 2010;3:47–52.

    Article  PubMed  CAS  Google Scholar 

  51. Edmondson AC, Brown RJ, Kathitesan S, et al. Loss-of-function variants in endothelial lipases are a cause of elevated HDL-C in human. J Clin Invest. 2009;119:1042–50.

    PubMed  CAS  Google Scholar 

  52. Koschinsky ML. Novel insights into Lp (a) physiology and pathogenicity. Cardiovasc Hematol Disord Drug Targets. 2006;6:267–78.

    Article  PubMed  CAS  Google Scholar 

  53. Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp (a) lipoprotein level and coronary disease. N Engl J Med. 2009;361:2518–28.

    Article  PubMed  CAS  Google Scholar 

  54. Haney EM, Huffman LH, Bougatsos C, et al. Screening and treatment for lipid disorders in children and adolescents: systematic evidence review for the US Preventive Services Task Force. Pediatrics. 2007;120:e189–214.

    Article  PubMed  Google Scholar 

  55. McGill Jr HC, McMahan CA, Zieske AW, et al. Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 2000;20:1998–2004.

    Article  PubMed  Google Scholar 

  56. Srinivasan SR, Frontini MG, Xu J, Berenson GS. Utility of childhood non-high-density lipoprotein cholesterol levels in predicting adult dyslipidemia and other cardiovascular risks: the Bogalusa Heart Study. Pediatrics. 2006;118:201–6.

    Article  PubMed  Google Scholar 

  57. Mudd JO, Borlaug BA, Johnston PV, et al. Beyond low-density lipoprotein cholesterol: defining the role of low-density lipoprotein heterogeneity in coronary artery disease. J Am Coll Cardiol. 2007;50:1735–41.

    Article  PubMed  CAS  Google Scholar 

  58. Sniderman AD, Teng B, Genest J, Cianflone K, Wacholder S, Kwiterovich Jr PO. Familial aggregation and early expression of hyperapobetalipoproteinemia. Am J Cardiol. 1985;55:291–5.

    Article  PubMed  CAS  Google Scholar 

  59. Freedman DS, Srinivasan SR, Shear CL, Franklin FA, Webber LS, Berenson GS. The relation of apolipoproteins A-I and B in children to parental myocardial infarction. N Engl J Med. 1986;315:721–6.

    Article  PubMed  CAS  Google Scholar 

  60. ter Avest E, Sniderman AD, Bredie SJH, Wiegman A, Stalenhoef AFH, de Graaf J. Effect of aging and obesity on the expression of dyslipidaemia in children from families with familial combined hyperlipidemia. Clin Sci. 2007;112:131–9.

    Article  PubMed  CAS  Google Scholar 

  61. Freedman DS, Bowman BA, Otvos JD, Srinivasan SR, Berenson GS. Levels and correlates of LDL and VLDL particle sizes among children: the Bogalusa Heart Study. Atherosclerosis. 2000;152:441–9.

    Article  PubMed  CAS  Google Scholar 

  62. Freedman DS, Bowman BA, Otvos JD, Srinivasan SR, Berenson GS. Differences in the relation of obesity to serum triacylglycerol and VLDL subclass concentrations between black and white children: the Bogalusa Heart Study. Am J Clin Nutr. 2002;75:827–33.

    PubMed  CAS  Google Scholar 

  63. Cali AM, Zern TL, Taksali SE, et al. Intrahepatic fat accumulation and alterations in lipoprotein composition in obese adolescents: a perfect proatherogenic state. Diabetes Care. 2007;30:3093–8.

    Article  PubMed  CAS  Google Scholar 

  64. Tzou WS, Douglas PS, Srinivasan SR, Chen W, Berenson G, Stein JH. Advanced lipoprotein testing does not improve identification of subclinical atherosclerosis in young adults: the Bogalusa Heart Study. Ann Intern Med. 2005;142:742–50.

    PubMed  Google Scholar 

  65. Kwiterovich Jr PO, Levy RI, Fredrickson DS. Neonatal diagnosis of familial type-II hyperlipoproteinaemia. Lancet. 1973;1:118–21.

    Article  PubMed  Google Scholar 

  66. Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch Pediatr Adolesc Med. 2003;157:821–7.

    Article  PubMed  Google Scholar 

  67. Janssen I, Katzmarzyk PT, Srinivasan SR, et al. Combined influence of body mass index and waist circumference on coronary artery disease risk factors among children and adolescents. Pediatrics. 2005;115:1623–30.

    Article  PubMed  Google Scholar 

  68. Weiss R, Dziura J, Burgert TS, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350:2362–74.

    Article  PubMed  CAS  Google Scholar 

  69. Janssen I, Katzmarzyk PT, Srinivasan SR, et al. Utility of childhood BMI in the prediction of adulthood disease: comparison of national and international references. Obes Res. 2005;13:1106–15.

    Article  PubMed  Google Scholar 

  70. Chen W, Srinivasan SR, Li S, Xu J, Berenson GS. Clustering of long-term trends in metabolic syndrome variables from childhood to adulthood in Blacks and Whites: the Bogalusa Heart Study. Am J Epidemiol. 2007;166:527–33.

    Article  PubMed  Google Scholar 

  71. Morrison JA, Friedman LA, Wang P, Glueck CJ. Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J Pediatr. 2008;152:201–6.

    Article  PubMed  CAS  Google Scholar 

  72. Morrison JA, Friedman LA, Gray-McGuire C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: the Princeton Lipid Research Clinics Follow-up Study. Pediatrics. 2007;120:340–5.

    Article  PubMed  Google Scholar 

  73. Troiano RP, Flegal KM. Overweight children and adolescents: description, epidemiology and demographics. Pediatrics. 1998;101:497–504.

    PubMed  CAS  Google Scholar 

  74. Li S, Chen W, Srinivasan SR, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA. 2003;290:2271–6.

    Article  PubMed  CAS  Google Scholar 

  75. Urbina EM, Kieltkya L, Tsai J, Srinivasan SR, Berenson GS. Impact of multiple cardiovascular disease risk factors on brachial artery distensibility in young adults: the Bogalusa Heart Study. Am J Hypertens. 2005;18:767–71.

    Article  PubMed  Google Scholar 

  76. Alemzadh R, Langley G, D’Angelo L, Smith P, Holshouser S. Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metabolism. 2001;50:1457–61.

    Article  Google Scholar 

  77. Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics. 2001;107:1–7.

    Article  Google Scholar 

  78. Kaitosaari T, Raitakari O, et al. Effect of 7-year infancy onset dietary intervention on serum lipoproteins and lipoprotein subclasses in healthy children in the prospective, randomized Special Turku Coronary Risk Factor Intervention Project for Children (STRIP) study. Circulation. 2003;108:672–7.

    Article  PubMed  CAS  Google Scholar 

  79. Rask-Nissilä L, Jokinen E, Terho P, et al. Neurological development of 5-year-old children receiving a low-saturated fat, low-cholesterol diet since infancy: a randomized controlled trial. JAMA. 2000;284:993–1000.

    Article  PubMed  Google Scholar 

  80. Raitakari OT, Rönnemaa T, Järvisalo MJ, et al. Endothelial function in healthy 11-year-old children after dietary intervention with onset in infancy: the Special Turku Coronary Risk Factor Intervention Project for children (STRIP). Circulation. 2005;112:3786–94.

    Article  PubMed  Google Scholar 

  81. The DISC Collaborative Research Group. The efficacy and safety of lowering dietary intake of total fat, saturated fat, and cholesterol in children with elevated LDL-cholesterol: the Dietary Intervention Study in Children (DISC). JAMA. 1995;273:429–1435.

    Article  Google Scholar 

  82. Obarzanek E, Hunsberger SA, VanHorn L, et al. Safety of a fat-reduced diet: the Dietary Intervention Study in Children (DISC). Pediatrics. 1997;100:51–9.

    Article  PubMed  CAS  Google Scholar 

  83. Simons-Morton DG, Hunsberger SA, Van Horn L, et al. Nutrient intake and blood pressure in children: findings from the Dietary Intervention Study in Children (DISC). Hypertension. 1997;29:930–6.

    Article  PubMed  CAS  Google Scholar 

  84. Owen CG, Whincup PH, Odoki K, Gilg JA, Cook DG. Infant feeding and blood cholesterol: a study in adolescents and a systematic review. Pediatrics. 2002;110:597–608.

    Article  PubMed  Google Scholar 

  85. Gylling H, Siimes MA, Miettinen TA. Sitostanol ester margarine in dietary treatment of children with familial hypercholesterolemia. J Lipid Res. 1995;36:1807–12.

    PubMed  CAS  Google Scholar 

  86. Tammi A, Rönnemaa T, Miettinen TA, et al. Effects of gender, apolipoprotein E phenotype and cholesterol-lowering by plant stanol esters in children: the STRIP study. Special Turku Coronary Risk Factor Intervention Project. Acta Paediatr. 2002;91:1155–62.

    Article  PubMed  CAS  Google Scholar 

  87. Amundsen AL, Ose L, Nenseter MS, Ntanios FY. Plant sterol ester enriched spread lowers plasma total and LDL cholesterol in children with familial hypercholesterolemia. Am J Clin Nutr. 2002;76:338–44.

    PubMed  CAS  Google Scholar 

  88. Kwiterovich PO. The role of fiber in the treatment of hypercholesterolemic children and adolescents. Pediatrics. 1995;96:1005–10.

    PubMed  Google Scholar 

  89. Williams CL, Bollella M, Spark A, Puder D. Soluble fiber enhances the hypocholesterolemic effect of the step I diet in childhood. J Am Coll Nutr. 1995;14:251–7.

    PubMed  CAS  Google Scholar 

  90. Davidson MH, Dugan LD, Burns JH, Sugimoto D, Story K, Drennan K. A psyllium-enriched cereal for the treatment of hypercholesterolemia in children: a controlled, double-blind, crossover study. Am J Clin Nutr. 1996;63:96–102.

    PubMed  CAS  Google Scholar 

  91. Kaitosaari T, Rönnemaa T, Viikari J, et al. Low-saturated fat dietary counseling starting in infancy improves insulin sensitivity in 9-year-old healthy children: the Special Turku Coronary Risk Factor Intervention Project for Children (STRIP) study. Diabetes Care. 2006;29:781–5.

    Article  PubMed  Google Scholar 

  92. Hakanen M, Lagström H, Kaitosaari T, et al. Development of overweight in an atherosclerosis prevention trial starting in early childhood. The STRIP study. Int J Obes. 2006;30:618–26.

    Article  CAS  Google Scholar 

  93. Kwiterovich Jr PO. Recognition and management of Dyslipidemia in children and adolescents. J Clin Endocrinol Metab. 2008;93:4200–9.

    Article  PubMed  CAS  Google Scholar 

  94. Daniels SR, Greer FR, Committee on Nutrition. Lipid screening and cardiovascular health in childhood. Pediatrics. 2008;122:198–208.

    Article  PubMed  Google Scholar 

  95. Avis HJ, Vissers MN, Stein EA, et al. A systematic review and meta-analysis of statin therapy in children with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2007;27:1803–10.

    Article  PubMed  CAS  Google Scholar 

  96. Avis HJ, Hutten RA, Gagne C, et al. Efficacy and safety of rosuvastatin therapy for children with familial hypercholesterolemia. J Am Coll Cardiol. 2010;55:1121–6.

    Article  PubMed  CAS  Google Scholar 

  97. van der Graaf A, Cuffe-Jackson C, Vissers MN, et al. Efficacy and safety of coadministration of ezetimibe and simvastatin in adolescents with heterozygous familial hypercholesterolemia. J Am Coll Cardiol. 2008;52:1421–9.

    Article  PubMed  CAS  Google Scholar 

  98. Schectman G, Hiatt J. Dose–response characteristics of cholesterol-lowering drug therapies. Implications for treatment. Ann Intern Med. 1996;125:990–1000.

    PubMed  CAS  Google Scholar 

  99. Wiegman A, Hutten BA, de Groot E, et al. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA. 2004;292:331–7.

    Article  PubMed  CAS  Google Scholar 

  100. Rodenburg J, Vissers MN, Wiegman A, et al. Statin treatment in children with familial hypercholesterolemia: the younger, the better. Circulation. 2007;116:664–8.

    Article  PubMed  CAS  Google Scholar 

  101. de Jongh S, Lilien MR, op’t Roodt J, Stroes ES, Bakker HD, Kastelein JJ. Early statin therapy restores endothelial function in children with familial hypercholesterolemia. J Am Coll Cardiol. 2002;40:2117–21.

    Article  PubMed  Google Scholar 

  102. vander Graaf A, Nieman MC, Firth JC, Wolmarans KH, Marais AD, deGroot E. Efficacy and safety of fluvastatin in children and adolescents with heterozygous familial hypercholesterolemia. Acta Paediatr. 2006;95:1461–6.

    Article  PubMed  Google Scholar 

  103. Gagne C, Gaudet D, Bruckert E, for the Ezetimibe Study Group. Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation. 2002;105:2469–75.

    Article  PubMed  CAS  Google Scholar 

  104. Gaist D, Rodriquez LA, Huerta C, et al. Lipid-altering drugs and risk of myopathy: a population based follow-up study. Epidemiology. 2001;12:565–9.

    Article  PubMed  CAS  Google Scholar 

  105. Jacobson TA, Armani A, McKenney JM, Guyton JR. Safety considerations with gastrointestinally active lipid-lowering drugs. Am J Cardiol. 2007;99:47C–55.

    Article  PubMed  CAS  Google Scholar 

  106. Tonstad S, Tonstad S, Knudtzon J, Sivertsen M, Refsum H, Ose L. Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J Pediatr. 1996;129:42–9.

    Article  PubMed  CAS  Google Scholar 

  107. Liacouras CA, Coates PM, Gallagher PR, Cortner JA. Use of cholestyramine in the treatment of children with familial combined hyperlipidemia. J Pediatr. 1993;122:477–82.

    Article  PubMed  CAS  Google Scholar 

  108. Stein EA, Marais AD, Szamosi T, et al. Colesevelam hydrochloride: efficacy and safety in pediatric subjects with heterozygous familial hypercholesterolemia. J Pediatr. 2010;156:231–6.

    Article  PubMed  CAS  Google Scholar 

  109. Altmann SW, Davis Jr HR, Zhu LJ, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303:1201–4.

    Article  PubMed  CAS  Google Scholar 

  110. Ruparelia N, Digby JE, Choudhury RP. Effects of niacin on atherosclerosis and vascular function. Curr Opin Cardiol. 2011;26(1):66–70.

    Article  PubMed  Google Scholar 

  111. Nowak-Gottl U, Langer C, Bergs S, Thediech S, Strater R, Stall M. Genetics of homeostasis: differential effects of heritability and household components influencing lipid concentrations and clotting factor levels in 282 pediatric stroke families. Environ Health Perspect. 2008;116:839–43.

    Article  PubMed  CAS  Google Scholar 

  112. Fruchart JC. Novel peroxisome proliferator activated receptor-alpha agonists. Am J Cardiol. 2007;100:n41–6.

    Article  PubMed  CAS  Google Scholar 

  113. Silverstein J, Klingensmith G, Copeland K, et al. American Diabetes Association 2005 Care of children and adolescents with type I diabetes. A statement of the American Diabetes Association. Diabetes Care. 2005;28:186–212.

    Article  PubMed  CAS  Google Scholar 

  114. Prescott WA, Streetman DD, Streetman DS. The potential role of HMGCoA reductase inhibitors in pediatric nephrotic syndrome. Ann Pharmacother. 2004;38:2105.

    Article  PubMed  CAS  Google Scholar 

  115. Guttmann-Bauman I 2005 Approach to adolescent polycystic ovary syndrome (PCOS) in the pediatric endocrine community in the USA J Pediatr Endocrinol Metab. 2005;18:499–506.

    Article  PubMed  CAS  Google Scholar 

  116. Vryonidou A, Papatheodorou A, Tavridou A, et al. 2005 Association of hyperandrogenic and metabolic phenotype with carotid intima-media thickness in young women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:2740–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter O. Kwiterovich Jr. M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kwiterovich, P.O., Byrne, K.H. (2013). Diagnosis and Treatment of Dyslipoproteinemias in Children and Adolescents. In: Radovick, S., MacGillivray, M. (eds) Pediatric Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-395-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-395-4_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-394-7

  • Online ISBN: 978-1-60761-395-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics