Skip to main content

Skeletal Dysplasias

  • Chapter
  • First Online:
Pediatric Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The skeletal dysplasias (or more appropriately, the osteochondrodysplasias) are genetic disorders that affect the development of the skeletal and cartilaginous tissues. They are of interest to the pediatric endocrinologist not only because most have an impact on linear growth causing short stature but also for what these disorders teach us about the mechanisms and regulation of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Superti-Furga A, Unger S. Nosology and classification of genetic skeletal disorders: 2006 revision. Am J Med Genet A. 2007;143(1):1–18.

    PubMed  Google Scholar 

  2. Rimoin DL, Cohn D, Krakow D, et al. The skeletal dysplasias: clinical-molecular correlations. Ann N Y Acad Sci. 2007;1117:302–9.

    Article  PubMed  Google Scholar 

  3. Orioli IM, Castilla EE, Barbosa-Neto JG. The birth prevalence rates for the skeletal dysplasias. J Med Genet. 1986;23(4):328–32.

    Article  PubMed  CAS  Google Scholar 

  4. Hall JG, Allanson JE, Gripp KW, Slavotinek AM. Handbook of physical measurements. 2nd ed. Oxford: Oxford University Press; 2007.

    Google Scholar 

  5. Zankl A, Jackson GC, Crettol LM, et al. Preselection of cases through expert clinical and radiological review significantly increases mutation detection rate in multiple epiphyseal dysplasia. Eur J Hum Genet. 2007;15(2):150–4.

    Article  PubMed  CAS  Google Scholar 

  6. Jones K. Smith’s recognizable patterns of human malformation. 6th ed. Philadelphia, PA: Elsevier Saunders; 2005.

    Google Scholar 

  7. Hunter AG, Bankier A, Rogers JG, et al. Medical complications of achondroplasia: a multicentre patient review. J Med Genet. 1998;35(9):705–12.

    Article  PubMed  CAS  Google Scholar 

  8. Horton WA, Rotter JI, Rimoin DL, et al. Standard growth curves for achondroplasia. J Pediatr. 1978;93(3):435–8.

    Article  PubMed  CAS  Google Scholar 

  9. Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet. 2007;370(9582):162–72.

    Article  PubMed  CAS  Google Scholar 

  10. Shiang R, Thompson LM, Zhu YZ, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994;78(2):335–42.

    Article  PubMed  CAS  Google Scholar 

  11. Martinez-Frias ML, de Frutos CA, Bermejo E, et al. Review of the recently defined molecular mechanisms underlying thanatophoric dysplasia and their potential therapeutic implications for achondroplasia. Am J Med Genet A. 2010;152A(1):245–55.

    Article  PubMed  CAS  Google Scholar 

  12. Laederich MB, Horton WA. Achondroplasia: pathogenesis and implications for future treatment. Curr Opin Pediatr. 2010;22(4):516–23.

    Article  PubMed  Google Scholar 

  13. Trotter TL, Hall JG. Health supervision for children with achondroplasia. Pediatrics. 2005;116(3):771–83.

    Article  PubMed  Google Scholar 

  14. Wilkin DJ, Szabo JK, Cameron R, et al. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome. Am J Hum Genet. 1998;63(3):711–6.

    Article  PubMed  CAS  Google Scholar 

  15. Tanaka H, Kubo T, Yamate T, et al. Effect of growth hormone therapy in children with achondroplasia: growth pattern, hypothalamic-pituitary function, and genotype. Eur J Endocrinol. 1998;138(3):275–80.

    Article  PubMed  CAS  Google Scholar 

  16. Ramaswami U, Rumsby G, Spoudeas HA, et al. Treatment of achondroplasia with growth hormone: six years of experience. Pediatr Res. 1999;46(4):435–9.

    Article  PubMed  CAS  Google Scholar 

  17. Hertel NT, Eklof O, Ivarsson S, et al. Growth hormone treatment in 35 prepubertal children with achondroplasia: a five-year dose–response trial. Acta Paediatr. 2005;94(10):1402–10.

    Article  PubMed  Google Scholar 

  18. Ozasa A, Komatsu Y, Yasoda A, et al. Complementary antagonistic actions between C-type natriuretic peptide and the MAPK pathway through FGFR-3 in ATDC5 cells. Bone. 2005;36(6):1056–64.

    Article  PubMed  CAS  Google Scholar 

  19. Yasoda A, Komatsu Y, Chusho H, et al. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med. 2004;10(1):80–6.

    Article  PubMed  CAS  Google Scholar 

  20. Yasoda A, Kitamura H, Fujii T, et al. Systemic administration of C-type natriuretic peptide as a novel therapeutic strategy for skeletal dysplasias. Endocrinology. 2009;150(7):3138–44.

    Article  PubMed  CAS  Google Scholar 

  21. Bellus GA, McIntosh I, Smith EA, et al. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet. 1995;10(3):357–9.

    Article  PubMed  CAS  Google Scholar 

  22. Fredriks AM, van Buuren S, van Heel WJ, et al. Nationwide age references for sitting height, leg length, and sitting height/height ratio, and their diagnostic value for disproportionate growth disorders. Arch Dis Child. 2005;90(8):807–12.

    Article  PubMed  CAS  Google Scholar 

  23. Newman DE, Dunbar JC. Hypochondroplasia. J Can Assoc Radiol. 1975;26(2):95–103.

    PubMed  CAS  Google Scholar 

  24. Tanaka N, Katsumata N, Horikawa R, et al. The comparison of the effects of short-term growth hormone treatment in patients with achondroplasia and with hypochondroplasia. Endocr J. 2003;50(1):69–75.

    Article  PubMed  CAS  Google Scholar 

  25. Kanazawa H, Tanaka H, Inoue M, et al. Efficacy of growth hormone therapy for patients with skeletal dysplasia. J Bone Miner Metab. 2003;21(5):307–10.

    Article  PubMed  CAS  Google Scholar 

  26. Key Jr LL, Gross AJ. Response to growth hormone in children with chondrodysplasia. J Pediatr. 1996;128 (5 Pt 2):S14–7.

    PubMed  CAS  Google Scholar 

  27. Appan S, Laurent S, Chapman M, et al. Growth and growth hormone therapy in hypochondroplasia. Acta Paediatr Scand. 1990;79(8–9):796–803.

    Article  PubMed  CAS  Google Scholar 

  28. Yasui N, Kawabata H, Kojimoto H, et al. Lengthening of the lower limbs in patients with achondroplasia and hypochondroplasia. Clin Orthop Relat Res. 1997;344:298–306.

    Article  PubMed  Google Scholar 

  29. Kitoh H, Kitakoji T, Tsuchiya H, et al. Distraction osteogenesis of the lower extremity in patients with achondroplasia/hypochondroplasia treated with transplantation of culture-expanded bone marrow cells and platelet-rich plasma. J Pediatr Orthop. 2007;27(6): 629–34.

    Article  PubMed  Google Scholar 

  30. Unger S, Bonafe L, Superti-Furga A. Multiple epiphyseal dysplasia: clinical and radiographic features, differential diagnosis and molecular basis. Best Pract Res Clin Rheumatol. 2008;22(1):19–32.

    Article  PubMed  CAS  Google Scholar 

  31. Ross JL, Scott Jr C, Marttila P, et al. Phenotypes associated with SHOX deficiency. J Clin Endocrinol Metab. 2001;86(12):5674–80.

    Article  PubMed  CAS  Google Scholar 

  32. Ross JL, Kowal K, Quigley CA, et al. The phenotype of short stature homeobox gene (SHOX) deficiency in childhood: contrasting children with Leri-Weill dyschondrosteosis and Turner syndrome. J Pediatr. 2005;147(4):499–507.

    Article  PubMed  CAS  Google Scholar 

  33. Cook PA, Yu JS, Wiand W, et al. Madelung deformity in skeletally immature patients: morphologic assessment using radiography, CT, and MRI. J Comput Assist Tomogr. 1996;20(4):505–11.

    Article  PubMed  CAS  Google Scholar 

  34. Rao E, Weiss B, Fukami M, et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet. 1997;16(1):54–63.

    Article  PubMed  CAS  Google Scholar 

  35. Ellison JW, Wardak Z, Young MF, et al. PHOG, a candidate gene for involvement in the short stature of Turner syndrome. Hum Mol Genet. 1997;6(8):1341–7.

    Article  PubMed  CAS  Google Scholar 

  36. Chen J, Wildhardt G, Zhong Z, et al. Enhancer deletions of the SHOX gene as a frequent cause of short stature: the essential role of a 250 kb downstream regulatory domain. J Med Genet. 2009;46(12): 834–9.

    Article  PubMed  CAS  Google Scholar 

  37. Munns CJ, Haase HR, Crowther LM, et al. Expression of SHOX in human fetal and childhood growth plate. J Clin Endocrinol Metab. 2004;89(8):4130–5.

    Article  PubMed  CAS  Google Scholar 

  38. Spranger S, Schiller S, Jauch A, et al. Leri-Weill syndrome as part of a contiguous gene syndrome at Xp22.3. Am J Med Genet. 1999;83(5):367–71.

    Article  PubMed  CAS  Google Scholar 

  39. Quigley CA, Crowe BJ, Anglin DG, et al. Growth hormone and low dose estrogen in Turner syndrome: results of a United States multi-center trial to near-final height. J Clin Endocrinol Metab. 2002;87(5): 2033–41.

    Article  PubMed  CAS  Google Scholar 

  40. Blum WF, Cao D, Hesse V, et al. Height gains in response to growth hormone treatment to final height are similar in patients with SHOX deficiency and Turner syndrome. Horm Res. 2009;71(3):167–72.

    Article  PubMed  CAS  Google Scholar 

  41. Richmond E, Rogol AD. Current indications for growth hormone therapy for children and adolescents. Endocr Dev. 2010;18:92–108.

    Article  PubMed  CAS  Google Scholar 

  42. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16(2):101–16.

    Article  PubMed  CAS  Google Scholar 

  43. Steiner RD, Pepin MG, Byers PH. Osteogenesis imperfecta. In: Pagon RA, Bird TB, Dolan CR, Stephens K, editors. GeneReviews (Internet). Seattle: University of Washington; 2011.

    Google Scholar 

  44. Glorieux FH, Bishop NJ, Plotkin H, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339(14): 947–52.

    Article  PubMed  CAS  Google Scholar 

  45. Zeitlin L, Rauch F, Plotkin H, et al. Height and weight development during four years of therapy with cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta types I, III, and IV. Pediatrics. 2003;111(5 Pt 1):1030–6.

    Article  PubMed  Google Scholar 

  46. Falk MJ, Heeger S, Lynch KA, et al. Intravenous bisphosphonate therapy in children with osteogenesis imperfecta. Pediatrics. 2003;111(3):573–8.

    Article  PubMed  Google Scholar 

  47. Alharbi M, Pinto G, Finidori G, et al. Pamidronate treatment of children with moderate-to-severe osteogenesis imperfecta: a note of caution. Horm Res. 2009;71(1):38–44.

    Article  PubMed  CAS  Google Scholar 

  48. Schwartz S, Joseph C, Iera D, et al. Bisphosphonates, osteonecrosis, osteogenesis imperfecta and dental extractions: a case series. J Can Dent Assoc. 2008; 74(6):537–42.

    PubMed  Google Scholar 

  49. Phillipi CA, Remmington T, Steiner RD. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev. 2008;4:CD005088.

    PubMed  Google Scholar 

  50. Castillo H, Samson-Fang L. Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev Med Child Neurol. 2009;51(1):17–29.

    Article  PubMed  Google Scholar 

  51. Rauch F, Munns CF, Land C, et al. Risedronate in the treatment of mild pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Bone Miner Res. 2009;24(7):1282–9.

    Article  PubMed  CAS  Google Scholar 

  52. Bishop N, Harrison R, Ahmed F, et al. A randomized, controlled dose-ranging study of risedronate in children with moderate and severe osteogenesis imperfecta. J Bone Miner Res. 2010;25(1):32–40.

    Article  PubMed  CAS  Google Scholar 

  53. Ward LM, Rauch F, Whyte MP, et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab. 2011;96(2):355–64.

    Article  PubMed  CAS  Google Scholar 

  54. Marini JC, Bordenick S, Heavner G, et al. The growth hormone and somatomedin axis in short children with osteogenesis imperfecta. J Clin Endocrinol Metab. 1993;76(1):251–6.

    Article  PubMed  CAS  Google Scholar 

  55. Antoniazzi F, Monti E, Venturi G, et al. GH in ­combination with bisphosphonate treatment in osteogenesis imperfecta. Eur J Endocrinol. 2010;163(3): 479–87.

    Article  PubMed  CAS  Google Scholar 

  56. Marini JC, Hopkins E, Glorieux FH, et al. Positive linear growth and bone responses to growth hormone treatment in children with types III and IV osteogenesis imperfecta: high predictive value of the carboxyterminal propeptide of type I procollagen. J Bone Miner Res. 2003;18(2):237–43.

    Article  PubMed  CAS  Google Scholar 

  57. Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood. 2001; 97(5):1227–31.

    Article  PubMed  CAS  Google Scholar 

  58. Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002;99(13):8932–7.

    Article  PubMed  CAS  Google Scholar 

  59. Kruse K, Schutz C. Calcium metabolism in the Jansen type of metaphyseal dysplasia. Eur J Pediatr. 1993;152(11):912–5.

    Article  PubMed  CAS  Google Scholar 

  60. Schipani E, Kruse K, Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science. 1995;268:98–100.

    Article  PubMed  CAS  Google Scholar 

  61. Blomstrand S, Claesson I, Save-Soderbergh J. A case of lethal congenital dwarfism with accelerated skeletal maturation. Pediatr Radiol. 1985;15(2):141–3.

    Article  PubMed  CAS  Google Scholar 

  62. Oostra RJ, van der Harten JJ, Rijnders WP, et al. Blomstrand osteochondrodysplasia: three novel cases and histological evidence for heterogeneity. Virchows Arch. 2000;436(1):28–35.

    Article  PubMed  CAS  Google Scholar 

  63. Loshkajian A, Roume J, Stanescu V, et al. Familial Blomstrand chondrodysplasia with advanced skeletal maturation: further delineation. Am J Med Genet. 1997;71(3):283–8.

    Article  PubMed  CAS  Google Scholar 

  64. Jobert AS, Zhang P, Couvineau A, et al. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J Clin Invest. 1998;102(1):34–40.

    Article  PubMed  CAS  Google Scholar 

  65. Kronenberg HM. PTHrP and skeletal development. Ann N Y Acad Sci. 2006;1068:1–13.

    Article  PubMed  CAS  Google Scholar 

  66. Alvarez J, Sohn P, Zeng X, et al. TGFbeta2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression. Development. 2002; 129(8):1913–24.

    PubMed  CAS  Google Scholar 

  67. Minina E, Wenzel HM, Kreschel C, et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development. 2001;128(22):4523–34.

    PubMed  CAS  Google Scholar 

  68. Maroteaux P, Martinelli B, Campailla E. Acromesomelic dwarfism. Presse Med. 1971;79(42): 1839–42.

    PubMed  CAS  Google Scholar 

  69. Langer Jr LO, Beals RK, Solomon IL, et al. Acromesomelic dwarfism: manifestations in childhood. Am J Med Genet. 1977;1(1):87–100.

    Article  PubMed  Google Scholar 

  70. Bartels CF, Bukulmez H, Padayatti P, et al. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet. 2004;75(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  71. Olney RC, Bukulmez H, Bartels CF, et al. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) are associated with short stature. J Clin Endocrinol Metab. 2006;91(2):1229–32.

    Article  PubMed  CAS  Google Scholar 

  72. Olney RC. C-type natriuretic peptide in growth: a new paradigm. Growth Horm IGF Res. 2006;16 (Suppl A):S6–14.

    Article  PubMed  CAS  Google Scholar 

  73. Borrelli P, Fasanelli S, Marini R. Acromesomelic dwarfism in a child with an interesting family history. Pediatr Radiol. 1983;13(3):165–8.

    Article  PubMed  CAS  Google Scholar 

  74. Harvey W, Willis R, Sydenham Society. The works of William Harvey. London: Printed for the Sydenham Society; 1847.

    Google Scholar 

  75. McKusick VA. Heritable disorders of connective tissue. St. Louis, MO: Mosby; 1972.

    Google Scholar 

  76. Cole TJ. The LMS, method for constructing normalized growth standards. Eur J Clin Nutr. 1990;44(1): 45–60.

    PubMed  CAS  Google Scholar 

  77. Blanco ME, Perez-Cabrera A, Kofman-Alfaro S, et al. Clinical and cytogenetic findings in 14 patients with Madelung anomaly. Orthopedics. 2005;28(3):315–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Olney M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olney, R.C., Bober, M.B. (2013). Skeletal Dysplasias. In: Radovick, S., MacGillivray, M. (eds) Pediatric Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-395-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-395-4_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-394-7

  • Online ISBN: 978-1-60761-395-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics