Skip to main content

Resistance to Thyroid Hormone and TSH Receptor Mutations

  • Chapter
  • First Online:
Pediatric Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 2665 Accesses

Abstract

Resistance to thyroid hormone (RTH) is a syndrome characterized by ­variable tissue hyporesponsiveness to thyroid hormone throughout the body. Classically, patients come to attention for a variety of reasons including goiter, abnormal thyroid function tests (TFTs), or neonatal screening programs. Biochemically, the syndrome is characterized by elevated thyroid hormone values in the setting of non-suppressed thyrotropin (TSH) levels. In most patients, hyporesponsiveness occurs in both the hypothalamic and pituitary as well as peripheral tissues. Resistance in the hypothalamus and pituitary leads to elevated thyrotropin levels, which stimulate the thyroid gland to increase production of thyroid hormone; however, reduced action elsewhere results in (to a greater or lesser degree) compensated thyroid hormone hyporesponsiveness. In contrast, TSH resistance is caused by mutations in the TSH receptor, and is characterized by a range of symptoms, from euthyroid hyperthyrotropinemia to frank hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev. 1993;14:348–99.

    PubMed  CAS  Google Scholar 

  2. Refetoff S. Resistance to thyroid hormone. In: Braverman LE, Utiger RD, editors. Werner and Ingbar’s the thyroid: a fundamental and clinical text. 8th ed. Philadelphia, PA: Lippincott, Williams, and Wilkins; 2000. p. 1028–43.

    Google Scholar 

  3. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31(2):139–70.

    PubMed  CAS  Google Scholar 

  4. Mangelsdorf DJ, Thummel C, Beato M, et al. Overview: the nuclear receptor superfamily: the second decade. Cell. 1995;83:835–40.

    PubMed  CAS  Google Scholar 

  5. Katz RW, Subauste JS, Koenig RJ. The interplay of half-site sequence and spacing on the activity of direct repeat thyroid hormone response elements. J Biol Chem. 1995;270(10):5238–42.

    PubMed  CAS  Google Scholar 

  6. Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid and vitamin D3 receptors. Cell. 1991;65:1255–66.

    PubMed  CAS  Google Scholar 

  7. Bodenner DL, Mrocynski MA, Weintraub BD, Radovick S, Wondisford FE. A detailed functional and structural analysis of a major thyroid inhibitory element in the human thyrotropin β-subunit gene. J Biol Chem. 1991;266:21666–73.

    PubMed  CAS  Google Scholar 

  8. Hollenberg AN, Monden T, Flynn TR, Boers M-E, Cohen O, Wondisford FE. The human thyrotropin-releasing hormone gene is regulated by thyroid hormone through two distinct classes of negative thyroid hormone response elements. Mol Endocrinol. 1995;10:540–50.

    Google Scholar 

  9. Tomie-Canie M, Day D, Samuels HH, Freedberg IM, Blumenberg M. Novel regulation of keratin gene expression by thyroid hormone and retinoid receptors. J Biol Chem. 1996;271(3):1416–23.

    Google Scholar 

  10. Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors [see comments]. Nature. 1995;377(6548):454–7.

    PubMed  CAS  Google Scholar 

  11. Horlein AJ, Naar AM, Heinzel T, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor [see comments]. Nature. 1995;377(6548):397–404.

    PubMed  CAS  Google Scholar 

  12. Ordentlich P, Downes M, Xie W, Genin A, Spinner NB, Evans RM. Unique forms of human and mouse nuclear receptor corepressor SMRT. Proc Natl Acad Sci USA. 1999;96(6):2639–44.

    PubMed  CAS  Google Scholar 

  13. Park EJ, Schroen DJ, Yang M, Li H, Li L, Chen JD. SMRTe, a silencing mediator for retinoid and thyroid hormone receptors-extended isoform that is more related to the nuclear receptor corepressor. Proc Natl Acad Sci USA. 1999;96(7):3519–24.

    PubMed  CAS  Google Scholar 

  14. Sande S, Privalsky ML. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with and modulate the activity of, nuclear hormone receptors. Mol Endocrinol. 1996;10:813–25.

    PubMed  CAS  Google Scholar 

  15. Seol W, Choi HS, Moore DD. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan nuclear receptors. Mol Endocrinol. 1995;9:72–85.

    PubMed  CAS  Google Scholar 

  16. Alland L, Muhle R, Hou HJ, et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature. 1997;387:49–55.

    PubMed  CAS  Google Scholar 

  17. Heinzel T, Lavinsky RM, Mullen TM, et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression [see comments]. Nature. 1997;387(6628):43–8.

    PubMed  CAS  Google Scholar 

  18. Nagy L, Kao H-K, Chakravarti D, et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell. 1997;89:373–80.

    PubMed  CAS  Google Scholar 

  19. Feng W, Ribeiro RCJ, Wagner RL, et al. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science. 1998;280:1747–9.

    PubMed  CAS  Google Scholar 

  20. Anzick SL, Kononen J, Walker RL, et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Nature. 1997;277:965–8.

    CAS  Google Scholar 

  21. Cavailles V, Dauvois S, L’Horset F, et al. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 1995;14:3741–51.

    PubMed  CAS  Google Scholar 

  22. Chen H, Lin RJ, Schlitz RL, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell. 1997;90:569–80.

    PubMed  CAS  Google Scholar 

  23. Kamei Y, Xu L, Heinzel T, et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996;85(3):403–14.

    PubMed  CAS  Google Scholar 

  24. Monden T, Wondisford FE, Hollenberg AN. Isolation and characterization of a novel ligand-dependent thyroid hormone receptor-coactivating protein. J Biol Chem. 1997;272(47):29834–41.

    PubMed  CAS  Google Scholar 

  25. Onate SA, Tsai SY, Tsai M-J, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995;270:1354–7.

    PubMed  CAS  Google Scholar 

  26. Takeshita A, Yen PM, Misiti S, Cardona GR, Liu Y, Chin WW. Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator. Endocrinology. 1996;137:3594–7.

    PubMed  CAS  Google Scholar 

  27. Torchia J, Rose DW, Inostroza J, et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear receptor function. Nature. 1997;387:677–84.

    PubMed  CAS  Google Scholar 

  28. Voegel JJ, Heine MJS, Zechel C, Chambon P, Gronemeyer H. TIF2, a 160 KD transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 1996;15:3667–75.

    PubMed  CAS  Google Scholar 

  29. Sap J, Munoz A, Damm K, et al. The c-erb-A gene protein is a high-affinity receptor for thyroid hormone. Nature. 1986;324:635–40.

    PubMed  CAS  Google Scholar 

  30. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb-A gene encodes a thyroid hormone receptor. Nature. 1986;324:641–6.

    PubMed  CAS  Google Scholar 

  31. Williams GR. Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol. 2000;20:8329–42.

    PubMed  CAS  Google Scholar 

  32. Plateroti M, Gauthier K, Domon-Dell C, Freund JN, Samarut J, Chassande O. Functional interference between thyroid hormone receptor alpha (TRalpha) and natural truncated TRDeltaalpha isoforms in the control of intestine development. Mol Cell Biol. 2001;21(14):4761–72.

    PubMed  CAS  Google Scholar 

  33. Weiss RE. “They have ears but do not hear” (Psalms 135:17): non-thyroid hormone receptor beta (non-TRbeta) resistance to thyroid hormone. Thyroid. 2008;18(1):3–5.

    PubMed  Google Scholar 

  34. Weiss RE, Hayashi Y, Nagaya T, et al. Dominant inheritance of resistance to thyroid hormone not linked to defects in the thyroid hormone receptor α or β genes may be due to a defective cofactor. J Clin Endocrinol Metab. 1996;81:4196–203.

    PubMed  CAS  Google Scholar 

  35. Reutrakal S, Sadow PM, Pannain S, et al. Search for abnormalities of nuclear corepressors, coactivators, and a coregulator in families with resistance to thyroid hormone without mutations in thyroid hormone receptor β or α genes. J Clin Endocrinol Metab. 2000;85:3609–17.

    Google Scholar 

  36. Romeo S, Menzaghi C, Bruno R, et al. Search for genetic variants in the retinoid X receptor-gamma-gene by polymerase chain reaction-single-strand conformation polymorphism in patients with resistance to thyroid hormone without mutations in thyroid hormone receptor beta gene. Thyroid. 2004;14(5):355–8.

    PubMed  CAS  Google Scholar 

  37. Mamanasiri S, Yesil S, Dumitrescu AM, et al. Mosaicism of a thyroid hormone receptor-beta gene mutation in resistance to thyroid hormone. J Clin Endocrinol Metab. 2006;91(9):3471–7.

    PubMed  CAS  Google Scholar 

  38. Collingwood TN, Wagner R, Matthews CH, et al. A role for helix 3 of the TRb ligand-binding domain in coactivator recruitment identified by characterization of a third cluster of mutations in resistance to thyroid hormone. EMBO J. 1998;17:4760–70.

    PubMed  CAS  Google Scholar 

  39. Safer JD, Cohen RN, Hollenberg AN, Wondisford FE. Defective release of corepressor by hinge mutants of the thyroid hormone receptor found in patients with resistance to thyroid hormone. J Biol Chem. 1998;273(46):30175–82.

    PubMed  CAS  Google Scholar 

  40. Collingwood TN, Rajanayagam O, Adams M, et al. A natural transactivation mutation in the thyroid hormone beta receptor: impaired interaction with putative transcriptional mediators. Proc Natl Acad Sci USA. 1997;94(1):248–53.

    PubMed  CAS  Google Scholar 

  41. Yoh SM, Chatterjee VK, Privalsky ML. Thyroid hormone resistance syndrome manifests as an aberrant interaction between mutant T3 receptors and transcriptional corepressors. Mol Endocrinol. 1997;11(4):470–80.

    PubMed  CAS  Google Scholar 

  42. Nagaya T, Jameson JL. Thyroid hormone receptor dimerization is required for dominant negative inhibition by mutations that cause thyroid hormone resistance. J Biol Chem. 1993;268:15766–71.

    PubMed  CAS  Google Scholar 

  43. Nagaya T, Madison LD, Jameson JL. Thyroid hormone receptor mutants that cause resistance to thyroid hormone. J Biol Chem. 1992;267:13014–9.

    PubMed  CAS  Google Scholar 

  44. Forrest D, Hanebuth E, Smeyne RJ, et al. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J. 1996;15(12):3006–15.

    PubMed  CAS  Google Scholar 

  45. Hashimoto K, Curty FH, Borges PB, et al. An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci USA. 2001;98:3998–4003.

    PubMed  CAS  Google Scholar 

  46. Kaneshige M, Kaneshige K, Xhu X, et al. Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA. 2000;97:13209–14.

    PubMed  CAS  Google Scholar 

  47. Fraichard A, Chassande O, Plateroti M, et al. The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J. 1997;16(14):4412–20.

    PubMed  CAS  Google Scholar 

  48. Wikstrom L, Johansson C, Salto C, et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J. 1998;17(2):455–61.

    PubMed  CAS  Google Scholar 

  49. Refetoff S, Dumitrescu AM. Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab. 2007;21(2):277–305.

    PubMed  CAS  Google Scholar 

  50. Weiss RE, Refetoff S. Editorial: treatment of resistance to thyroid hormone—primum non nocere. J Clin Endocrinol Metab. 1999;84:401–3.

    PubMed  CAS  Google Scholar 

  51. Safer JD, O’Connor MG, Colan SD, Srinivasan S, Tollin SR, Wondisford FE. The thyroid hormone receptor-β mutation R383H is associated with isolated central resistance to thyroid hormone. J Clin Endocrinol Metab. 1999;84:3099–109.

    PubMed  CAS  Google Scholar 

  52. Safer JD, Langlois MF, Cohen R, et al. Isoform ­variable action among thyroid hormone receptor mutants provides insight into pituitary resistance to thyroid hormone. Mol Endocrinol. 1997;11:16–26.

    PubMed  CAS  Google Scholar 

  53. Wan W, Farboud B, Privalsky ML. Pituitary resistance to thyroid hormone syndrome is associated with T3 receptor mutants that selectively impair beta2 isoform function. Mol Endocrinol. 2005;19(6):1529–42.

    PubMed  CAS  Google Scholar 

  54. Machado DS, Sabet A, Santiago LA, et al. A thyroid hormone receptor mutation that dissociates thyroid hormone regulation of gene expression in vivo. Proc Natl Acad Sci USA. 2009;106(23):9441–6.

    PubMed  CAS  Google Scholar 

  55. Wu SY, Cohen RN, Simsek E, et al. A novel thyroid hormone receptor-beta mutation that fails to bind nuclear receptor corepressor in a patient as an apparent cause of severe, predominantly pituitary resistance to thyroid hormone. J Clin Endocrinol Metab. 2006;91(5):1887–95.

    PubMed  CAS  Google Scholar 

  56. Refetoff S, DeWind LT, DeGroot LJ. Familial syndrome combining deaf-mutism, stippled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocr. 1967;27:279–94.

    PubMed  CAS  Google Scholar 

  57. Takeda T, Sakurai A, DeGroot LJ, Refetoff S. Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein-coding region of the thyroid hormone receptor-β gene. J Clin Endocrinol Metab. 1992;74:49–55.

    PubMed  CAS  Google Scholar 

  58. Barkoff MS, Kocherginsky M, Anselmo J, Weiss RE, Refetoff S. Autoimmunity in patients with resistance to thyroid hormone. J Clin Endocrinol Metab. 2010;95(7):3189–93.

    PubMed  CAS  Google Scholar 

  59. Brucker-Davis F, Skarulis MC, Grace MB, et al. Genetic and clinical features of 42 kindreds with resistance to thyroid hormone: The National Institutes of Health prospective study. Ann Intern Med. 1995;123:572–83.

    PubMed  CAS  Google Scholar 

  60. Weiss RE, Refetoff SE. Effect of thyroid hormone on growth: lessons from the syndrome of resistance to thyroid hormone. Endocrinol Metab Clin North Am. 1996;25:719–30.

    PubMed  CAS  Google Scholar 

  61. Mitchell CS, Savage DB, Dufour S, et al. Resistance to thyroid hormone is associated with raised energy expenditure, muscle mitochondrial uncoupling, and hyperphagia. J Clin Invest. 2010;120(4):1345–54.

    PubMed  CAS  Google Scholar 

  62. Matochik JA, Zametkin AJ, Cohen RM, Hauser P, Weintraub BD. Abnormalities in sustained attention and anterior cingulate gyrus metabolism in subjects with resistance to thyroid hormone. Brain Res. 1996;723:23–8.

    PubMed  CAS  Google Scholar 

  63. Weiss RE, Stein MA, Refetoff S. Behavioral effects of liothyronine (L-T3) in children with Attention Deficit Hyperactivity Disorder in the presence and absence of resistance to thyroid hormone. Thyroid. 1997;7:389–93.

    PubMed  CAS  Google Scholar 

  64. Stein MA, Weiss RE, Refetoff S. Neurocognitive characteristics of individuals with resistance to thyroid hormone: comparisons with individuals with attention-deficit hyperactivity disorder. J Dev Behav Pediatr. 1995;16:406–11.

    PubMed  CAS  Google Scholar 

  65. Kahn BB, Weintraub BD, Csako G, Zweig MH. Facticious elevation of thyrotropin in a new ultrasensitive assay: implications for the use of monoclonal antibodies in “sandwich” immunoassay. J Clin Endocrinol Metab. 1988;66:526–33.

    PubMed  CAS  Google Scholar 

  66. Burrow GN, Fisher DA, Larsen PR. Maternal and fetal thyroid function. N Engl J Med. 1994;331:1072–8.

    PubMed  CAS  Google Scholar 

  67. Huang MJ, Liaw YF. Clinical associations between thyroid and liver diseases. J Gastroenterol Hepatol. 1995;10:344–50.

    PubMed  CAS  Google Scholar 

  68. Pannain S, Feldman M, Eiholzer U, Weiss RE, Scherberg NH, Refetoff S. Familial dysalbuminemic hyperthyroxinemia in a Swiss family caused by a mutant albumin (R218P) shows an apparent discrepancy between serum concentration and affinity for thyroxine. J Clin Endocrinol Metab. 2000;85:2786–92.

    PubMed  CAS  Google Scholar 

  69. Petersen CE, Ha CE, Jameson DM, Bhagavan NV. Mutations in a specific human serum albumin thyroxine binding site define the structural basis of familial dysalbuminemic hyperthyroxinemia. J Biol Chem. 1996;271:19110–7.

    PubMed  CAS  Google Scholar 

  70. Martino E, Bartalena L, Bogazzi F, Braverman LE. The effects of amiodarone on the thyroid. Endocr Rev. 2001;22:240–54.

    PubMed  CAS  Google Scholar 

  71. Roca RP, Blackman MR, Ackerley MB, Harman SM, Gregerman RI. Thyroid hormone elevations during acute psychiatric illness: relationship to severity and distinction from hyperthyroidism. Endocr Res. 1990;16:415–47.

    PubMed  CAS  Google Scholar 

  72. Beck-Peccoz P, Bruckner-Davis F, Persani L, Smallridge RC, Weintraub BD. Thyrotropin-secreting pituitary tumors. Endocr Rev. 1996;17:610–38.

    PubMed  CAS  Google Scholar 

  73. Safer JD, Colan SD, Fraser LM, Wondisford FE. A pituitary tumor in a patient with thyroid hormone resistance: a diagnostic dilemma. Thyroid. 2001;11:281–91.

    PubMed  CAS  Google Scholar 

  74. Bogazzi F, Manetti L, Tomisti L, et al. Thyroid color flow Doppler sonography: an adjunctive tool for differentiating patients with inappropriate thyrotropin (TSH) secretion due to TSH-secreting pituitary adenoma or resistance to thyroid hormone. Thyroid. 2006;16(10):989–95.

    PubMed  CAS  Google Scholar 

  75. Wu SY, Sadow PM, Refetoff S, Weiss RE. Tissue responses to thyroid hormone in a kindred with resistance to thyroid hormone harboring a commonly occurring mutation in the thyroid hormone receptor beta gene (P453T). J Lab Clin Med. 2005;146(2):85–94.

    PubMed  CAS  Google Scholar 

  76. Asteria C, Rajanayagam O, Collingwood TN, et al. Prenatal diagnosis of thyroid hormone resistance. J Clin Endocrinol Metab. 1999;84:405–10.

    PubMed  CAS  Google Scholar 

  77. Takeda T, Suzuki S, Liu RT, Degroot LJ. Triiodothyroacetic acid has unique potential for therapy of resistance to thyroid hormone. J Clin Endocrinol Metab. 1995;80:2033–40.

    PubMed  CAS  Google Scholar 

  78. Torre P, Bertoli M, Di Giovanni S, et al. Endocrine and neuropsychological assessment in a child with a novel mutation of thyroid hormone receptor: response to 12-month triiodothyroacetic acid (TRIAC) therapy. J Endocrinol Invest. 2005;28(7):657–62.

    PubMed  CAS  Google Scholar 

  79. Hamon B, Hamon P, Bovier-Lapierre M, et al. A child with resistance to thyroid hormone without thyroid hormone receptor gene mutation: a 20-year follow-up. Thyroid. 2008;18(1):35–44.

    PubMed  CAS  Google Scholar 

  80. Guran T, Turan S, Bircan R, Bereket A. 9 years follow-up of a patient with pituitary form of resistance to thyroid hormones (PRTH): comparison of two treatment periods of D-thyroxine and triiodothyroacetic acid (TRIAC). J Pediatr Endocrinol Metab. 2009;22(10):971–8.

    PubMed  CAS  Google Scholar 

  81. Hashimoto A, Shi Y, Drake K, Koh JT. Design and synthesis of complementing ligands for mutant thyroid hormone receptor TRbeta(R320H): a tailor-made approach toward the treatment of resistance to thyroid hormone. Bioorg Med Chem. 2005;13(11):3627–39.

    PubMed  CAS  Google Scholar 

  82. Weiss RE, Dumitrescu A, Refetoff S. Approach to the patient with resistance to thyroid hormone and pregnancy. J Clin Endocrinol Metab. 2010;95(7):3094–102.

    PubMed  CAS  Google Scholar 

  83. Anselmo J, Cao D, Karrison T, Weiss RE, Refetoff S. Fetal loss associated with excess thyroid hormone exposure. JAMA. 2004;292(6):691–5.

    PubMed  CAS  Google Scholar 

  84. Jansen J, Friesema EC, Milici C, Visser TJ. Thyroid hormone transporters in health and disease. Thyroid. 2005;15(8):757–68.

    PubMed  CAS  Google Scholar 

  85. Friesema EC, Grueters A, Biebermann H, et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet. 2004;364(9443):1435–7.

    PubMed  CAS  Google Scholar 

  86. Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet. 2004;74(1):168–75.

    PubMed  CAS  Google Scholar 

  87. Dumitrescu AM, Liao XH, Weiss RE, Millen K, Refetoff S. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice. Endocrinology. 2006;147(9):4036–43.

    PubMed  CAS  Google Scholar 

  88. Di Cosmo C, Liao XH, Dumitrescu AM, Weiss RE, Refetoff S. A thyroid hormone analog with reduced dependence on the monocarboxylate transporter 8 for tissue transport. Endocrinology. 2009;150(9):4450–8.

    PubMed  Google Scholar 

  89. Dumitrescu AM, Liao XH, Abdullah MS, et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet. 2005;37(11):1247–52.

    PubMed  CAS  Google Scholar 

  90. Di Cosmo C, McLellan N, Liao XH, et al. Clinical and molecular characterization of a novel selenocysteine insertion sequence-binding protein 2 (SBP2) gene mutation (R128X). J Clin Endocrinol Metab. 2009;94(10):4003–9.

    PubMed  Google Scholar 

  91. Schoenmakers E, Agostini M, Mitchell C, et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest; 2010;120(12):4220–35.

    Google Scholar 

  92. Cohen RN, Weintraub BD, Wondisford FE. Chemistry and biosynthesis of thyrotropin. In: Braverman LE, Utiger RD, editors. Werner and Ingbar’s the thyroid. 8th ed. Philadelphia, PA: Lippincott, Williams, and Wilkins; 2005. p. 159–75.

    Google Scholar 

  93. Stanbury JB, Rocmans P, Buhler UK, Ochi Y. Congenital hypothyroidism with impaired thyroid response to thyrotropin. N Engl J Med. 1968;279:1132–6.

    PubMed  CAS  Google Scholar 

  94. Sunthornthepvarakul T, Gottschalk ME, Hayashi Y, Refetoff S. Brief report: resistance to thyrotropin caused by mutations in the thyrotropin-receptor gene. N Engl J Med. 1995;332:155–60.

    CAS  Google Scholar 

  95. Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM. The thyrotropin (TSH) receptor: interaction with TSH and autoantibdies. Endocr Rev. 1998;19:673–716.

    PubMed  CAS  Google Scholar 

  96. Zhang M, Tong KPT, Fremont V, et al. The extracellular domain suppresses constitutive activity of the transmembrane domain of the human TSH receptor: implications for hormone-receptor interaction and antagonist design. Endocrinology. 2000;141:3514–7.

    PubMed  CAS  Google Scholar 

  97. Libert F, Passage E, Lefort A, Vassart G, Mattei MG. Localization of human thyrotropin receptor gene to chromosome region 14q31 by in situ hybridization. Cytogenet Cell Genet. 1990;54:82–3.

    PubMed  CAS  Google Scholar 

  98. Rousseau-Merck MF, Misrahi M, Loosfelt H, Atger M, Milgrom E, Berger R. Assignment of the human thyroid stimulating hormone receptor (TSHR) gene to chromosome 14q31. Genomics. 1990;8:233–6.

    PubMed  CAS  Google Scholar 

  99. de Roux N, Misrahi M, Brauner R, et al. Four families with loss of function mutations of the thyrotropin receptor. J Clin Endocrinol Metab. 1996;81:4229–35.

    PubMed  Google Scholar 

  100. Clifton-Bligh RJ, Gregory JW, Ludgate M, et al. Two novel mutations in the thyrotropin (TSH) receptor gene in a child with resistance to TSH. J Clin Endocrinol Metab. 1997;82:1094–100.

    PubMed  CAS  Google Scholar 

  101. Russo D, Betterle B, Arturi F, Chiefari E, Girelli ME, Filetti S. A novel mutation in the thyrotropin (TSH) receptor gene causing loss of TSH binding but constitutive receptor activation in a family with resistance to TSH. J Clin Endocrinol Metab. 2000;85:4238–42.

    PubMed  CAS  Google Scholar 

  102. Abramowicz MJ, Duprez L, Parma J, Vassart G, Heinrichs C. Familial congenital hypothyroidism due to inactivating mutation of the thyrotropin receptor causing profound hypoplasia of the thyroid gland. J Clin Invest. 1997;99:3018–24.

    PubMed  CAS  Google Scholar 

  103. Biberman H, Schoneberg T, Krude H, Schultz G, Guderman T, Gruters A. Mutations of the human thyrotropin receptor gene causing thyroid ­hypoplasia and persistent congenital hypothyroidism. J Clin Endocrinol. 1997;82:3471–80.

    Google Scholar 

  104. Gagne N, Parma J, Deal C, Vassart G, Van Vliet G. Apparent congenital athyreosis contrasting with normal plasma thyroglobulin levels and associated with inactivating mutations in the thyrotropin receptor gene: are athyreosis and ectopic thyroid distinct entities? J Clin Endocrinol Metab. 1998;83:1771–5.

    PubMed  CAS  Google Scholar 

  105. Tonacchera M, Agretti P, Pinchera A, et al. Congenital hypothyroidism with impaired thyroid response to thyrotropin (TSH) and absent circulating thyroglobulin: evidence for a new inactivating mutation of the TSH receptor gene. J Clin Endocrinol Metab. 2000;85:1001–8.

    PubMed  CAS  Google Scholar 

  106. Xie J, Pannain S, Pohlenz J, et al. Resistance to thyrotropin (TSH) in three families is not associated with mutations in the TSH receptor or TSH. J Clin Endocrinol. 1997;82:3933–40.

    CAS  Google Scholar 

  107. Weinstein LS, Liu J, Sakamoto A, Xie T, Chen M. Minireview: GNAS: normal and abnormal functions. Endocrinology. 2004;145(12):5459–64.

    PubMed  CAS  Google Scholar 

  108. Grasberger H, Ringkananont U, Lefrancois P, Abramowicz M, Vassart G, Refetoff S. Thyroid transcription factor 1 rescues PAX8/p300 synergism impaired by a natural PAX8 paired domain mutation with dominant negative activity. Mol Endocrinol. 2005;19(7):1779–91.

    PubMed  CAS  Google Scholar 

  109. Nagasaki K, Narumi S, Asami T, Kikuchi T, Hasegawa T, Uchiyama M. Mutation of a gene for thyroid transcription factor-1 (TITF1) in a patient with clinical features of resistance to thyrotropin. Endocr J. 2008;55(5):875–8.

    PubMed  CAS  Google Scholar 

  110. Grasberger H, Mimouni-Bloch A, Vantyghem MC, et al. Autosomal dominant resistance to thyrotropin as a distinct entity in five multigenerational kindreds: clinical characterization and exclusion of candidate loci. J Clin Endocrinol Metab. 2005;90(7):4025–34.

    PubMed  CAS  Google Scholar 

  111. Narumi S, Muroya K, Abe Y, et al. TSHR mutations as a cause of congenital hypothyroidism in Japan: a population-based genetic epidemiology study. J Clin Endocrinol Metab. 2009;94(4):1317–23.

    PubMed  CAS  Google Scholar 

  112. Bochukova E, Schoenmakers N, Agostini M, et al. A mutation in the thyroid hormone receptor alpha gene. N Engl J Med. 2012;366:243-9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald N. Cohen M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.N. (2013). Resistance to Thyroid Hormone and TSH Receptor Mutations. In: Radovick, S., MacGillivray, M. (eds) Pediatric Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-395-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-395-4_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-394-7

  • Online ISBN: 978-1-60761-395-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics