Skip to main content

Hematopoiesis and Stem Cell Biology

  • Chapter
  • First Online:
Neoplastic Hematopathology

Part of the book series: Contemporary Hematology ((CH))

  • 2170 Accesses

Abstract/Scope of chapter

This chapter covers hematopoiesis and the methodologies used to study maturation of bone marrow precursors into mature blood elements. The roles of particular genes and signaling pathways are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Migliaccio G, Migliaccio AR, Petti S, et al. Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac - liver transition. J Clin Invest 1986;78:51-60

    Google Scholar 

  2. Cumano A, Godin I. Ontogeny of the hematopoietic system. Annu Rev Immunol 2007;25:745-85.

    Article  PubMed  CAS  Google Scholar 

  3. Pereda J, Niimi G. Embryonic erythropoiesis in human yolk sac: two different compartments for two different processes. Microsc Res Tech 2008;71:856-62.

    Article  PubMed  Google Scholar 

  4. Marshall CJ, Moore RL, Thorogood P, Brickell PM, Kinnon C, Thrasher AJ. Detailed characterization of the human aorta-gonad-mesonephros region reveals morphological polarity resembling a hematopoietic stromal layer. Dev Dyn 1999;215:139-47.

    Article  PubMed  CAS  Google Scholar 

  5. Zhu J, Emerson SG. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 2002;21:3295-313.

    Article  PubMed  CAS  Google Scholar 

  6. Rowley JD. Chromosomal translocations: revisited yet again. Blood 2008;112:2183-9.

    Article  PubMed  CAS  Google Scholar 

  7. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994;1:661-73.

    Article  PubMed  CAS  Google Scholar 

  8. Shizuru JA, Negrin RS, Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 2005;56:509-38.

    Article  PubMed  CAS  Google Scholar 

  9. Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008;112:3543-53.

    Article  PubMed  CAS  Google Scholar 

  10. Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL. Identification of a lineage of multipotent hematopoietic progenitors. Development 1997;124:1929-39.

    PubMed  CAS  Google Scholar 

  11. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997;91:661-72.

    Article  PubMed  CAS  Google Scholar 

  12. Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 2001;97:3333-41.

    Article  PubMed  CAS  Google Scholar 

  13. Forsberg EC, Serwold T, Kogan S, Weissman IL, Passegue E. New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell 2006;126:415-26.

    Article  PubMed  CAS  Google Scholar 

  14. Manz MG, Traver D, Akashi K, et al. Dendritic cell development from common myeloid progenitors. Ann N Y Acad Sci 2001;938:167-73; discussion 73-4

    Google Scholar 

  15. Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2002;2:309-22.

    Article  PubMed  CAS  Google Scholar 

  16. Zuniga-Pflucker JC. T-cell development made simple. Nat Rev Immunol 2004;4:67-72.

    Article  PubMed  CAS  Google Scholar 

  17. Bollum FJ, Chang LM. Terminal transferase in normal and leukemic cells. Adv Cancer Res 1986;47:37-61.

    Article  PubMed  CAS  Google Scholar 

  18. Chang LM, Bollum FJ. Molecular biology of terminal transferase. CRC Crit Rev Biochem 1986;21:27-52.

    Article  PubMed  CAS  Google Scholar 

  19. Boucontet L, Sepulveda N, Carneiro J, Pereira P. Mechanisms controlling termination of V-J recombination at the TCRgamma locus: implications for allelic and isotypic exclusion of TCRgamma chains. J Immunol 2005;174:3912-9.

    PubMed  CAS  Google Scholar 

  20. Joachims ML, Chain JL, Hooker SW, Knott-Craig CJ, Thompson LF. Human alpha beta and gamma delta thymocyte development: TCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential - differences between men and mice. J Immunol 2006;176:1543-52.

    PubMed  CAS  Google Scholar 

  21. Lauritsen JP, Haks MC, Lefebvre JM, Kappes DJ, Wiest DL. Recent insights into the signals that control alphabeta/gammadelta-lineage fate. Immunol Rev 2006;209:176-90.

    Article  PubMed  Google Scholar 

  22. Terrence K, Pavlovich CP, Matechak EO, Fowlkes BJ. Premature expression of T cell receptor (TCR)alphabeta suppresses TCRgammadelta gene rearrangement but permits development of gammadelta lineage T cells. J Exp Med 2000;192:537-48.

    Article  PubMed  CAS  Google Scholar 

  23. Born WK, Jin N, Aydintug MK, et al. gammadelta T lymphocytes-selectable cells within the innate system? J Clin Immunol 2007;27:133-44.

    Article  PubMed  Google Scholar 

  24. Nanno M, Shiohara T, Yamamoto H, Kawakami K, Ishikawa H. gammadelta T cells: firefighters or fire boosters in the front lines of inflammatory responses. Immunol Rev 2007;215:103-13.

    Article  PubMed  CAS  Google Scholar 

  25. O’Brien RL, Roark CL, Jin N, et al. gammadelta T-cell receptors: functional correlations. Immunol Rev 2007;215:77-88.

    Article  PubMed  Google Scholar 

  26. Asarnow DM, Cado D, Raulet DH. Selection is not required to produce invariant T-cell receptor gamma-gene junctional sequences. Nature 1993;362:158-60.

    Article  PubMed  CAS  Google Scholar 

  27. Hardy RR, Kincade PW, Dorshkind K. The protean nature of cells in the B lymphocyte lineage. Immunity 2007;26:703-14.

    Article  PubMed  CAS  Google Scholar 

  28. Welner RS, Pelayo R, Kincade PW. Evolving views on the genealogy of B cells. Nat Rev Immunol 2008;8:95-106.

    Article  PubMed  CAS  Google Scholar 

  29. Hardy RR, Li YS, Allman D, Asano M, Gui M, Hayakawa K. B-cell commitment, development and selection. Immunol Rev 2000;175:23-32.

    Article  PubMed  CAS  Google Scholar 

  30. Hayakawa K, Asano M, Shinton SA, et al. Positive selection of natural autoreactive B cells. Science 1999;285:113-6.

    Article  PubMed  CAS  Google Scholar 

  31. Durandy A. Activation-induced cytidine deaminase: a dual role in class-switch recombination and somatic hypermutation. Eur J Immunol 2003;33:2069-73.

    Article  PubMed  CAS  Google Scholar 

  32. Neuberger MS. Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 2008;86:124-32.

    Article  PubMed  CAS  Google Scholar 

  33. Stavnezer J, Guikema JE, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol 2008;26:261-92.

    Article  PubMed  CAS  Google Scholar 

  34. Yoon SR, Chung JW, Choi I. Development of natural killer cells from hematopoietic stem cells. Mol Cells 2007;24:1-8.

    PubMed  CAS  Google Scholar 

  35. Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science 1945;102:400-1.

    Article  PubMed  CAS  Google Scholar 

  36. Jacobson LO, Simmons EL, Marks EK, Eldredge JH. Recovery from radiation injury. Science 1951;113:510-1.

    Article  PubMed  CAS  Google Scholar 

  37. Lorenz E, Uphoff D, Reid TR, Shelton E. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J Natl Cancer Inst 1951;12:197-201.

    PubMed  CAS  Google Scholar 

  38. Lapidot T, Fajerman Y, Kollet O. Immune-deficient SCID and NOD/SCID mice models as functional assays for studying normal and malignant human hematopoiesis. J Mol Med 1997;75:664-73.

    Article  PubMed  CAS  Google Scholar 

  39. Shen FW, Tung JS, Boyse EA. Further definition of the Ly-5 system. Immunogenetics 1986;24:146-9.

    PubMed  CAS  Google Scholar 

  40. Deryugina EI, Muller-Sieburg CE. Stromal cells in long-term cultures: keys to the elucidation of hematopoietic development? Crit Rev Immunol 1993;13:115-50.

    PubMed  CAS  Google Scholar 

  41. Wineman J, Moore K, Lemischka I, Muller-Sieburg C. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 1996;87:4082-90.

    PubMed  CAS  Google Scholar 

  42. Neben S, Anklesaria P, Greenberger J, Mauch P. Quantitation of murine hematopoietic stem cells in vitro by limiting dilution analysis of cobblestone area formation on a clonal stromal cell line. Exp Hematol 1993;21:438-43.

    PubMed  CAS  Google Scholar 

  43. Dao C, Metcalf D, Zittoun R, Bilski-Pasquier G. Normal human bone marrow cultures in vitro: cellular composition and maturation of the granulocytic colonies. Br J Haematol 1977;37:127-36.

    PubMed  CAS  Google Scholar 

  44. Leary AG, Ogawa M. Blast cell colony assay for umbilical cord blood and adult bone marrow progenitors. Blood 1987;69:953-6.

    PubMed  CAS  Google Scholar 

  45. Leary AG, Ikebuchi K, Hirai Y, et al. Synergism between interleukin-6 and interleukin-3 in supporting proliferation of human hematopoietic stem cells: comparison with interleukin-1 alpha. Blood 1988;71:1759-63.

    PubMed  CAS  Google Scholar 

  46. Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells 2006;24:3-12.

    Article  PubMed  Google Scholar 

  47. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002;99:507-12.

    Article  PubMed  CAS  Google Scholar 

  48. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001;7:1028-34.

    Article  PubMed  CAS  Google Scholar 

  49. Lansdorp PM. Telomeres, stem cells, and hematology. Blood 2008;111:1759-66.

    Article  PubMed  CAS  Google Scholar 

  50. Malhotra S, Kincade PW. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell 2009;4:27-36.

    Article  PubMed  CAS  Google Scholar 

  51. Wilson A, Laurenti E, Oser G, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008;135:1118-29.

    Article  PubMed  CAS  Google Scholar 

  52. Broudy VC. Stem cell factor and hematopoiesis. Blood 1997;90:1345-64.

    PubMed  CAS  Google Scholar 

  53. Borbolla JR, Lopez-Hernandez MA, De Diego J, Gonzalez-Avante M, Trueba E, Collados MT. Use of interleukin-11 after autologous stem cell transplant: report of three cases and a very brief review of the literature. Haematologica 2001;86:891-2.

    PubMed  CAS  Google Scholar 

  54. Kishimoto T. The biology of interleukin-6. Blood 1989;74:1-10.

    PubMed  CAS  Google Scholar 

  55. Marcucci R, Romano M. Thrombopoietin and its splicing variants: structure and functions in thrombopoiesis and beyond. Biochim Biophys Acta 2008;1782:427-32.

    Article  PubMed  CAS  Google Scholar 

  56. Metcalf D. Hematopoietic cytokines. Blood 2008;111:485-91.

    Article  PubMed  CAS  Google Scholar 

  57. Adolfsson J, Borge OJ, Bryder D, et al. Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 2001;15:659-69.

    Article  PubMed  CAS  Google Scholar 

  58. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A 1992;89:2804-8.

    Article  PubMed  CAS  Google Scholar 

  59. Terstappen LW, Huang S, Safford M, Lansdorp PM, Loken MR. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor cells. Blood 1991;77:1218-27.

    PubMed  CAS  Google Scholar 

  60. Chang AN, Cantor AB, Fujiwara Y, et al. GATA-factor dependence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis. Proc Natl Acad Sci U S A 2002;99:9237-42.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang DE, Hohaus S, Voso MT, et al. Function of PU.1 (Spi-1), C/EBP, and AML1 in early myelopoiesis: regulation of multiple myeloid CSF receptor promoters. Curr Top Microbiol Immunol 1996;211:137-47.

    Google Scholar 

  62. Ng SY, Yoshida T, Georgopoulos K. Ikaros and chromatin regulation in early hematopoiesis. Curr Opin Immunol 2007;19:116-22.

    Article  PubMed  CAS  Google Scholar 

  63. Kioussis D. Aiolos: an ungrateful member of the Ikaros family. Immunity 2007;26:275-7.

    Article  PubMed  CAS  Google Scholar 

  64. Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999;401:556-62.

    Article  PubMed  CAS  Google Scholar 

  65. Pongubala JM, Northrup DL, Lancki DW, et al. Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5. Nat Immunol 2008;9:203-15.

    Article  PubMed  CAS  Google Scholar 

  66. Roessler S, Gyory I, Imhof S, et al. Distinct promoters mediate the regulation of Ebf1 gene expression by interleukin-7 and Pax5. Mol Cell Biol 2007;27:579-94.

    Article  PubMed  CAS  Google Scholar 

  67. Kastner P, Chan S. PU.1: a crucial and versatile player in hematopoiesis and leukemia. Int J Biochem Cell Biol 2008;40:22-7

    Google Scholar 

  68. Rothenberg EV, Moore JE, Yui MA. Launching the T-cell-lineage developmental programme. Nat Rev Immunol 2008;8:9-21.

    Article  PubMed  CAS  Google Scholar 

  69. Hayday AC, Pennington DJ. Key factors in the organized chaos of early T cell development. Nat Immunol 2007;8:137-44.

    Article  PubMed  CAS  Google Scholar 

  70. Hacker C, Kirsch RD, Ju XS, et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 2003;4:380-6.

    Article  PubMed  CAS  Google Scholar 

  71. Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 2006;10:257-68.

    Article  PubMed  CAS  Google Scholar 

  72. Neering SJ, Bushnell T, Sozer S, et al. Leukemia stem cells in a genetically defined murine model of blast-crisis CML. Blood 2007;110:2578-85.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudiu Cotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cotta, C. (2010). Hematopoiesis and Stem Cell Biology. In: Jones, D. (eds) Neoplastic Hematopathology. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-384-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-384-8_31

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-383-1

  • Online ISBN: 978-1-60761-384-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics